Skip to main content Accessibility help
×
Hostname: page-component-594f858ff7-wfvfs Total loading time: 0 Render date: 2023-06-07T17:26:18.768Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "corePageComponentUseShareaholicInsteadOfAddThis": true, "coreDisableSocialShare": false, "useRatesEcommerce": true } hasContentIssue false

References

Published online by Cambridge University Press:  02 February 2023

Richard J. Stevenson
Affiliation:
Macquarie University, Sydney
Heather Francis
Affiliation:
Macquarie University, Sydney
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, K. N., Arnott, C. K., Westbrook, R. F., & Tran, D. M. D. (2019). The effect of high fat, high sugar, and combined high fat-high sugar diets on spatial learning and memory in rodents: A meta-analysis. Neuroscience & Biobehavioral Reviews, 107, 399421.CrossRefGoogle ScholarPubMed
Abbott, R. D., Webster Ross, G., White, L. R., Sanderson, W. T., Burchfiel, C. M., Kashon, M., & Petrovitch, H. (2003). Environmental, life-style, and physical precursors of clinical Parkinson’s disease: Recent findings from the Honolulu-Asia Aging Study. Journal of Neurology, 250, 3039.CrossRefGoogle ScholarPubMed
Abdelwahab, M. G., Fenton, K. E., Preul, M. C., Rho, J. M., Lynch, A., Stafford, P., & Scheck, A. C. (2012). The ketogenic diet is an effective adjuvant to radiation therapy for the treatment of malignant glioma. PLoS One, 7, e36197.CrossRefGoogle ScholarPubMed
Abdelwahab, M. G., Preul, M. C., Rho, J. M., & Scheck, A. C. (2010). The ketogenic diet reverses gene expression patterns and reduces reactive oxygen species levels when used as an adjuvant therapy for glioma. Nutrition & Metabolism, 7, Article 74.Google Scholar
Accurso, E. C., Ciao, A. C., Fitzsimmons-Craft, E. E., Lock, J. D., & Grange, D. L. (2014). Is weight gain really a catalyst for broader recovery? The impact of weight gain on psychological symptoms in the treatment of adolescent anorexia nervosa. Behaviour Research & Therapy, 56, 16.CrossRefGoogle ScholarPubMed
Adamolekun, B. (1993). Anaphe venata entomophagy and seasonal ataxic syndrome in southwest Nigeria. The Lancet, 341, 629.CrossRefGoogle ScholarPubMed
Adamolekun, B. (2011). Neurological disorders associated with cassava diet: A review of putative etiological mechanisms. Metabolic Brain Disease, 26, 7985.CrossRefGoogle Scholar
Adamse, P., van Egmond, H. P., Noordam, M. Y., Mulder, P. P., & de Nijs, M. (2014). Tropane alkaloids in food: Poisoning incidents. Quality Assurance and Safety of Crops and Foods, 6, 1524.CrossRefGoogle Scholar
Adolphus, K., Lawton, C. L., Champ, C. L., & Dye, L. (2016). The effects of breakfast and breakfast composition on cognition in children and adolescents: A systematic review. Advances in Nutrition, 7, 590S612S.CrossRefGoogle ScholarPubMed
Advani, S. M., Advani, P. G., VonVille, H. M., & Jafri, S. H. (2018). Pharmacological management of cachexia in adult cancer patients: A systematic review of clinical trials. BMC Cancer, 18, 1174.CrossRefGoogle ScholarPubMed
Agim, Z. S., & Cannon, J. R. (2015). Dietary factors in the etiology of Parkinson’s disease. BioMed Research International, Article 672838.CrossRefGoogle Scholar
Agrawal, R., & Gomez-Pinilla, F. (2012). ‘Metabolic syndrome’ in the brain: Deficiency in omega-3 fatty acid exacerbates dysfunctions in insulin receptor signalling and cognition. Journal of Physiology, 590, 24852499.CrossRefGoogle ScholarPubMed
Aguzzi, A., Baumann, F., & Bremer, J. (2008). The prion’s elusive reason for being. Annual Review of Neuroscience, 31, 439477.CrossRefGoogle Scholar
Ahmad, M. (2013). Protective effects of curcumin against lithium-pilocarpine induced status epilepticus, cognitive dysfunction and oxidative stress in young rats. Saudi Journal of Biological Sciences, 20, 155162.CrossRefGoogle ScholarPubMed
Ahuja, A., Dev, K., Tanwar, R. S., Selwal, K. K., & Tyagi, P. K. (2015). Copper mediated neurological disorder: Visions into amyotrophic lateral sclerosis, Alzheimer and Menkes disease. Journal of Trace Elements in Medicine and Biology, 29, 1123.CrossRefGoogle ScholarPubMed
Ajith, T. A. (2018). A recent update on the effects of omega-3 fatty acids in Alzheimer’s disease. Current Clinical Pharmacology, 13, 252260.CrossRefGoogle ScholarPubMed
Al Bulushi, I., Poole, S., Deeth, H. C., & Dykes, G. A. (2009). Biogenic amines in fish: Roles in intoxication, spoilage, and nitrosamine formation – A review. Critical Reviews in Food Science & Nutrition, 49, 369377.CrossRefGoogle ScholarPubMed
Alaimo, K., Olson, C. M., & Frongillo, E. A. (2002). Family food insufficiency, but not low family income, is positively associated with dysthymia and suicide symptoms in adolescents. Journal of Nutrition, 132, 719725.CrossRefGoogle Scholar
AlAmmar, W. A., Albeesh, F. H., Ibrahim, L. M., Algindan, Y. Y., Yamani, L. Z., & Khattab, R. Y. (2021). Effect of omega-3 fatty acids and fish oil supplementation on multiple sclerosis: A systematic review. Nutritional Neuroscience, 24, 569579.CrossRefGoogle ScholarPubMed
Alamy, M., & Bengelloun, W. (2012). Malnutrition and brain development: An analysis of the effects of inadequate diet during different stages of life in rat. Neuroscience & Biobehavioral Reviews, 36, 14631480.CrossRefGoogle ScholarPubMed
