Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-20T00:01:19.990Z Has data issue: false hasContentIssue false

14 - The Pathophysiology and Clinical Features of α Thalassaemia

from SECTION THREE - α THALASSEMIA

Published online by Cambridge University Press:  03 May 2010

Martin H. Steinberg
Affiliation:
Boston University
Bernard G. Forget
Affiliation:
Yale University, Connecticut
Douglas R. Higgs
Affiliation:
MRC Institute of Molecular Medicine, University of Oxford
David J. Weatherall
Affiliation:
Albert Einstein College of Medicine, New York
Get access

Summary

INTRODUCTION

The primary abnormality in patients with α thalassemia is the underproduction of α-globin chains. Important secondary effects occur because of the continued production of excess γ chains in fetal life, which form the γ4 tetramer (Hb Bart's) and excess β-chains in adult life producing a β4 tetramer (HbH). Excess, unmatched non-α-globin chains damage the developing erythroid precursors, giving rise to intramedullary hemolysis or ineffective erythropoiesis. In addition, the presence of Hb Bart's and HbH cause premature destruction of mature red cells, giving rise to the predominant pathophysiology of α thalassemia that involves extravascular hemolysis.

As set out in Chapter 13 and http://globin.bx.psu.edu/hbvar/ we currently know of approximately 80 mutations associated with α+ thalassemia and approximately 40 that cause α0 thalassemia. There are potentially several hundred different interactions that could take place between the large numbers of determinants described. Phenotypically, these interactions result in one of three broad categories; α thalassemia trait, in which there are mild hematological changes but no major clinical abnormalities, HbH disease, and the Hb Bart's hydrops fetalis syndrome. We shall consider each of these in this chapter.

The information set out in Chapter 13 suggests that the α thalassemia determinants can be arranged in the order of their severity (from αα to --) as shown in Table 14.1. In general the phenotypes resulting from their interactions correlate well with the reduction in α-chain synthesis predicted for each mutation.

Type
Chapter
Information
Disorders of Hemoglobin
Genetics, Pathophysiology, and Clinical Management
, pp. 266 - 295
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chui, DH, Fucharoen, S, Chan, V. Hemoglobin H disease: not necessarily a benign disorder. Blood. 2003;101:791–800.CrossRefGoogle ScholarPubMed
Giardine, B, Baal, S, Kaimakis, P, et al. HbVar database of human hemoglobin variants and thalassemia mutations: 2007 update. Hum Mutat. 2007;28:206.CrossRefGoogle ScholarPubMed
Pornpatkul, M, Wasi, P, Na-Nakorn, S. Hematologic parameters in obligatory alpha-thalassemia. J Med Assoc Thai. 1969;52:801.Google Scholar
Hunt, JA, Lehmann, H. Abnormal human haemoglobins. Haemoglobin 'Bart's: a foetal haemoglobin without a chains. Nature. 1959;184:872–873.CrossRefGoogle Scholar
Weatherall, DJ. Abnormal haemoglobins in the neonatal period and their relationship to thalassaemia. Br J Haematol. 1963;9:265.CrossRefGoogle ScholarPubMed
McNiel, JR.The inheritance of hemoglobin H disease. Abstracts of the Simultaneous Sessions. Paper presented at XII Congress International and National Society of Hematology. New York, 1968.Google Scholar
Pornpatkul, M, Pootrakul, S-N, Muangsrup, W, Wasi, P.Intraerythrocytic inclusion bodies in obligatory alpha thalassemia traits. J Med Assoc Thai. 1978;61:63.Google Scholar
Kan, YW, Schwartz, E, Nathan, DG. Globin chain synthesis in alpha thalassemia syndromes. J Clin Invest. 1968;47:2515–2522.CrossRefGoogle Scholar
Weatherall, DJ, Clegg, JB. The Thalassemia Syndromes. 4th ed. Oxford: Blackwell Science; 2001.CrossRefGoogle Scholar
Higgs, DR, Vickers, MA, Wilkie, AO, Pretorius, IM, Jarman, AP, Weatherall, DJ. A review of the molecular genetics of the human alpha-globin gene cluster. Blood. 1989;73:1081–1104.Google ScholarPubMed
Benz, EJ, Swerdlow, PS, Forget, BG. Globin messenger RNA in hemoglobin H disease. Blood. 1973;42:825–833.Google ScholarPubMed
Gambino, R, Kacian, DL, Ramirez, F, et al. Decreased globin messenger RNA in thalassemia by hydridization and biologic activity assays. Ann NY Acad Sci. 1974;232:6–14.CrossRefGoogle ScholarPubMed
Grossbard, E, Terada, M, Dow, LW, Bank, A. Decreased globin messenger RNA activity associated with polyribosomes in. Nat New Biol. 1973;241:209–211.CrossRefGoogle Scholar
Pritchard, J, Clegg, JB, Weatherall, DJ, Longley, J. Proceedings: The translation of human globin messenger RNA in heterologous assay systems. Br J Haematol. 1974;28:141–142.Google ScholarPubMed
Housman, D, Forget, BG, Skoultchi, A, Benz, EJQuantitative deficiency of chain-specific globin messenger ribonucleic acids in the thalassemia syndromes. Proc Natl Acad Sci USA. 1973;70:1809–1813.CrossRefGoogle ScholarPubMed
Kacian, DL, Gambino, R, Dow, LW, et al. Decreased globin messenger RNA in thalassemia detected by molecular hybridization. Proc Natl Acad Sci USA. 1973;70:1886–1890.CrossRefGoogle ScholarPubMed
Kan, YW, Todd, D, Holland, J, Dozy, A.Absence of a globin mRNA in homozygous α-thalassemia. J Clin Invest. 1974;53:37a.Google Scholar
Natta, CL, Ramirez, F, Wolff, JA, Bank, A. Decreased alpha globin mRNA in nucleated red cell precursors in alpha thalassemia. Blood. 1976;47:899–907.Google ScholarPubMed
Hunt, DM, Higgs, DR, Clegg, JB, Weatherall, DJ, Marsh, GW. Determination of alpha thalassaemia phenotypes by messenger RNA analysis. Br J Haematol. 1980;45:53–64.CrossRefGoogle ScholarPubMed
Lin, SF, Liu, TC, Chen, TP, Chiou, SS, Liu, HW, Chang, JG. Diagnosis of thalassaemia by non-isotope detection of alpha/beta and zeta/alpha mRNA ratios. Br J Haematol. 1994;87:133–138.CrossRefGoogle ScholarPubMed
Smetanina, NS, Leonova, JY, Levy, N, Huisman, TH. The alpha/beta and alpha 2/alpha 1-globin mRNA ratios in different forms of alpha-thalassemia. Biochim Biophys Acta. 1996;1315:188–192.CrossRefGoogle Scholar