Alaverdashvili, M., Hackett, M. J., Caine, S., & Paterson, P. G. (2017). Parallel changes in cortical neuron biochemistry and motor function in protein-energy malnourished adult rats. NeuroImage, 149, 275284.CrossRefGoogle ScholarPubMed
Alaverdashvili, M., Li, X., & Paterson, P. G. (2015). Protein-energy malnutrition causes deficits in motor function in adult male rats. Journal of Nutrition, 145, 25033511.CrossRefGoogle ScholarPubMed
Alcalay, R. N., Gu, Y., Mejia-Santana, H., Cote, L., Marder, K. S., & Scarmeas, N. (2012). The association between Mediterranean diet adherence and Parkinson’s disease. Movement Disorders, 27, 771774.CrossRefGoogle ScholarPubMed
Algarin, C., Karunakaran, K. D., Reyes, S., Morales, C., Lozoff, B., Peirano, P., & Biswal, B. (2017). Differences on brain connectivity in adulthood are present in subjects with iron deficiency anemia in infancy. Frontiers in Aging Neuroscience, 9, 54.CrossRefGoogle ScholarPubMed
Algarin, C., Nelson, C. A., Peirano, P., Westerlund, A., Reyes, S., & Lozoff, B. (2013). Iron-deficiency anemia in infancy and poorer cognitive inhibitory control at age 10 years. Developmental Medicine & Child Neurology, 55, 453458.CrossRefGoogle ScholarPubMed
Alisi, L., Cao, R., & de Angelis, C. (2019). The relationships between vitamin K and cognition: A review of current evidence. Frontiers in Neurology, 10, 239.CrossRefGoogle ScholarPubMed
Aliu, E., Kanungo, S., & Arnold, G. L. (2018). Amino acid disorders. Annals of Translational Medicine, 6, 471.CrossRefGoogle ScholarPubMed
Allen, V. J., Methven, L., & Gosney, M. A. (2013). Use of nutritional complete supplements in older adults with dementia: Systematic review and meta-analysis of clinical outcomes. Clinical Nutrition, 32, 950957.CrossRefGoogle ScholarPubMed
Almaas, A. N., Tamnes, C. K., Nakstad, B., Henriksen, C., Walhovd, K. B., Fjell, A. M., & Iversen, P. O. (2015). Long-chain polyunsaturated fatty acids and cognition in VLBW infants at 8 years: An RCT. Pediatrics, 135, 972980.CrossRefGoogle ScholarPubMed
Al-Naama, N., Mackeh, R., & Kino, T. (2020). C2H2-type zinc finger proteins in brain development, neurodevelopmental, and other neuropsychiatric disorders: Systematic literature-based analysis. Frontiers in Neurology, 11, 32.CrossRefGoogle Scholar
Alpert, J. E., & Fava, M. (1997). Nutrition and depression. Nutrition Reviews, 55, 145149.CrossRefGoogle ScholarPubMed
Alshurafa, N., Lin, A. W., Zhu, F., Ghaffari, R., Hester, J., Delp, E., Rogers, J., & Spring, B. (2019). Counting bites with bits: Expert’s workshop addressing calorie and macronutrient intake monitoring. Journal of Medical Internet Research, 21, e14904.CrossRefGoogle ScholarPubMed
Alsiö, J., Olszewski, P. K., Levine, A. S., & Schiöth, H. B. (2012). Feed-forward mechanisms: Addiction-like behavioral and molecular adaptations in overeating. Frontiers in Neuroendocrinology, 33, 127139.CrossRefGoogle ScholarPubMed
Altmann, P., Cunningham, J., & Dhanesha, U. (1999). Disturbances of cerebral function in people exposed to drinking water contaminated with aluminium sulphate: Retrospective study of the Camelford water incident. British Medical Journal, 319, 807811.CrossRefGoogle ScholarPubMed
Al-Zubaidi, A., Heldmann, M., Mertins, A., Jauch-Chara, K., & Münte, T. F. (2018). Influences of hunger, satiety, and oral glucose on functional brain connectivity: A multimethod resting-state fMRI study. Neuroscience, 382, 8092.CrossRefGoogle ScholarPubMed
Amani, R., Tabmasebi, K., & Nazari, Z. (2019). Association of cognitive function with nutritional zinc status in adolescent female students. Progress in Nutrition, 21, 8693.Google Scholar
Amenta, F., & Tayebati, S. K. (2008). Pathways of acetylcholine synthesis, transport and release as targets for treatment of adult-onset cognitive dysfunction. Current Medicinal Chemistry, 15, 488498.CrossRefGoogle ScholarPubMed
Amin, S. B., Orlando, M., Eddins, A., MacDonald, M., Monczynski, C., & Wang, H. (2010). In utero iron status and auditory neural maturation in premature infants as evaluated by auditory brainstem response. Journal of Pediatrics, 156, 377381.CrossRefGoogle ScholarPubMed
Amissah, E. A., Brown, J., & Harding, J. E. (2018). Protein supplementation of human milk for promoting growth in preterm infants. Cochrane Database of Systematic Reviews, CDD000433.CrossRefGoogle Scholar
Anderson, C., Checkoway, H., & Franklin, G. M. (1999). Dietary factors in Parkinson’s disease: The role of food groups and specific foods. Movement Disorders, 14, 2127.3.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Anderson, G., Berk, M., Dean, O., Moylan, S., & Maes, M. (2014). Role of immune-inflammatory and oxidative and nitrosative stress pathways in the etiology of depression: Therapeutic implications. CNS Drugs, 28, 110.CrossRefGoogle ScholarPubMed
Anderson, R. M., Donnelly, C. A., & Ferguson, N. M. (1996). Transmission dynamics and epidemiology of BSE in British cattle. Nature, 382, 779788.CrossRefGoogle ScholarPubMed