Clegg, JB, Weatherall, DJ. Haemoglobin synthesis in alpha-thalassaemia (haemoglobin H disease). Nature. 1967;215:1241–1243.CrossRefGoogle Scholar
Pootrakul, S, Sapprapa, S, Wasi, P, Na-Nakorn, S, Suwanik, R. Hemoglobin synthesis in 28 obligatory cases for alpha-thalassemia traits. Humangenetik. 1975;29:121–126.Google ScholarPubMed
Weatherall, DJ, Clegg, JB, Boon, WH. The haemoglobin constitution of infants with the haemoglobin Bart's hydrops foetalis syndrome. Br J Haematol. 1970;18:357–367.CrossRefGoogle ScholarPubMed
Ganczakowski, M, Bowden, DK, Maitland, K, et al. Thalassaemia in Vanuatu, south-west Pacific: frequency and haematological phenotypes of young children. Br J Haematol. 1995;89:485–495.CrossRefGoogle ScholarPubMed
Williams, TN, Maitland, K, Ganczakowski, M, et al. Red blood cell phenotypes in the alpha + thalassaemias from early childhood to maturity. Br J Haematol. 1996;95:266–272.CrossRefGoogle Scholar
Owen, GM, Yanochik-Owen, A.Should there be a different definition of anemia in black and white children?Am J Public Health. 1977;67:865–866.CrossRefGoogle ScholarPubMed
Ross, DW, Ayscue, LH, Watson, J, Bentley, SA. Stability of hematologic arameters in healthy subjects. Intraindividual versus interindividual ariation. Am J Clin Pathol. 1988;90:262–267.CrossRefGoogle Scholar
Chan, LC, Ma, SK, Chan, AY, et al. Should we screen for globin gene mutations in blood samples with mean corpuscular volume (MCV) greater than 80 fL in areas with a high relevance of thalassaemia?J Clin Pathol. 2001;54:317–320.CrossRefGoogle Scholar
Chui, DH. Alpha-thalassaemia and population health in southeast Asia. Ann Hum Biol. 2005;32:123–130.CrossRefGoogle ScholarPubMed
Higgs, DR. alpha-Thalassaemia. Baillieres Clin Haematol. 1993;6:117–150.CrossRefGoogle ScholarPubMed
Rees, DC, Williams, TN, Maitland, K, Clegg, JB, Weatherall, DJ. Alpha thalassaemia is associated with increased soluble transferrin receptor levels. Br J Haematol. 1998;103:365–369.CrossRefGoogle ScholarPubMed
Nathan, DG, Gunn, RB. Thalassemia: the consequences of unbalanced hemoglobin synthesis. Am J Med. 1966;41:815–830.CrossRefGoogle ScholarPubMed
Wasi, P, Na-Nakorn, S, Pootrakul, S. The α thalassaemias. Clin Haematol. 1974;3:383–410.Google Scholar
Maude, GH, Higgs, DR, Beckford, M, et al. Alpha thalassaemia and the haematology of normal Jamaican children. Clin Lab Haematol. 1985;7:289–295.CrossRefGoogle ScholarPubMed
Higgs, DR, Pressley, L, Clegg, JB, et al. Detection of alpha thalassemia in Negro infants. Br J Haematol. 1980;46:39–46.CrossRefGoogle ScholarPubMed
Kyriacou, K, Kyrri, A, Kalogirou, E, et al. Hb Bart's levels in cord blood and alpha-thalassemia mutations in Cyprus. Hemoglobin. 2000;24:171–180.CrossRefGoogle ScholarPubMed
Rugless, MJ, Fisher, CA, Stephens, AD, Amos, RJ, Mohammed, T, Old, JM. Hb Bart's in cord blood: an accurate indicator of alpha-thalassemia. Hemoglobin. 2006;30:57–62.CrossRefGoogle ScholarPubMed
Wasi, P, Pravatmuang, P, Winichagoon, P. Immunologic diagnosis of alpha-thalassemia traits. Hemoglobin. 1979;3:21–31.CrossRefGoogle ScholarPubMed
Chui, DH, Wong, SC, Chung, SW, Patterson, M, Bhargava, S, Poon, MC. Embryonic zeta-globin chains in adults: a marker for alpha-thalassemia-1 haplotype due to a greater than 17.5-kb deletion. N Engl J Med. 1986;314:76–79.CrossRefGoogle ScholarPubMed
Lafferty, JD, Barth, DS, Sheridan, BL, et al. A multicenter trial of the effectiveness of zeta-globin enzyme-linked immunosorbent assay and hemoglobin H inclusion body screening for the detection of alphaO-thalassemia trait. Am J Clin Pathol. 2008;129:309–315.CrossRefGoogle Scholar
Galanello, R, Paglietti, E, Melis, MA, Giagu, L, Cao, A. Hemoglobin inclusions in heterozygous alpha-thalassemia according to their alpha-globin genotype. Acta Haematol. 1984;72:34–36.CrossRefGoogle ScholarPubMed
Gibbons, RJ, Wilkie, AO, Weatherall, DJ, Higgs, DR. A newly defined X linked mental retardation syndrome associated with alpha thalassaemia. J Med Genet. 1991;28:729–733.CrossRefGoogle ScholarPubMed
Sabath, , Cross, ST, Mamiya, LY. An improved method for detecting red cells with hemoglobin H inclusions that does not require glass capillary tubes. Clin Lab Haematol. 2003;25:87–91.CrossRefGoogle Scholar
Lam, YH, Ghosh, A, Tang, MH, Chan, V. The risk of alpha-thalassaemia in offspring of beta-thalassaemia carriers in Hong Kong. Prenat Diagn. 1997;17:733–736.3.0.CO;2-F>CrossRefGoogle ScholarPubMed
Letsky, EA, Redman, CWG. Blood disorders in pregnancy. In: Weatherall, DJ, Ledingham, JGG, Warrell, DA, eds. Oxford Textbook of Medicine. Vol 1. Oxford: Oxford University Press; 1987:11.31–11.35.Google Scholar
O'Donnell, A, Raiko, A, Clegg, JB, Weatherall, DJ, Allen, SJ. Alpha+ -thalassaemia and pregnancy in a malaria endemic region of Papua New Guinea. Br J Haematol. 2006;135:235–241.CrossRefGoogle Scholar
Diejomaoh, FM, Haider, MZ, Dalai, H, Abdulaziz, A, D'Souza, TM, Adekile, AD. Influence of alpha-thalassemia trait on the prevalence and severity of anemia in pregnancy among women in Kuwait. Acta Haematol. 2000;104:92–94.CrossRefGoogle ScholarPubMed
White, JM, Richards, R, Byrne, M, Buchanan, T, White, YS, Jelenski, G. Thalassaemia trait and pregnancy. J Clin Pathol. 1985;38:810–817.CrossRefGoogle Scholar
Paglietti, E, Galanello, R, Moi, P, Pirastu, M, Cao, A. Molecular pathology of haemoglobin H disease in Sardinians. Br J Haematol. 1986;63:485–496.CrossRefGoogle ScholarPubMed
Higgs, DR, Goodbourn, SE, Lamb, J, Clegg, JB, Weatherall, DJ, Proudfoot, NJ. Alpha-thalassaemia caused by a polyadenylation signal mutation. Nature. 1983;306:398–400.CrossRefGoogle ScholarPubMed
Arnon, S, Tamary, H, Dgany, O, et al. Hydrops fetalis associated with homozygosity for hemoglobin Taybe (alpha 38/39 THR deletion) in newborn triplets. Am J Hematol. 2004;76:263–266.CrossRefGoogle Scholar
Charoenkwan, P, Sirichotiyakul, S, Chanprapaph, P, et al. Anemia and hydrops in a fetus with homozygous hemoglobin constant spring. J Pediatr Hematol Oncol. 2006;28:827–830.CrossRefGoogle Scholar