Andrade, J. P., Madeira, M. D., & Paula-Barbosa, M. M. (1995a). Evidence of reorganisation in the hippocampal mossy fiber synapses of adult rats rehabilitated after prolonged undernutrition. Experimental Brain Research, 104, 249261.CrossRefGoogle Scholar
Andrade, J. P., Madeira, M. D., & Paula-Barbosa, M. M. (1995b). Effects of long-term malnutrition and rehabilitation on the hippocampal formation of the adult rat: A morphometric study. Journal of Anatomy, 187, 379393.Google Scholar
Andreeva, V. A., Galan, P., & Arnaud, J. (2013). Midlife iron status is inversely associated with subsequent cognitive performance, particularly in perimenopausal women. Journal of Nutrition, 143, 19741981.Google ScholarPubMed
Angulo-Barroso, R. M., Li, M., Santos, D. C., Bian, Y., Sturza, J., Jiang, Y., & Lozoff, B. (2016). Iron supplementation in pregnancy or infancy and motor development: A randomized controlled trial. Pediatrics, 137, 4.CrossRefGoogle ScholarPubMed
Anjum, I., Jaffery, S. S., Fayyaz, M., Samoo, Z., & Anjum, S. (2018). The role of vitamin D in brain health: A mini literature review. Cureus, 10, e2960.Google Scholar
Annweiler, C., Allali, G., & Allain, P.(2009). Vitamin D and cognitive performance in adults: A systematic review. European Journal of Neurology, 16, 10831089.CrossRefGoogle ScholarPubMed
Annweiler, C., Dursun, E., & Feron, F.(2015). Vitamin D and cognition in older adults: Updated international recommendations. Journal of Internal Medicine, 277, 4557.CrossRefGoogle ScholarPubMed
Anton, K., Baehring, J. M., & Mayer, T. (2012). Glioblastoma multiforme: Overview of current treatment and future perspectives. Hematology/Oncology Clinics, 26, 825853.CrossRefGoogle ScholarPubMed
Anton, S. D., Han, H., & York, E. (2009). Effect of calorie restriction on subjective ratings of appetite. Journal of Human Nutrition and Dietetics, 22, 141147.CrossRefGoogle ScholarPubMed
Aoki, Y. (2001). Polychlorinated biphenyls, polychlorinated dibenzo-p-dioxins, and polychlorinated dibenzofurans as endocrine disrupters: What we have learnt from Yusho disease. Environmental Research Section, 86, 211.CrossRefGoogle Scholar
Appelberg, K. S., Hovda, D. A., & Prins, M. L. (2009). The effects of a ketogenic diet on behavioral outcome after controlled cortical impact injury in the juvenile and adult rat. Journal of Neurotrauma, 26, 497506.CrossRefGoogle ScholarPubMed
Arab, A., Khorvash, F., Kazemi, M., Heidari, Z., & Askari, G. (2021). Effects of the dietary approaches to stop hypertension (DASH) diet on clinical, quality of life, and mental health outcomes in women with migraine: A randomised controlled trial. British Journal of Nutrition, 128.Google Scholar
Armario, A., Montero, J. L., & Jolin, T. (1987). Chronic food restriction and the circadian rhythms of pituitary-adrenal hormones, growth hormone and thyroid-stimulating hormone. Annals of Nutrition & Metabolism, 31, 8187.CrossRefGoogle ScholarPubMed
Armony-Sivan, R., Eidelman, A. I., Lanir, A., Sredni, D., & Yehuda, S. (2004). Iron status and neurobehavioral development of premature infants. Journal of Perinatology, 24, 757762.CrossRefGoogle ScholarPubMed
Arnulf, I., Quintin, P., & Alvarez, J. C. (2002). Mid-morning tryptophan depletion delays REM sleep onset in healthy subjects. Neuropsychopharmacology, 27, 843851.CrossRefGoogle ScholarPubMed
Arranz, S., Chiva-Blanch, G., Valderas-Martínez, P., Medina-Remón, A., Lamuela-Raventós, R. M., & Estruch, R. (2012). Wine, beer, alcohol and polyphenols on cardiovascular disease and cancer. Nutrients, 4, 759781.CrossRefGoogle ScholarPubMed
Arthur, J. R., Beckett, G. J., & Mitchell, J. H. (1999). The interactions between selenium and iodine deficiencies in man and animals. Nutrition Research Reviews, 12, 5573.CrossRefGoogle ScholarPubMed
Arts, N. J. M., Walvoort, S. J. W., & Kessels, R. P. C. (2017). Korsakoff’s syndrome: A critical review. Neuropsychiatric Disease & Treatment, 13, 28752890.CrossRefGoogle ScholarPubMed
Ashley, S., Bradburn, S., & Murgatroyd, C. (2019). A meta-analysis of peripheral tocopherol levels in age-related cognitive decline and Alzheimer’s disease. Nutritional Neuroscience, 10.1080/1028415X.2019.1681066Google Scholar
Attuquayefio, T., & Stevenson, R. J. (2015). A systematic review of longer-term dietary interventions on human cognitive function: Emerging patterns and future directions. Appetite, 95, 554570.CrossRefGoogle ScholarPubMed
Attuquayefio, T., Stevenson, R. J., Boakes, R. A., Oaten, M. J., Yeomans, M. R., Mahmut, M., & Francis, H. M. (2016). A high-fat high-sugar diet predicts poorer hippocampal related memory and a reduced ability to suppress wanting under satiety. Journal of Experimental Psychology: Animal Learning & Cognition, 42, 415428.Google Scholar
Attuquayefio, T., Stevenson, R. J., Oaten, M. J., & Francis, H. M. (2017). A four-day Western-style dietary intervention causes reductions in hippocampal-dependent learning and memory and interoceptive sensitivity. PLoS One, 12, e0172645.CrossRefGoogle ScholarPubMed
Authority, E. F. S. (2004). Opinion of the scientific panel on dietetic products, nutrition and allergies [NDA] related to the tolerable upper intake level of boron (sodium borate and boric acid). EFSA Journal, 2, 80.Google Scholar