Lie-lnjo, , Ganesan, J, Clegg, JB, Weatherall, DJ. Homozygous state for Hb Constant Spring (slow-moving Hb X components). Blood. 1974;43:251–259.Google Scholar
Lie-lnjo, , Ganesan, J, Lopez, CG. The clinical, hematological and biochemical expression of hemoglobin constant spring and its distribution. In: Schmidt, RM ed. Abnormal Hemoglobins and Thalassemia – Diagnostic Aspects. New York: Academic Press; 1975.Google Scholar
Pongsamart, S, Pootrakul, S, Wasi, P, Na-Nakorn, S. Hemoglobin Constant Spring: hemoglobin synthesis in heterozygous and homozygous states. Biochem Biophys Res Commun. 1975;64:681–686.CrossRefGoogle ScholarPubMed
Pootrakul, P, Winichagoon, P, Fucharoen, S, Pravatmuang, P, Piankijagum, A, Wasi, P. Homozygous haemoglobin Constant Spring: a need for revision of concept. Hum Genet. 1981;59:250–255.CrossRefGoogle ScholarPubMed
Viprakasit, V, Veerakul, G, Sanpakit, K, Pongtanakul, B, Chinchang, W, Tanphaichitr, VS. Acute haemolytic crisis in a Thai patient with homozygous haemoglobin Constant Spring (Hb CS/CS): a case report. Ann Trop Paediatr. 2004;24:323–328.CrossRefGoogle Scholar
Deny, S, Wood, WG, Pippard, M, et al. Hematologic and biosynthetic studies in homozygous hemoglobin Constant Spring. J Clin Invest. 1984;73:1673–1682.Google Scholar
Fei, YJ, Oner, R, Bozkurt, G, et al. Hb H disease caused by a homozygosity for the AATAAA–>AATAAG mutation in the polyadenylation site of the alpha 2-globin gene: hematological observations. Acta Haematol. 1992;88:82–85.CrossRefGoogle ScholarPubMed
Galanello, R, Aru, B, Dessi, C, et al. HbH disease in Sardinia: molecular, hematological and clinical aspects. Acta Haematol. 1992;88:1–6.CrossRefGoogle ScholarPubMed
Kanavakis, E, Papassotiriou, I, Karagiorga, M, et al. Phenotypic and molecular diversity of haemoglobin H disease: a Greek experience. Br J Haematol. 2000;111:915–923.Google ScholarPubMed
Khan, SN, Butt, Fl, Riazuddin, S, Galanello, R. Hb Sallanches [alpha104(G11)Cys->Tyr]: a rare alpha2-globin chain variant found in the homozygous state in three members of a Pakistani family. Hemoglobin. 2000;24:31–35.CrossRefGoogle Scholar
Morle, F, Francina, A, Ducrocq, R, et al. A new alpha chain variant Hb Sallanches [alpha 2 104(G11) Cys->Tyr] associated with HbH disease in one homozygous patient. Br J Haematol. 1995;91:608–611.CrossRefGoogle ScholarPubMed
Oner, C, Gurgey, A, Oner, R, et al. The molecular basis of Hb H disease in Turkey. Hemoglobin. 1997;21:41–51.CrossRefGoogle ScholarPubMed
Pressley, L, Higgs, DR, Clegg, JB, Perrine, RP, Pembrey, ME, Weatherall, DJ. A new genetic basis for hemoglobin-H disease. N Engl J Med. 1980;303:1383–1388.CrossRefGoogle ScholarPubMed
Waye, JS, Walker, L, Chui, DH, Lafferty, J, Kirby, M. Homozygous Hb Sallanches [alpha104(G11)Cys->Tyr] in a Pakistani child with Hb H disease. Hemoglobin. 2000;24:355–357.CrossRefGoogle Scholar
Benesch, RE, Ranney, HM, Benesch, R, Smith, GM. The chemistry of the Bohr effect. II. Some properties of hemoglobin H. J Biol Chem. 1961;236:2926–2929.Google ScholarPubMed
Papassotiriou, I, Traeger-Synodinos, J, Kanavakis, E, Karagiorga, M, Stamoulakatou, A, Kattamis, C. Erythroid marrow activity and hemoglobin H levels in hemoglobin H disease. J Pediatr Hematol Oncol. 1998;20:539–544.CrossRefGoogle ScholarPubMed
Schrier, SL, Rachmilewitz, E, Mohandas, N. Cellular and membrane properties of alpha and beta thalassemic erythrocytes are different: implication for differences in clinical manifestations. Blood. 1989;74:2194–2202.Google ScholarPubMed
Schrier, SL, Bunyaratvej, A, Khuhapinant, A, et al. The unusual pathobiology of hemoglobin constant spring red blood cells. Blood. 1997;89:1762–1769.Google ScholarPubMed
Chen, FE, Ooi, C, Ha, SY, et al. Genetic and clinical features of hemoglobin H disease in Chinese patients. N Engl J Med. 2000;343:544–550.CrossRefGoogle ScholarPubMed
Origa, R, Sollaino, MC, Giagu, N, et al. Clinical and molecular analysis of haemoglobin H disease in Sardinia: haematological, obstetric and cardiac aspects in patients with different genotypes. Br J Haematol. 2007;136:326–332.CrossRefGoogle ScholarPubMed
Knox-Macaulay, HH, Weatherall, DJ, Clegg, JB, Bradley, J, Brown, MJ. The clinical and biosynthetic characterization of -thalasasemia. Br J Haematol. 1972;22:497–512.CrossRefGoogle Scholar
Pearson, HA, McFarland, W. Erythrokinetics in thalassemia. II. Studies in Lepore trait and hemoglobin H disease. J Lab Clin Med. 1962;59:147–157.Google ScholarPubMed
Rigas, DA, Koler, RD. Decreased erythrocyte survival in hemoglobin H disease as a result of the abnormal properties of hemoglobin H: the benefit of splenectomy. Blood. 1961;18:1–17.Google ScholarPubMed
Woodrow, JC, Noble, RL, Martindale, JH. Haemoglobin H disease in an English family. Br Med J. 1964;1:36–38.CrossRefGoogle Scholar
Srichaikul, T, Tipayasakda, J, Atichartakarn, V, Jootar, S, Bovornbinyanun, P. Ferrokinetic and erythrokinetic studies in alpha and beta thalassemia. Clin Lab Haematol. 1984; 6:133–140.CrossRefGoogle Scholar
Wongchanchailert, M, Laosombat, V, Maipang, M. Hemoglobin H disease in children. J Med Assoc Thai. 1992;75:611–618.Google ScholarPubMed
Piankijagum, A, Palungwachira, P, Lohkoomgunpai, A. Beta thalassemia, hemoglobin E and hemoglobin H disease. Clinical analysis 1964–1966. J Med Assoc Thai. 1978;61:50.Google Scholar
Bunn, HF, Forget, BG. Hemoglobin: Molecular, Genetic and Clinical Aspects. Philadelphia: W.B. Saunders; 1986.Google Scholar
Waye, JS, Eng, B, Patterson, M, et al. Hemoglobin H (Hb H) disease in Canada: molecular diagnosis and review of 116 cases. Am J Hematol. 2001;68:11–15.CrossRefGoogle ScholarPubMed
Fucharoen, S, Winichagoon, P, Pootrakul, P, Piankijagum, A, Wasi, P. Differences between two types of Hb H disease, alpha-thalassemia 1/alpha-thalassemia 2 and alpha-thalassemia 1/Hb constant spring. Birth Defects Orig Artic Ser. 1987;23:309–315.Google ScholarPubMed