Auvinen, H. E., Romijn, J. A., Biermasz, N. R., Pijl, H., Havekes, L. M., Smit, J. W., & Pereira, A. M. (2012). The effects of high fat diet on the basal activity of the hypothalamus-pituitary-adrenal axis in mice. Journal of Endocrinology, 214, 191197.CrossRefGoogle ScholarPubMed
Avena, N. M., Rada, P., & Hoebel, B. G. (2009). Sugar and fat bingeing have notable differences in addictive-like behavior. The Journal of Nutrition, 139, 623628.CrossRefGoogle ScholarPubMed
Avitzur, Y., & Courtney-Martin, G. (2016). Enteral approaches in malabsorption. Best Practice & Research Clinical Gastroenterology, 30, 295307.CrossRefGoogle ScholarPubMed
Azary, S., Schreiner, T., Graves, J., Waldman, A., Belman, A., Guttman, B. W., & Waubant, E. (2018). Contribution of dietary intake to relapse rate in early paediatric multiple sclerosis. Journal of Neurology Neurosurgery & Psychiatry, 89, 2833.CrossRefGoogle ScholarPubMed
Babur, E., Tan, B., & Yousef, M. (2019). Deficiency but not supplementation of selenium impairs the hippocampal long-term potentiation and hippocampus-dependent learning. Biological Trace Element Research, 192, 252262.CrossRefGoogle Scholar
Bachar, E., Canetti, L., & Berry, E. M. (2005). Lack of long-lasting consequences of starvation on eating pathology in Jewish Holocaust survivors of Nazi concentration camps. Journal of Abnormal Psychology, 114, 165169.CrossRefGoogle ScholarPubMed
Badawy, A. A. (2014). Pellagra and alcoholism: A biochemical perspective. Alcohol & Alcoholism, 49, 238250.CrossRefGoogle ScholarPubMed
Baggott, M. J., Childs, E., Hart, A. B., de Bruin, E., Palmer, A. A., Wilkinson, J. E., & de Wit, H. (2013). Psychopharmacology of theobromine in healthy volunteers. Psychopharmacology, 228, 109118.CrossRefGoogle ScholarPubMed
Bailes, J. E., & Mills, J. D. (2010). Docosahexaenoic acid reduces traumatic axonal injury in a rodent head injury model. Journal of Neurotrauma, 27, 16171624.CrossRefGoogle Scholar
Baker, L. B., Nuccio, R. P., & Jeukendrup, A. E. (2014). Acute effects of dietary constituents on motor skills and cognitive performance in athletes. Nutrition Reviews, 72, 790802.CrossRefGoogle ScholarPubMed
Baker, M. (2016). Is there a reproducibility crisis? Nature, 533, 452454.CrossRefGoogle Scholar
Bakir, F., Damluji, S. F., & Amin-Zaki, L. (1973). Methylmercury poisoning in Iraq. Science, 181, 230241.CrossRefGoogle ScholarPubMed
Balion, C., Griffith, L. E., & Strifler, L. (2012). Vitamin D, cognition, and dementia: A systematic review and meta-analysis. Neurology, 79, 13971405.CrossRefGoogle ScholarPubMed
Balk, E. M., Raman, G., & Tatsioni, A. (2007). Vitamin B6, B12, and folic acid supplementation and cognitive function: A systematic review of randomized trials. Archives of Internal Medicine, 167, 2130.CrossRefGoogle ScholarPubMed
Bambini-Junior, V., Zanatta, G., Della Flora Nunes, G., Mueller de Melo, G., Michels, M., Fontes-Dutra, M., & Gottfried, C. (2014). Resveratrol prevents social deficits in animal model of autism induced by valproic acid. Neuroscience Letters, 583, 176181.CrossRefGoogle ScholarPubMed
Banji, D., Banji, O. J., Abbagoni, S., Hayath, M. S., Kambam, S., & Chiluka, V. L. (2011). Amelioration of behavioral aberrations and oxidative markers by green tea extract in valproate induced autism in animals. Brain Research, 1410, 141151.CrossRefGoogle ScholarPubMed
Banks, W. A., Owen, J. B., & Erickson, M. A. (2012). Insulin in the brain: There and back again. Pharmacology & Therapeutics, 136, 8293.CrossRefGoogle Scholar
Barbano, M. F., & Cador, M. (2007). Opioids for hedonic experience and dopamine to get ready for it. Psychopharmacology, 191, 467506.CrossRefGoogle Scholar
Barceloux, D. G., Bond, G. R., Krenzelok, E. P., Cooper, H., & Vale, J. A. (2002). American Academy of Clinical Toxicology practice guidelines on the treatment of methanol poisoning. Journal of Toxicology: Clinical Toxicology, 40, 415446.Google ScholarPubMed
Barichella, M., Cereda, E., Cassani, E., Pinelli, G., Iorio, L., Ferri, V., & Pezzoli, G. (2017). Dietary habits and neurological features of Parkinson’s disease patients: Implications for practice. Clinical Nutrition, 36, 10541061.CrossRefGoogle ScholarPubMed
Barona, M., Brown, M., & Clark, C. (2019). White matter alterations in anorexia nervosa: Evidence from a voxel-based meta-analysis. Neuroscience & Biobehavioral Reviews, 100, 285295.CrossRefGoogle ScholarPubMed
Barra, R., Morgan, C., Saez-Briones, P., Reyes-Parada, M., Burgos, H., Morale, B., & Hernandez, A. (2018). Facts and hypotheses about the programming of neuroplastic deficits by prenatal malnutrition. Nutrition Review, 77, 6580.CrossRefGoogle Scholar
Barrientos, R. M., Higgins, E. A., Biedenkapp, J. C., Sprunger, D. B., Wright-Hardesty, K. J., Watkins, L. R., & Maier, S. F. (2006). Peripheral infection and aging interact to impair hippocampal memory consolidation. Neurobiology of Aging, 27, 723732.CrossRefGoogle ScholarPubMed
Barros, A. S., Crispim, R. Y. G., Cavalcanti, J. U., Souza, R. B., Lemos, J. C., Cristino Filho, G., & Aguiar, L. M. V. (2017). Impact of the chronic omega-3 fatty acids supplementation in hemiparkinsonism model induced by 6-hydroxydopamine in rats. Basic Clinical Pharmacology & Toxicology, 120, 523531.CrossRefGoogle ScholarPubMed