Galanello, R, Pirastu, M, Melis, MA, Paglietti, E, Moi, P, Cao, A. Phenotype-genotype correlation in haemoglobin H disease in childhood. J Med Genet. 1983;20:425–429.CrossRefGoogle ScholarPubMed
Pootrakul, S, Wasi, P, Na-Nakorn, S. Studies on haemoglobin Bart's's (Hb-gamma-4) in Thailand: the incidence and the mechanism of occurrence in cord blood. Ann Hum Genet. 1967;31:149–166.CrossRefGoogle Scholar
Wasi, P, Na-Nakorn, S, Pootrakul, S, et al. Alpha- and beta-thalassemia in Thailand. Ann NY Acad Sci. 1969;165:60–82.CrossRefGoogle ScholarPubMed
Rachmilewitz, EA, Harari, E. Slow rate of haemichrome formation from oxidized haemoglobin Bart's (γ4): a possible explanation for the unequal quantities of haemoglobins H (γ4) and Bart's in alpha-thalassemia. Br J Haematol. 1972;22:357–364.CrossRefGoogle Scholar
Baysal, E, Kleanthous, M, Bozkurt, G, et al. alpha-Thalassemia in the population of Cyprus. Br J Haematol. 1995;89:496–499.CrossRefGoogle ScholarPubMed
Higgs, DR, Weatherall, DJ. Alpha-thalassemia. Curr Top Hematol. 1983;4:37–97.Google ScholarPubMed
Ramot, B, Sheba, C, Fisher, S, Ager, JA, Lehmann, H. Haemoglobin H disease with persistent haemoglobin “Bart's” in an Oriental Jewess and her daughter: a dual alpha-chain deficiency of human haemoglobin. Br Med J. 1959;2:1228–1230.CrossRefGoogle Scholar
Chui, DH, Patterson, M, Dowling, CE, Kazazian, HH, Kendall, AG. Hemoglobin Bart's disease in an Italian boy. Interaction between alpha-thalassemia and hereditary persistence of fetal hemoglobin. N Engl J Med. 1990;323:179–182.CrossRefGoogle Scholar
Adirojnanon, P, Wasi, P. Levels of haemoglobin H and proportions of red cells with inclusion bodies in the two types of haemoglobin H disease. Br J Haematol. 1980;46:507–509.Google ScholarPubMed
Weatherall, DJ, Clegg, JB. The alpha-chain-termination mutants and their relation to the alpha-thalassaemias. Philos Trans R Soc Lond B Biol Sci. 1975;271:411–455.CrossRefGoogle ScholarPubMed
George, E, Ferguson, V, Yakas, J, Kronenberg, H, Trent, RJ. A molecular marker associated with mild hemoglobin H disease. Pathology. 1989;21:27–30.CrossRefGoogle ScholarPubMed
Kattamis, C, Tzotzos, S, Kanavakis, E, Synodinos, J, Metaxotou-Mavrommati, A. Correlation of clinical phenotype to genotype in haemoglobin H disease. Lancet. 1988;1:442–444.CrossRefGoogle ScholarPubMed
Wasi, P. Hemoglobinopathies in Southeast Asia. In: Bowman, JE, ed. Distribution and Evolution of the Hemoglobin and Globin Loci. New York: Elsevier; 1983:179–209.Google Scholar
Wong, HB. Thalassemias in Singapore. J Singapore Paediatr Soc. 1984;26:1–14.Google ScholarPubMed
Lorey, F, Cunningham, G, Vichinsky, EP, et al. Universal newborn screening for Hb H disease in California. Genet Test. 2001;5:93–100.CrossRefGoogle ScholarPubMed
Au, WY, Cheung, WC, Hu, WH, et al. Hyperbilirubinemia and cholelithiasis in Chinese patients with hemoglobin H disease. Ann Hematol. 2005;84:671–674.CrossRefGoogle ScholarPubMed
Wu, JH, Shih, LY, Kuo, TT, Lan, RS. Intrathoracic extramedullary hematopoietic tumor in hemoglobin H disease. Am J Hematol. 1992;41:285–288.CrossRefGoogle ScholarPubMed
Vaeusorn, O, Fucharoen, S, Wasi, P. A study of thalassemia associated with pregnancy. Birth Defects Orig Artic Ser. 1988;23:295–299.Google ScholarPubMed
Tantiweerawong, N, Jaovisidha, A, Israngura Na Ayudhya, N. Pregnancy outcome of hemoglobin H disease. Intl J Gynecol Obstetr. 2005;90:236–237.CrossRefGoogle ScholarPubMed
Ong, HC, White, JC, Sinnathuray, TA. Haemoglobin H disease and pregnancy in a Malaysian woman. Acta Haematol. 1977;58:229–333.CrossRefGoogle Scholar
Lin, CK, Lin, JS, Jiang, ML. Iron absorption is increased in hemoglobin H diseases. Am J Hematol. 1992;40:74–75.CrossRefGoogle ScholarPubMed
Chim, CS, Chan, V, Todd, D. Hemosiderosis with diabetes mellitus in untransfused Hemoglobin H disease. Am J Hematol. 1998;57:160–163.3.0.CO;2-G>CrossRefGoogle ScholarPubMed
Tso, SC, Loh, TT, Todd, D. Iron overload in patients with haemoglobin H disease. Scand J Haematol. 1984;32:391–394.CrossRefGoogle ScholarPubMed
Sonakul, D, Sook-aneak, M, Pacharee, P. Pathology of thalassemic diseases in Thailand. J Med Assoc Thai. 1978;61:72.Google Scholar
Hsu, HC, Lin, CK, Tsay, SH, et al. Iron overload in Chinese patients with hemoglobin H disease. Am J Hematol. 1990;34:287–290.CrossRefGoogle ScholarPubMed
Lin, CK, Peng, HW, Ho, CH, Yung, CH. Iron overload in untransfused patients with hemoglobin H disease. Acta Haematol. 1990;83:137–139.Google ScholarPubMed
Ooi, GC, Chen, FE, Chan, KN, et al. Qualitative and quantitative magnetic resonance imaging in haemoglobin H disease: screening for iron overload. Clin Radiol. 1999;54:98–102.CrossRefGoogle ScholarPubMed
Thakerngpol, K, Fucharoen, S, Boonyaphipat, P, et al. Liver injury due to iron overload in thalassemia: histopathologic and ultrastructural studies. Biometals. 1996;9:177–183.CrossRefGoogle ScholarPubMed
Chan, JC, Chim, CS, Ooi, CG, et al. Use of the oral chelator deferiprone in the treatment of iron overload in patients with Hb H disease. Br J Haematol. 2006;133:198–205.CrossRefGoogle ScholarPubMed
Feder, JN, Gnirke, A, Thomas, W, et al. A novel MHC class l-like gene is mutated in patients with hereditary haemochromatosis. Nat Genet. 1996;13:399–408.CrossRefGoogle Scholar
Daneshmend, TK, Peachey, RD. Leg ulcers in alpha-thalassemia (haemoglobin H disease). Br J Dermatol. 1978;98:233–235.CrossRefGoogle Scholar
Cao, A, Rosatelli, C, Pirastu, M, Galanello, R. Thalassemias in Sardinia: molecular pathology, phenotype-genotype correlation, and prevention. Am J Pediatr Hematol Oncol. 1991;13:179–188.CrossRefGoogle Scholar
Daneshmend, TK. Ocular findings in a case of haemoglobin H disease. Br J Ophthalmol. 1979;63:842–844.CrossRefGoogle Scholar
Eldor, A, Rachmilewitz, EA. The hypercoagulable state in thalassemia. Blood. 2002;99:36–43.CrossRefGoogle ScholarPubMed
Kanavakis, E, Traeger-Synodinos, J, Papasotiriou, I, et al. The interaction of alpha zero thalassemia with Hb Icaria: three unusual cases of haemoglobinopathy H. Br J Haematol. 1996;92:332–335.CrossRefGoogle ScholarPubMed