Barrow, M. V., Simpson, C. F., & Miller, E. J. (1974). Lathyrism: A review. Quarterly Review of Biology, 49, 101128.CrossRefGoogle ScholarPubMed
Başoğlu, M., Yetimalar, Y., & Gürgör, N.,(2006). Neurological complications of prolonged hunger strike. European Journal of Neurology, 13, 10891097.CrossRefGoogle ScholarPubMed
Basu, S., McKee, M., Galea, G., & Stuckler, D. (2013). Relationship of soft drink consumption to global overweight, obesity, and diabetes: A cross-national analysis of 75 countries. American Journal of Public Health, 103, 20712077.CrossRefGoogle ScholarPubMed
Bavarsad, K., Hosseini, M., Hadjzadeh, M. A. R., & Sahebkar, A. (2018). The effects of thyroid hormones on memory impairment and Alzheimer’s disease. Journal of Cellular Physiology, 234, 1463314640.CrossRefGoogle Scholar
Bayer-Carter, J. L., Green, P. S., Montine, T. J., VanFossen, B., Baker, L. D., Watson, G. S., & Craft, S. (2011). Diet intervention and cerebrospinal fluid biomarkers in amnestic mild cognitive impairment. Archives of Neurology, 68, 743752.CrossRefGoogle ScholarPubMed
Bayes, J., Schloss, J., & Sibbritt, D. (2020). Effects of polyphenols in a Mediterranean diet on symptoms of depression: A systematic literature review. Advances in Nutrition, 11, 602615.CrossRefGoogle Scholar
Bayram, E., Topcu, Y., & Karakaya, P. (2013). Molybdenum cofactor deficiency: Review of 12 cases (MoCD and review). European Journal of Paediatric Neurology, 17, 16.CrossRefGoogle ScholarPubMed
Bazinet, R. P., & Laye, S. (2014). Polyunsaturated fatty acids and their metabolites in brain function and disease. Nature Reviews Neuroscience, 15, 771785.CrossRefGoogle ScholarPubMed
Beard, J. L., & Connor, J. R. (2003). Iron status and neural functioning. Annual Review of Nutrition, 23, 4158.CrossRefGoogle ScholarPubMed
Beard, J., Erikson, K. M., & Jones, B. C. (2003). Neonatal iron deficiency results in irreversible changes in dopamine function in rats. Journal of Nutrition, 133, 11741179.CrossRefGoogle ScholarPubMed
Beasley, A. N. (2012). Tensions in the field: The politics of researching kuru in New Guinea. History & Anthropology, 23 6389.CrossRefGoogle Scholar
Becker, C. B., Middlemass, K., Taylor, B., Johnson, C., & Gomez, F. (2017). Food insecurity and eating disorder pathology. International Journal of Eating Disorders, 50, 10311040.CrossRefGoogle ScholarPubMed
Beilharz, J. E., Kaakoush, N. O., Maniam, J., & Morris, M. J. (2016a). The effect of short-term exposure to energy-matched diets enriched in fat or sugar on memory, gut microbiota and markers of brain inflammation and plasticity. Brain Behavior & Immunity, 57, 304313.CrossRefGoogle ScholarPubMed
Beilharz, J. E., Kaakoush, N. O., Maniam, J., & Morris, M. J. (2018). Cafeteria diet and probiotic therapy: Cross talk among memory, neuroplasticity, serotonin receptors and gut microbiota in the rat. Molecular Psychiatry, 23, 351361.CrossRefGoogle ScholarPubMed
Beilharz, J. E., Maniam, J., & Morris, M. J. (2016b). Short-term exposure to a diet high in fat and sugar, or liquid sugar, selectively impairs hippocampal-dependent memory, with differential impacts on inflammation. Behavioural Brain Research, 306, 17.CrossRefGoogle ScholarPubMed
Belarbi, K., Cuvelier, E., Destée, A., Gressier, B., & Chartier-Harlin, M. C. (2017). NADPH oxidases in Parkinson’s disease: A systematic review. Molecular Degeneration, 12, 84.Google ScholarPubMed
Belfort, M., Anderson, P., Nowak, V., Lee, K., Molesworth, C., Thompson, D., Doyle, L., & Inder, T. (2016). Breast milk feeding, brain development and neurocognitive outcomes: A 7-year longitudinal study in infnts born at less than 30 weeks. Journal of Pediatrics, 177, 133139.CrossRefGoogle ScholarPubMed
Bellinger, F. P., Madamba, S. G., Campbell, I. L., & Siggins, G. R. (1995). Reduced long-term potentiation in the dentate gyrus of transgenic mice with cerebral overexpression of interleukin-6. Neuroscience Letters, 198, 9598.CrossRefGoogle ScholarPubMed
Benarroch, E. E. (2014). Brain glucose transporters: Implications for neurologic disease. Neurology, 82, 13741379.CrossRefGoogle ScholarPubMed
Benau, E. M., Orloff, N. C., Janke, E. A., Serpell, L., & Timko, C. A. (2014). A systematic review of the effects of experimental fasting on cognition. Appetite, 77, 5261.CrossRefGoogle ScholarPubMed
Benitez-Bribiesca, L., De la Rosa-Alvarez, A., & Mansilla-Olivares, A. (1999). Debdritic spine pathology in infants with severe protein-calorie malnutrition. Pediatrics, 104, e21.CrossRefGoogle ScholarPubMed
Bent, S., Bertoglio, K., & Hendren, R. L. (2009). Omega-3 fatty acids for autistic spectrum disorder: A systematic review. Journal of Autism & Developmental Disorders, 39, 11451154.CrossRefGoogle ScholarPubMed
Benton, D. (2007). The impact of diet on anti-social, violent and criminal behaviour. Neuroscience & Biobehavioral Reviews, 31, 752774.CrossRefGoogle ScholarPubMed
Benton, D. (2008a). Mirconutrient status, cognition and behavioral problems in childhood. European Journal of Nutrition, 47, 3850.CrossRefGoogle Scholar
Benton, D. (2008b). Sucrose and behavioral problems. Critical Reviews in Food Science & Nutrition, 48, 385401.CrossRefGoogle ScholarPubMed
Benton, D. (2012). Symposium 1: Vitamins and cognitive development and performance : Vitamins and neural and cognitive development outcomes in children. Proceedings of the Nutrition Society, 71, 1426.CrossRefGoogle Scholar
Benton, D., & Brock, H. (2010). Mood and the macro-nutrient composition of breakfast and the mid-day meal. Appetite, 55, 436440.CrossRefGoogle ScholarPubMed
Benton, D., & Donohoe, R. (1999). The effects of nutrients on mood. Public Health Nutrition, 2, 403409.CrossRefGoogle ScholarPubMed
Benton, D., Slater, O., & Donohoe, R. T. (2001). The influence of breakfast and a snack on psychological functioning. Physiology & Behavior, 74, 559571.CrossRefGoogle Scholar
Berding, K., Vlckova, K., Marx, W., Schellekens, H., Stanton, C., Clarke, G, Jacka, F., Dinan, T. G., & Cryan, F. J. (2021). Diet and the microbiota-gut-brain axis: Sowing the seeds of good mental health. Advances in Nutrition, 12, 12391285.CrossRefGoogle ScholarPubMed
Berendsen, A. A., Kang, J. H., van de Rest, O., Feskens, E. J., de Groot, L. C., & Grodstein, F. (2017). The dietary approaches to stop hypertension diet, cognitive function, and cognitive decline in American older women. Journal of the American Medical Directors Association, 18, 427432.CrossRefGoogle ScholarPubMed
Bergami, M., Rimondini, R., Santi, S., Blum, R., Gotz, M., & Canossa, M. (2008). Deletion of TrkB in adult progenitors alters newborn neuron integration into hippocampal circuits and increases anxiety-like behavior. Proceedings of the National Academy of Sciences of the United States of America, 105, 1557015575.CrossRefGoogle ScholarPubMed
Berglund, S. K., Chmielewska, A., Starnberg, J., Westrup, B., Hagglof, B., Norman, M., & Domellof, M. (2018). Effects of iron supplementation of low-birth-weight infants on cognition and behavior at 7 years: A randomized controlled trial. Pediatric Research, 83, 111118.CrossRefGoogle ScholarPubMed
Bernal, J. (2007). Thyroid hormone receptors in brain development and function. Nature Clinical Practice Endocrinology & Metabolism, 3, 249259.CrossRefGoogle ScholarPubMed
Berr, C., Arnaud, J., & Akbaraly, T. N. (2012). Selenium and cognitive impairment: A brief-review based on results from the EVA study. Biofactors, 38, 139144.CrossRefGoogle ScholarPubMed
Bertolino, B., Crupi, R., Impellizzeri, D., Bruschetta, G., Cordaro, M., Siracusa, R., & Cuzzocrea, S. (2017). Beneficial effects of co-ultramicronized palmitoylethanolamide/luteolin in a mouse model of autism and in a case report of autism. CNS Neuroscience Therapeutics, 23, 8798.CrossRefGoogle Scholar
Bespalov, A., & Steckler, T. (2018). Lacking quality in research: Is behavioral neuroscience affected more than other areas of biomedical science? Journal of Neuroscience Methods, 300, 49.CrossRefGoogle ScholarPubMed
Besson, A., Lagisz, M., Senior, A., Hector, K., & Nakagawa, S. (2016). Effect of maternal diet on offspring coping styles in rodents: A systematic review and meta-analysis. Biological Review, 91, 10651080.CrossRefGoogle ScholarPubMed
Bhandari, R., & Kuhad, A. (2017). Resveratrol suppresses neuroinflammation in the experimental paradigm of autism spectrum disorders. Neurochemical International, 103, 823.CrossRefGoogle ScholarPubMed
Biasi, E. (2011). The effects of dietary choline. Neuroscience Bulletin, 27, 220342.CrossRefGoogle ScholarPubMed
Biasini, A., Neri, C., China, M. C., Monti, F., Di Nicola, P., & Bertino, E. (2012). Higher protein intake strategies in human milk fortification for preterm infants feeding. Auzological and neurodevelopmental outcome. Journal of Biological Regulators & Homeostatic Agents, 26, 4347.Google ScholarPubMed
Biggio, G., Porceddu, M. L., & Gessa, G. L. (1976). Decrease of homovanillic, dihydroxyphenylacetic acid and cyclic adenosine-3’, 5’-monophosphate content in the rat caudate nucleus induced by the acute administration of an amino acid mixture lacking tyrosine and phenylalanine. Journal of Neurochemistry, 26, 12531255.CrossRefGoogle ScholarPubMed
Birch, E. E., Garfield, S., Castaneda, Y., Hughbanks-Wheaton, D., Uauy, R., & Hoffman, D. (2007). Visual acuity and cognitive outcomes at 4 years of age in a double-blind, randomized trial of long-chain polyunsaturated fatty acid-supplemented infant formula. Early Human Development, 83, 279284.CrossRefGoogle Scholar
Bisanz, J. E., Upadhyay, V., Turnbaugh, J. A., Ly, K., & Turnbaugh, P. J. (2019). Meta-analysis reveals reproducible gut microbiome alterations in response to a high-fat diet. Cell Host and Microbe, 26, 265–272 e264.CrossRefGoogle ScholarPubMed
Bitanihirwe, B. K. Y., & Cunningham, M. G. (2009). Zinc: The brain’s dark horse. Synapse, 63, 10291049.CrossRefGoogle ScholarPubMed
Bivona, G., Gambino, C. M., Iacolino, G., & Ciaccio, M. (2019). Vitamin D and the nervous system. Neurological Research, 41, 827835.CrossRefGoogle ScholarPubMed
Bjork, J. M., Grant, S. J., Chen, G., & Hommer, D. W. (2014). Dietary tyrosine/phenylalanine depletion effects on behavioural and brain signatures of human motivational processing. Neuropsychopharmacology, 39, 595604.CrossRefGoogle ScholarPubMed