Nathan, DG, Oski, FA. Hematology of Infancy and Childhood. 3rd ed. Philadelphia: W.B. Saunders; 1987.Google Scholar
Shojania, AM, Gross, S. Hemolytic anemias and folic acid deficiency in children. Am J Dis Child. 1964;108:53–61.Google ScholarPubMed
Kanavakis, E, Tzotzos, S, Liapaki, A, Metaxotou-Mavromati, A, Kattamis, C. Frequency of alpha-thalassemia in Greece. Am J Hematol. 1986;22:225–232.CrossRefGoogle Scholar
Wagner, GM, Liebhaber, SA, Cutting, HO, Embury, SH. Hematologic improvement following splenectomy for hemoglobin-H disease. West J Med. 1982;137:325–328.Google ScholarPubMed
Hirsh, J, Dacie, JV. Persistent post-splenectomy thrombocytosis and thrombo-embolism: a consequence of continuing anaemia. Br J Haematol. 1966;12:44–53.CrossRefGoogle ScholarPubMed
Sonakul, D, Fucharoen, S. Pulmonary thromboembolism in thalassemic patients. Southeast Asian J Trop Med Public Health. 1992;23(Suppl 2):25–28.Google ScholarPubMed
Tso, SC, Chan, TK, Todd, D. Venous thrombosis in haemoglobin H disease after splenectomy. Aust NZ J Med. 1982;12:635–638.CrossRefGoogle ScholarPubMed
Chapman, RW, Williams, G, Bydder, G, Dick, R, Sherlock, S, Kreel, L. Computed tomography for determining liver iron content in primary haemochromatosis. Br Med J. 1980;280:440–442.CrossRefGoogle ScholarPubMed
Jensen, PD, Jensen, FT, Christensen, T, Ellegaard, J. Non-invasive assessment of tissue iron overload in the liver by magnetic resonance imaging. Br J Haematol. 1994;87:171–184.CrossRefGoogle ScholarPubMed
Arcasoy, MO, Gallagher, PG. Hematologic disorders and nonimmune hydrops fetalis. Semin Perinatol. 1995;19:502–515.CrossRefGoogle ScholarPubMed
Holzgreve, W, Curry, CJ, Golbus, MS, Callen, PW, Filly, RA, Smith, JC. Investigation of nonimmune hydrops fetalis. Am J Obstet Gynecol. 1984;150:805–812.CrossRefGoogle ScholarPubMed
Jauniaux, E, Maldergem, L, Munter, C, Moscoso, G, Gillerot, Y. Nonimmune hydrops fetalis associated with genetic abnormalities. Obstet Gynecol. 1990;75:568–572.Google ScholarPubMed
Nicolaides, KH, Rodeck, CH, Lange, I, et al. Fetoscopy in the assessment of unexplained fetal hydrops. Br J Obstet Gynaecol. 1985;92:671–679.CrossRefGoogle ScholarPubMed
Suwanrath-Kengpol, C, Kor-anantakul, O, Suntharasaj, T, Leetanaporn, R. Etiology and outcome of non-immune hydrops fetalis in southern Thailand. Gynecol Obstet Invest. 2005;59:134–137.CrossRefGoogle ScholarPubMed
Clarke, C, Whitfield, AG. Deaths from rhesus haemolytic disease in England and Wales in 1977: accuracy of records and assessment of anti-D prophylaxis. Br Med J. 1979;1:1665–1669.CrossRefGoogle ScholarPubMed
Machin, GA. Differential diagnosis of hydrops fetalis. Am J Med Genet. 1981;9:341–350.CrossRefGoogle ScholarPubMed
Ko, TM, Hsieh, FJ, Hsu, PM, Lee, TY. Molecular characterization of severe alpha-thalassemias causing hydrops fetalis in Taiwan. Am J Med Genet. 1991;39:317–320.CrossRefGoogle ScholarPubMed
Liang, ST, Wong, VC, So, WW, Ma, HK, Chan, V, Todd, D. Homozygous alpha-thalassemia: clinical presentation, diagnosis and management. A review of 46 cases. Br J Obstet Gynaecol. 1985;92:680–684.CrossRefGoogle ScholarPubMed
Lie-lnjo Luan, ENG. Haemoglobin of new-born infants in Indonesia. Nature. 1959;183:1125–1126.CrossRefGoogle Scholar
Tan, SL, Tseng, AM, Thong, PW. Bart's hydrops fetalis-clinical presentation and management – an analysis of 25 cases. Aust NZ J Obstet Gynaecol. 1989;29:233–237.CrossRefGoogle ScholarPubMed
Thumasathit, B, Nondasuta, A, Silpisornkosol, S, Lousuebsakul, B, Unchalipongse, P, Mangkornkanok, M. Hydrops fetalis associated with Bart's hemoglobin in northern Thailand. J Pediatr. 1968;73:132–138.CrossRefGoogle ScholarPubMed
Lau, YL, Chan, LC, Chan, YY, et al. Prevalence and genotypes of alpha- and beta-thalassemia carriers in Hong Kong – implications for population screening. N Engl J Med. 1997;336:1298–1301.CrossRefGoogle Scholar
Tongsong, T, Boonyanurak, P. Placental thickness in the first half of pregnancy. J Clin Ultrasound. 2004;32:231–234.CrossRefGoogle ScholarPubMed
Xu, XM, Zhou, YQ, Luo, GX, et al. The prevalence and spectrum of alpha and beta thalassaemia in Guangdong Province: implications for the future health burden and population screening. J Clin Pathol. 2004;57:517–522.CrossRefGoogle ScholarPubMed
Fischel-Ghodsian, N, Vickers, MA, Seip, M, Winichagoon, P, Higgs, DR. Characterization of two deletions that remove the entire human zeta-alpha globin gene complex (--THAI and --FIL). Br J Haematol. 1988;70:233–238.CrossRefGoogle Scholar
Diamond, MP, Cotgrove, I, Parker, A. Case of intrauterine death due to alpha-thalassaemia. Br Med J. 1965;2:278–279.CrossRefGoogle ScholarPubMed
Kattamis, C, Metaxotou-Mavromati, A, Tsiarta, E, et al. Haemoglobin Bart's hydrops syndrome in Greece. Br Med J. 1980;281:268–270.CrossRefGoogle Scholar
Pressley, L, Higgs, DR, Clegg, JB, Weatherall, DJ. Gene deletions in alpha thalassemia prove that the 5′ zeta locus is functional. Proc Natl Acad Sci USA. 1980;77:3586–3589.CrossRefGoogle ScholarPubMed
Sharma, RS, Yu, V, Walters, WA. Haemoglobin Bart's hydrops fetalis syndrome in an infant of Greek origin and prenatal diagnosis of alpha-thalassaemia. Med J Aust. 1979;2:404,:33–34.Google Scholar
Nicholls, RD, Higgs, DR, Clegg, JB, Weatherall, DJ. Alpha zero-thalassemia due to recombination between the alpha 1-globin gene and an Alul repeat. Blood. 1985;65:1434–1438.Google Scholar
Sophocleous, T, Higgs, DR, Aldridge, B, et al. The molecular basis for the haemoglobin Bart's hydrops fetalis syndrome in Cyprus. Br J Haematol. 1981;47:153–156.CrossRefGoogle ScholarPubMed
Galanello, R, Sanna, MA, Maccioni, L, et al. Fetal hydrops in Sardinia: implications for genetic counselling. Clin Genet. 1990;38:327–331.CrossRefGoogle ScholarPubMed
Gurgey, A, Altay, C, Beksac, MS, Bhattacharya, R, Kutlar, F, Huisman, TH. Hydrops fetalis due to homozygosity for alpha-thalassemia-1,-(alpha)-20.5 kb: the first observation in a Turkish family. Acta Haematol. 1989;81:169–171.CrossRefGoogle Scholar
Vaeusorn, O, Fucharoen, S, Ruangpiroj, T, et al. Fetal pathology and maternal morbidity in hemoglobin Bart's hydrops fetalis: an analysis of 65 cases. Paper presented at International Conference on Thalassemia. Bangkok, Thailand, 1985.Google Scholar
Chui, DH, Waye, JS. Hydrops fetalis caused by alpha-thalassemia: an emerging health care problem. Blood. 1998;91:2213–2222.Google ScholarPubMed
Peschle, C, Mavilio, F, Care, A, et al. Haemoglobin switching in human embryos: asynchrony of zeta – alpha and epsilon – gamma-globin switches in primitive and definite erythropoietic lineage. Nature. 1985;313:235–238.CrossRefGoogle ScholarPubMed
Horton, BF, Thompson, RB, Dozy, AM, Nechtman, CM, Nichols, E, Huisman, TH. Inhomogeneity of hemoglobin. VI. The minor hemoglobin components of cord blood. Blood. 1962;20:302–314.Google ScholarPubMed
Tuchinda, S, Nagai, K, Lehmann, H. Oxygen dissociation curve of haemoglobin Portland. FEBS Lett. 1975;49:390–391.CrossRefGoogle ScholarPubMed
Ausavarungnirun, R, Winichagoon, P, Fucharoen, S, Epstein, N, Simkins, R. Detection of zeta-globin chains in the cord blood by ELISA (enzyme-linked immunosorbent assay): rapid screening for alpha-thalassemia 1 (Southeast Asian type). Am J Hematol. 1998;57:283–286.3.0.CO;2-Q>CrossRefGoogle Scholar
Chui, DH, Mentzer, WC, Patterson, M, et al. Human embryonic zeta-globin chains in fetal and newborn blood. Blood. 1989;74:1409–1414.Google ScholarPubMed
Kutlar, F, Gonzalez-Redondo, JM, Kutlar, A, et al. The levels of zeta, gamma, and delta chains in patients with Hb H disease. Hum Genet. 1989;82:179–186.CrossRefGoogle ScholarPubMed
Tang, W, Luo, HY, Albitar, M, et al. Human embryonic zeta-globin chain expression in deletional alpha-thalassemias. Blood. 1992;80:517–522.Google ScholarPubMed
Nakayama, R, Yamada, D, Steinmiller, V, Hsia, E, Hale, RW. Hydrops fetalis secondary to Bart's hemoglobinopathy. Obstet Gynecol. 1986;67:176–180.CrossRefGoogle Scholar
Isarangkura, P, Siripoonya, P, Fucharoen, S, Hathirat, P. Hemoglobin Bart's disease without hydrops manifestation. Birth Defects Orig Artic Ser. 1987;23:333–342.Google ScholarPubMed
Beutler, E, Lichtman, MA, Coller, BS, Kipps, TJ. Williams Hematology. 5th ed. New York: McGraw-Hill; 1995.Google Scholar
Guy, G, Coady, DJ, Jansen, V, Snyder, J, Zinberg, S. alpha-Thalassemia hydrops fetalis: clinical and ultrasonographic considerations. Am J Obstet Gynecol. 1985;153:500–504.CrossRefGoogle ScholarPubMed
Abuelo, DN, Forman, EN, Rubin, LP. Limb defects and congenital anomalies of the genitalia in an infant with homozygous alpha-thalassemia. Am J Med Genet. 1997;68:158–161.3.0.CO;2-L>CrossRefGoogle Scholar
Adam, MP, Chueh, J, El-Sayed, YY, et al. Vascular-type disruptive defects in fetuses with homozygous alpha-thalassemia: report of two cases and review of the literature. Prenat Diagn. 2005;25:1088–1096.CrossRefGoogle ScholarPubMed
Carr, S, Rubin, L, Dixon, D, Star, J, Dailey, J. Intrauterine therapy for homozygous alpha-thalassemia. Obstet Gynecol. 1995;85:876–879.CrossRefGoogle ScholarPubMed
Chitayat, D, Silver, MM, O'Brien, K, et al. Limb defects in homozygous alpha-thalassemia: report of three cases. Am J Med Genet. 1997;68:162–167.3.0.CO;2-R>CrossRefGoogle ScholarPubMed
Harmon, JV, Osathanondh, R, Holmes, LB. Symmetrical terminal transverse limb defects: report of a twenty-week fetus. Teratology. 1995;51:237–242.CrossRefGoogle ScholarPubMed
Lam, YH, Tang, MH, Sin, SY, Ghosh, A, Lee, CP. Limb reduction defects in fetuses with homozygous alpha-thalassaemia-1. Prenat Diagn. 1997;17;1143–1146.3.0.CO;2-N>CrossRefGoogle ScholarPubMed
Fung, TY, Kin, LT, Kong, LC, Keung, LC. Homozygous alpha-thalassemia associated with hypospadias in three survivors. Am J Med Genet. 1999;82:225–227.3.0.CO;2-Q>CrossRefGoogle ScholarPubMed
Ongsangkoon, T, Vawesorn, O, Pootakul, S-N. Pathology of hemoglobin Bart's hydrops fetalis. 1. Gross autopsy findings. J Med Assoc Thai. 1978;61:71.Google Scholar
Thornley, I, Lehmann, L, Ferguson, WS, Davis, I, Forman, EN, Guinan, EC. Homozygous alpha-thalassemia treated with intrauterine transfusions and postnatal hematopoietic stem cell transplantation. Bone Marrow Transplant. 2003;32:341–342.CrossRefGoogle ScholarPubMed
Chan, V, Chan, VW, Tang, M, Lau, K, Todd, D, Chan, TK. Molecular defects in Hb H hydrops fetalis. Br J Haematol. 1997;96:224–228.CrossRefGoogle ScholarPubMed
Chan, V, Chan, TK, Liang, ST, Ghosh, A, Kan, YW, Todd, D. Hydrops fetalis due to an unusual form of Hb H disease. Blood. 1985;66:224–228.Google Scholar
Oron-Karni, V, Filon, D, Shifrin, Y, et al. Diversity of alpha-globin mutations and clinical presentation of alpha-thalassemia in Israel. Am J Hematol. 2000;65:196–203.3.0.CO;2-8>CrossRefGoogle ScholarPubMed
McBride, KL, Snow, K, Kubik, KS, et al. Hb Dartmouth. alpha66(E15)Leu–>Pro (alpha2) (CTG–>CCG)]: a novel alpha2-globin gene mutation associated with severe neonatal anemia when inherited in trans with Southeast Asian alpha-thalassemia-1. Hemoglobin. 2001;25:375–382.CrossRefGoogle ScholarPubMed
Li, DZ, Liao, C, Li, J, Xie, XM, Huang, YN, Wu, QC. Hemoglobin H hydrops fetalis syndrome resulting from the association of the --SEA deletion and the a Quong Sze a mutation in a Chinese woman. Eur J Haematol. 2005;75:259–261.CrossRefGoogle Scholar
Traeger-Synodinos, J, Papassotiriou, I, Karagiorga, M, Premetis, E, Kanavakis, E, Stamoulakatou, A. Unusual phenotypic observations associated with a rare HbH disease genotype (-Med/alphaTSaudialpha): implications for clinical management. Br J Haematol. 2002;119:265–267.CrossRefGoogle ScholarPubMed
Viprakasit, V, Green, S, Height, S, Ayyub, H, Higgs, DR. Hb H hydrops fetalis syndrome associated with the interaction of two common determinants of alpha thalassaemia (-MED/(alpha) TSaudi (alpha)). Br J Haematol. 2002;117:759–762.CrossRefGoogle Scholar