Blaak, E. E., Antoine, J. M., & Benton, D. (2012). Impact of postprandial glycaemia on health and prevention of disease. Obesity Reviews, 13, 923984.CrossRefGoogle ScholarPubMed
Black, R., Allen, L., Bhutta, Z., Caulfield, L., de Onis, , Ezzat, M., Mathers, C., Rivera, J., for the Maternal and Child Undernutrition Study Group. (2008). Maternal and child undernutrition: Global and regional exposures and health consequences. The Lancet, 371, 243260.CrossRefGoogle ScholarPubMed
Blaise, S. A., Nedelec, E., Schroeder, H., Alberto, J. M., Bossenmeyer-Pourie, C., Gueant, J. L., & Daval, J. L. (2007). Gestational vitamin B deficiency leads to homocysteine-associated brain apoptosis and alters neurobehavioral development in rats. American Journal of Pathology, 170, 667679.CrossRefGoogle ScholarPubMed
Blandina, P., Munari, L., Provensi, G., & Passani, M. B. (2012). Histamine neurons in the tuberomamillary nucleus: A whole center or distinct subpopulations? Frontiers in Systems Neuroscience, 6, 33.CrossRefGoogle ScholarPubMed
Blanton, C. (2014). Improvements in iron status and cognitive function in young women consuming beef or non-beef lunches. Nutrients, 6, 90110.CrossRefGoogle Scholar
Bloemendaal, M., Froböse, M. I., & Wegman, J., (2018). Neuro-cognitive effects of acute tyrosine administration on reactive and proactive response inhibition in healthy older adults. eNeuro, 5, 118.CrossRefGoogle ScholarPubMed
Blumenthal, J. A., Smith, P. J., Mabe, S., Hinderliter, A., Lin, P. H., Liao, L., & Sherwood, A. (2019). Lifestyle and neurocognition in older adults with cognitive impairments: A randomized trial. Neurology, 92, e212e223.CrossRefGoogle ScholarPubMed
Blusztajn, J. K., & Wurtman, R. J. (1983). Choline and cholinergic neurons. Science, 221, 614620.CrossRefGoogle ScholarPubMed
Boggiano, M. M., Turan, B., Maldonado, C. R., Oswald, K. D., & Shuman, E. S. (2013). Secretive food concocting in binge eating: Test of a famine hypothesis. International Journal of Eating Disorders, 46, 212225.CrossRefGoogle ScholarPubMed
Boivin, M. J., Okitundu, D., & Makila-Mabe Bumoko, G. (2013). Neuropsychological effects of konzo: A neuromotor disease associated with poorly processed cassava. Pediatrics, 131, e1231e1239.CrossRefGoogle ScholarPubMed
Boivin, M. J., Okitundu, D., & Makila-Mabe Bumoko, G. (2017). Cognitive and motor performance in Congolese children with konzo during 4 years of follow-up: A longitudinal analysis. The Lancet Global Health, 5, e936e947.CrossRefGoogle ScholarPubMed
Bolton, H. M., Burgess, P. W., Gilbert, S. J., & Serpell, L. (2014). Increased set shifting costs in fasted healthy volunteers. PLoS One, 9, e101946.CrossRefGoogle ScholarPubMed
Bond, L., Mayerl, C., Stricklen, B., German, R., & Gould, F. (2020). Changes in the coordination between respiration and swallowing from suckling through weaning. Biology Letters, 16, 20190942.CrossRefGoogle ScholarPubMed
Bondy, S. C. (2010). The neurotoxicity of environmental aluminium is still an issue. Neurotoxicity, 31, 575581.CrossRefGoogle ScholarPubMed
Bondy, S. C. (2016). Low levels of aluminium can lead to behavioral and morphological changes associated with Alzheimer’s disease and age-related neurodegeneration. NeuroToxicology, 52, 222229.CrossRefGoogle ScholarPubMed
Bonello, M., & Ray, P. (2016). A case of ataxia with isolated vitamin E deficiency initially diagnosed as Friedreich’s ataxia. Case Reports in Neurological Medicine, 2016, 8342653.CrossRefGoogle ScholarPubMed
Boonstra, E., de Kleijn, R., Colzato, L. S., Alkemade, A., Forstmann, B. U., & Nieuweenhuis, S. (2015). Neurotransmitters as food supplements: The effects of GABA on brain and behaviour. Frontiers in Psychology, 6, 1520.CrossRefGoogle Scholar
Booth, S. L. (2009). Roles for vitamin K beyond coagulation. Annual Review of Nutrition, 29, 89110.CrossRefGoogle ScholarPubMed
Borea, P. A., Gessi, S., Merighi, S., Vincenzi, F., & Varani, K. (2018). Pharmacology of adenosine receptors: The state of the art. Physiological Reviews, 98, 15911625.CrossRefGoogle ScholarPubMed
Borge, T., Aase, H., Brantsaeter, A., & Biele, G. (2017). The importance of maternal diet quality during pregnancy on cognitive and behavioural outcomes in children: A systematic review and meta-analysis. BMJ Open, 7, e016777.CrossRefGoogle ScholarPubMed
Borghammer, P. (2018). How does Parkinson’s disease begin? Perspectives eon neuroanatomical pathways, prions, and histology. Movement Disorders, 33, 4857.CrossRefGoogle Scholar
Borowitz, S. (2021). First bites – Why, when and what solid foods to fee infants. Frontiers in Pediatrics, 9, 654171.CrossRefGoogle Scholar
Boswell, R. G., & Kober, H. (2016). Food cue reactivity and craving predict eating and weight gain: A meta-analytic review. Obesity Reviews, 17, 159177.CrossRefGoogle ScholarPubMed
Botez, M. I., Botez, T., & Maag, U. (1984). The Weschler subtests in mild organic brain-damage associated with folate-deficiency. Psychological Medicine, 14, 431437.CrossRefGoogle Scholar
Bouayed, J., Rammal, H., Dicko, A., Younos, C., & Soulimani, R. (2007). Chlorogenic acid, a polyphenol from Prunus domestica (Mirabelle), with coupled anxiolytic and antioxidant effects. Journal of the Neurological Sciences, 262, 7784.CrossRefGoogle ScholarPubMed