Henderson, S, Chappie, M, Rugless, M, Fisher, C, Kinsey, S, Old, J. Haemoglobin H hydrops fetalis syndrome associated with homozygosity for the alpha2-globin gene polyadenylation signal mutation AATAAA∼>AATA. Br J Haematol. 2006;135:743–745.CrossRefGoogle Scholar
Trent, RJ, Mickleson, KN, Wilkinson, T, et al. Globin genes in Polynesians have many rearrangements including a recently described gamma gamma gamma gamma. Am J Hum Genet. 1986;39:350–360.Google ScholarPubMed
Hofstaetter, C, Gonser, M, Goelz, R. Perinatal case report of unexpected thalassemia Hb Bart's. Fetal Diagn Ther. 1993;8:418–422.CrossRefGoogle Scholar
Monaco, SE, Davis, M, Huang, AC, et al. Alpha-thalassemia major presenting in a term neonate without hydrops. Pediatr Dev Pathol. 2005;8:706–709.CrossRefGoogle Scholar
Ng, PC, Fok, TF, Lee, CH, et al. Is homozygous alpha-thalassemia a lethal condition in the 1990s?Acta Paediatr. 1998;87:1197–1199.CrossRefGoogle ScholarPubMed
Lee, SY, Chow, CB, Li, CK, Chiu, MC. Outcome of intensive care of homozygous alpha-thalassaemia without prior intra-uterine therapy. J Paediatr Child Health. 2007;43:546–550.CrossRefGoogle ScholarPubMed
Bianchi, DW, Beyer, EC, Stark, AR, Saffan, D, Sachs, BP, Wolfe, L. Normal long-term survival with alpha-thalassemia. J Pediatr. 1986;108:716–718.CrossRefGoogle ScholarPubMed
Chik, KW, Shing, MM, Li, CK, et al. Treatment of hemoglobin Bart's hydrops with bone marrow transplantation. J Pediatr. 1998;132:1039–1042.CrossRefGoogle ScholarPubMed
Jackson, DN, Strauss, AA, Groncy, PK, Bianchi, DW, Akabutu, J. Outcome of neonatal survivors with homozygous a-thalassemia. Pediatr Res. 1990;27:266A.Google Scholar
Lam, TK, Chan, V, Fok, TF, Li, CK, Feng, CS. Long-term survival of a baby with homozygous alpha-thalassemia-1. Acta Haematol. 1992;88:198–200.CrossRefGoogle ScholarPubMed
Liu, CA, Huang, HC, Chou, YY. Retrospective analysis of 17 liveborn neonates with hydrops fetalis. Chang Gung Med J. 2002;25:826–831.Google ScholarPubMed
Singer, ST, Styles, L, Bojanowski, J, Quirolo, K, Foote, D, Vichinsky, EP. Changing outcome of homozygous alpha-thalassemia: cautious optimism. J Pediatr Hematol Oncol. 2000;22:539–542.CrossRefGoogle ScholarPubMed
Zhou, X, Ha, SY, Chan, GC, et al. Successful mismatched sibling cord blood transplant in Hb Bart's disease. Bone Marrow Transplant. 2001;28:105–107.CrossRefGoogle ScholarPubMed
Bizzarro, MJ, Copel, JA, Pearson, HA, Pober, B, Bhandari, V. Pulmonary hypoplasia and persistent pulmonary hypertension in the newborn with homozygous alpha-thalassemia: a case report and review of the literature. J Matern Fetal Neonatal Med. 2003;14:411–416.CrossRefGoogle ScholarPubMed
Dame, C, Albers, N, Hasan, C, et al. Homozygous alpha-thalassemia and hypospadias-common aetiology or incidental association? Long-term survival of Hb Bart's hydrops syndrome leads to new aspects for counselling of alpha-thalassaemic traits. Eur J Pediatr. 1999;158:217–220.CrossRefGoogle ScholarPubMed
Fung, TY, Lau, TK, Tarn, WH, Li, CK. In utero exchange transfusion in homozygous alpha-thalassaemia: a case report. Prenat Diagn. 1998;18:838–841.3.0.CO;2-#>CrossRefGoogle ScholarPubMed
Hayward, A, Ambruso, D, Battaglia, F, et al. Microchimerism and tolerance following intrauterine transplantation and transfusion for alpha-thalassemia-1. Fetal Diagn Ther. 1998;13:8–14.CrossRefGoogle ScholarPubMed
Joshi, DD, Nickerson, HJ, McManus, MJ. Hydrops fetalis caused by homozygous alpha-thalassemia and Rh antigen alloimmunization: report of a survivor and literature review. Clin Med Res. 2004;2:228–232.CrossRefGoogle ScholarPubMed
Leung, WC, Oepkes, D, Seaward, G, Ryan, G. Serial sonographic findings of four fetuses with homozygous alpha-thalassemia-1 from 21 weeks onwards. Ultrasound Obstet Gynecol. 2002;19:56–59.CrossRefGoogle ScholarPubMed
Lucke, T, Pfister, S, Durken, M. Neurodevelopmental outcome and haematological course of a long-time survivor with homozygous alpha-thalasasemia: case report and review of the literature. Acta Paediatr. 2005;94:1330–1333.CrossRefGoogle ScholarPubMed
Naqvi, A, Waye, JS, Morrow, R, Nisbet-Brown, E, Olivieri, NF. Normal development of an infant with homozygous a-thalassemia. Blood. 1997;90:132A.Google Scholar
Sohan, K, Billington, M, Pamphilon, D, Goulden, N, Kyle, P. Normal growth and development following in utero diagnosis and treatment of homozygous alpha-thalassaemia. Br J Obstet Gynaecol. 2002;109:1308–1310.Google ScholarPubMed
Westgren, M, Ringden, O, Eik-Nes, S, et al. Lack of evidence of permanent engraftment after in utero fetal stem cell transplantation in congenital hemoglobinopathies. Transplantation. 1996;61:1176–1179.CrossRefGoogle ScholarPubMed
Petrou, M, Brugiatelli, M, Old, J, Hurley, P, Ward, RH, Wong, KP, et al. Alpha thalassaemia hydrops fetalis in the UK: the importance of screening pregnant women of Chinese, other South East Asian and Mediterranean extraction for alpha thalassaemia trait. Br J Obstet Gynaecol. 1992;99:985–989.CrossRefGoogle Scholar
Ghosh, A, Tang, MH, Lam, YH, Fung, E, Chan, V. Ultrasound measurement of placental thickness to detect pregnancies affected by homozygous alpha-thalassaemia-1. Lancet. 1994;344:988–989.CrossRefGoogle ScholarPubMed
Kanokpongsakdi, S, Fucharoen, S, Vatanasiri, C, Thonglairoam, V, Winichagoon, P, Manassakorn, J. Ultrasonographic method for detection of haemoglobin Bart's hydrops fetalis in the second trimester of pregnancy. Prenat Diagn. 1990;10:809–813.CrossRefGoogle ScholarPubMed
Saltzman, DH, Frigoletto, FD, Harlow, BL, Barss, VA, Benacerraf, BR. Sonographic evaluation of hydrops fetalis. Obstet Gynecol. 1989;74:106–111.Google ScholarPubMed
Tongsong, T, Wanapirak, C, Srisomboon, J, Piyamongkol, W, Sirichotiyakul, S. Antenatal sonographic features of 100 alpha-thalassemia hydrops fetalis fetuses. J Clin Ultrasound. 1996 24:73–77.3.0.CO;2-H>CrossRefGoogle ScholarPubMed
Ghosh, A, Tang, MH, Liang, ST, Ma, HK, Chan, V, Chan, TK. Ultrasound evaluation of pregnancies at risk for homozygous alpha-thalassaemia-1. Prenat Diagn. 1987;7:307–313.CrossRefGoogle ScholarPubMed
Lam, YH, Tang, MH. Prenatal diagnosis of haemoglobin Bart's disease by cordocentesis at 12–14 weeks' gestation. Prenat Diagn. 1997;17:501–504.3.0.CO;2-L>CrossRefGoogle Scholar
Li, Q, Wei, J, Li, D. Prenatal Ultrasonographic prediction of homozygous alpha-thalassemia disease at midpregnancy. Int J Gynaecol Obstet. 2007;97:156–157.CrossRefGoogle ScholarPubMed
Liao, C, Li, Q, Wei, J, Feng, Q, Li, J, Huang, Y, et al. Prenatal control of Hb Bart's disease in southern China. Hemoglobin. 2007;31:471–475.CrossRefGoogle ScholarPubMed
Diukman, R, Golbus, MS. In utero stem cell therapy. J Reprod Med. 1992;37:515–520.Google ScholarPubMed
Eddleman, K. In utero transfusion and transplantation in α-thalassaemia. In: Migliaccio, AR ed. Stem Cell Therapy of Inherited Disorders. Rome; 1996.Google Scholar
Paszty, C, Mohandas, N, Stevens, ME, Loring, JF, Liebhaber, SA, Brion, CM, et al. Lethal alpha-thalassaemia created by gene targeting in mice and its genetic rescue. Nat Genet. 1995;11:33–39.CrossRefGoogle ScholarPubMed
Paszty, C. Transgenic and gene knock-out mouse models of sickle cell anemia and the thalassemias. Curr Opin Hematol. 1997;4:88–93.CrossRefGoogle ScholarPubMed
Huisman, THJ, Carver, MFH, Efremov, GD. A Syllabus of Human Hemoglobin Variants. Augusta, GA: The Sickle Cell Anemia Foundation; 1996.Google Scholar
Bruzdzinski, CJ, Sisco, KL, Ferrucci, SJ, Rucknagel, DL. The occurrence of the alpha G-Philadelphia-globin allele on a double-locus chromosome. Am J Hum Genet. 1984;36:101–109.Google ScholarPubMed
Molchanova, TP, Pobedimskaya, DD, Ye, Z, Huisman, TH. Two different mutations in codon 68 are observed in Hb G-Philadelphia heterozygotes. Am J Hematol. 1994;45:345–346.CrossRefGoogle ScholarPubMed
Milner, PF, Huisman, TH. Studies of the proporation and synthesis of haemoblogin C Philadelphia in red cells of heterozygotes, a homozygote, and a heterozygote for both haemoglobin G and alpha thalassaemia. Br J Haematol. 1976;34:207–220.CrossRefGoogle Scholar
Pardoll, DM, Charache, S, Hjelle, BL, et al. Homozygous alpha thalassemia/Hb G Philadelphia. Hemoglobin. 1982;6:503–515.CrossRefGoogle ScholarPubMed
Sancar, GB, Tatsis, B, Cedeno, MM, Rieder, RF. Proportion of hemoglobin G Philadelphia (alpha 268 Asn leads to Lys beta 2) in heterozygotes is determined by alpha-globin gene deletions. Proc Natl Acad Sci USA. 1980;77:6874–6878.CrossRefGoogle ScholarPubMed
Rieder, RF, Woodbury, DH, Rucknagel, DL. The interaction of alpha-thalassaemia and haemoglobin G Philadelphia. Br J Haematol. 1976;32:159–165.CrossRefGoogle ScholarPubMed
Schwartz, E, Atwater, J. alpha-thalassemia in the American negro. J Clin Invest. 1972;51:412–418.CrossRefGoogle ScholarPubMed
Liebhaber, SA, Rappaport, EF, Cash, FE, Ballas, SK, Schwartz, E, Surrey, S. Hemoglobin I mutation encoded at both alpha-globin loci on the same chromosome: concerted evolution in the human genome. Science. 1984;226:1449–1451.CrossRefGoogle ScholarPubMed
Bunn, HF, McDonald, MJ. Electrostatic interactions in the assembly of haemoglobin. Nature. 1983;306:498–500.CrossRefGoogle ScholarPubMed
Bunn, HF. Subunit assembly of hemoglobin: an important determinant of hematologic phenotype. Blood. 1987;69:1–6.Google ScholarPubMed
Whitten, WJ, Rucknagel, DL. The proportion of Hb A2 is higher in sickle cell trait than in normal homozygotes. Hemoglobin. 1981;5:371–378.CrossRefGoogle ScholarPubMed
Stallings, M, Abraham, A, Abraham, EC. a-thalassemia influences the levels of fetal hemoglobin components in new born infants. Blood. 1983;62:75a.Google Scholar
Rombos, J, Voskaridou, E, Vayenas, C, Boussiou, M, Papadakis, M, Loukopoulos, D. Hemoglobin H in association with the Greek type of HPFH. Paper presented at International Congress on Thalassemia. Sardinia, 1989.
Giordano, PC, Harteveld, CL, Michiels, JJ, et al. Atypical HbH disease in a Surinamese patient resulting from a combination of the -SEA and -alpha 3.7 deletions with HbC heterozygosity. Br J Haematol. 1997;96:801–805.CrossRefGoogle Scholar
Thonglairuam, V, Winichagoon, P, Fucharoen, S, Wasi, P. The molecular basis of AE-Bart's disease. Hemoglobin. 1989;13:117–124.CrossRefGoogle ScholarPubMed
Matthay, KK, Mentzer, WC, Dozy, AM, Kan, YW, Bainton, DF. Modification of hemoglobin H disease by sickle trait. J Clin Invest. 1979;64:1024–1032.CrossRefGoogle ScholarPubMed
Svasti, S, Yodsowon, B, Sriphanich, R, et al. Association of Hb Hope [beta136(H14)Gly–>Asp] and Hb H disease. Hemoglobin. 2001;25:429–435.CrossRefGoogle ScholarPubMed
Vichinsky, E. Hemoglobin e syndromes. Hematology Am Soc Hematol Educ Program. 2007:79–83.
Su, CW, Liang, S, Liang, R, Wen, XJ, Tang, CN. Hb H disease in association with the silent beta chain variant Hb Hamilton or alpha 2 beta 2(11)(A8)Val -- lie. Hemoglobin. 1992;16:403–08Google Scholar
Rahbar, S, Bunn, HF. Association of hemoglobin H disease with Hb J-Iran (beta 77 His -- Asp): impact on subunit assembly. Blood. 1987;70:1790–1791.Google ScholarPubMed
Chan, V, Chan, TK, Tso, SC, Todd, D. Combination of three alpha-globin gene loci deletions and hemoglobin New York results in a severe hemoglobin H syndrome. Am J Hematol. 1987;24:301–306.CrossRefGoogle Scholar
Wilkie, AOM. The a thalassaemia/mental retardation syndromes: model systems for studying the genetic contribution to mental handicap. Doctor of Medicine, 1991, University of Oxford.Google Scholar
Dallman, PR. The red cell. In: Dallman, PR ed. Blood and Blood-forming Tissues. New York: Appleton-Century-Crofts; 1977:1109–1113.Google Scholar
Dallman, PR, Siimes, MA. Percentile curves for hemoglobin and red cell volume in infancy and childhood. J Pediatr. 1979;94:26–31.CrossRefGoogle ScholarPubMed
Lubin, BH. Reference values in infancy and childhood. In: Nathan, DG, Oski, FA, eds. Hematology of Infancy and Childhood. Philadelphia: W.B. Saunders; 1987:1677–1697.Google Scholar
Llewellyn-Jones, D. Obstetrics. London: Faber and Faber; 1969.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×