Bough, K. J., Wetherington, J., Hassel, B., Pare, J. F., Gawryluk, J. W., Greene, J. G., & Dingledine, R. J. (2006). Mitochondrial biogenesis in the anticonvulsant mechanism of the ketogenic diet. Annals of Neurology, 60, 223235.CrossRefGoogle ScholarPubMed
Boukouvalas, G., Gerozissis, K., & Kitraki, E. (2010). Adult consequences of post-weaning high fat feeding on the limbic-HPA axis of female rats. Cellular & Molecular Neurobiology, 30, 521530.CrossRefGoogle ScholarPubMed
Bourg, E. L. (2018). Does calorie restriction in primates increase lifespan? Revisiting studies on macaques (Macaca mulatta) and mouse lemurs (Microcebus murinus). BioEssays, 40, 1800111.CrossRefGoogle ScholarPubMed
Bourgeois, F. T., Murthy, S., & Mandl, K. D. (2010). Outcome reporting among drug trials registered in ClinicalTrials.gov. Annals of Internal Medicine, 153, 158166.CrossRefGoogle ScholarPubMed
Boyle, N. B., Lawton, C. L., Allen, R., Croden, F., Smith, K., & Dye, L. (2016). No effects of ingesting or rinsing sucrose on depleted self-control performance. Physiology & Behavior, 154, 151160.CrossRefGoogle ScholarPubMed
Boyle, N. B., Lawton, C. L., & Dye, L. (2018). The effects of carbohydrates, in isolation and combined with caffeine, on cognitive performance and mood–current evidence and future directions. Nutrients, 10, 192.CrossRefGoogle Scholar
Bradley, S. J., Taylor, M. J., & Rovet, J. F. (1997). Assessment of brain function in adolescent anorexia nervosa before and after weight gain. Journal of Clinical and Experimental Neuropsychology, 19, 2033.CrossRefGoogle ScholarPubMed
Bragg, C., Desbrow, B., Hall, S., & Irwin, C. (2017). Effect of meal glycemic load and caffeine consumption on prolonged monotonous driving performance. Physiology & Behavior, 181, 110116.CrossRefGoogle ScholarPubMed
Brands, A. M. A., Biessels, G. J., de Haan, E. H. F., Kappelle, L. J., & Keessels, R. P. C. (2005). The effects of type 1 diabetes on cognitive performance. Diabetes Care, 28, 726735.CrossRefGoogle ScholarPubMed
Brandt, K. R. (2015). Effects of glucose administration on category exclusion recognition. Journal of Psychopharmacology, 29, 777782.CrossRefGoogle ScholarPubMed
Brenner, E. D., Stevenson, D. W., & Twigg, R. W. (2003). Cycads: Evolutionary innovations and the role of plant-derived neurotoxins. Trends in Plant Science, 8, 446452.CrossRefGoogle ScholarPubMed
Brickman, A. M., Khan, U. A., Provenzano, F. A., Yeung, L. K., Suzuki, W., Schroeter, H., & Small, S. A. (2014). Enhancing dentate gyrus function with dietary flavanols improves cognition in older adults. Nature Neuroscience, 17, 17981803.CrossRefGoogle ScholarPubMed
Brock, J. W., & Prasad, C. (1992). Alterations in dendritic spine density in the rat brain associated with protein malnutrition. Developmental Brain Research, 66, 266269.CrossRefGoogle ScholarPubMed
Brouwer-Brolsma, E. M., & de Groot, L. (2015). Vitamin D and cognition in older adults: An update of recent findings. Current Opinion in Clinical Nutrition & Metabolic Care, 18, 1116.CrossRefGoogle ScholarPubMed
Brown, J. M., Bland, R., Jonsson, E., & Greenshaw, A. J. (2019). The standardization of diagnostic criteria for Fetal Alcohol Syndrome Disorder (FASD): Implications for research, clinical practice and population health. Canadian Journal of Psychiatry, 64, 169176.CrossRefGoogle ScholarPubMed
Brown, K., DeCoffe, D., Molcan, E., & Gibson, D. L. (2012). Diet-induced dysbiosis of the intestinal microbiota and the effects on immunity and disease. Nutrients, 4, 10951119.CrossRefGoogle ScholarPubMed
Brown, T. M. (2010). Pellagra: An old enemy of timeless importance. Psychosomatics, 51, 9397.CrossRefGoogle ScholarPubMed
Brown, T. M. (2015). Neuropsychiatric scurvy. Psychosomatics, 56, 1220.CrossRefGoogle ScholarPubMed
Brubacher, D., Monsch, A. U., & Stähelin, H. B. (2004). Weight change and cognitive performance. International Journal of Obesity, 28, 11631167.CrossRefGoogle ScholarPubMed
Bruner, A. N., Joffe, A., Duggan, A. K., Casella, J. F., & Brandt, J. (1996). Randomised study of cognitive effects of iron supplementation in non-anaemic adolescent girls. The Lancet, 348, 992996.CrossRefGoogle ScholarPubMed
Bryan, J., Calvaresi, E., & Hughes, D. (2002). Short-term folate, vitamin B-12 or vitamin B-6 supplementation slightly affects memory performance but not mood in women of various ages. Journal of Nutrition, 132, 13451356.CrossRefGoogle Scholar
Bryan, J., & Tiggemann, M. (2001). The effect of weight-loss dieting on cognitive performance and psychological well-being in overweight women. Appetite, 36, 147156.CrossRefGoogle ScholarPubMed
Budney, A. J., Lee, D. C., & Juliano, L. M. (2015). Evaluating the validity of caffeine use disorder. Current Psychiatry Reports, 17, 74.CrossRefGoogle ScholarPubMed
Buffenstein, R., Karklin, A., & Driver, H. S. (2000). Beneficial physiological and performance responses to a month of restricted energy intake in healthy overweight women. Physiology & Behavior, 68, 439444.CrossRefGoogle ScholarPubMed
Bunevičius, R., & Prange, A. J. (2010). Thyroid disease and mental disorders: Cause and effect or only comorbidity? Current Opinion in Psychiatry, 23, 363368.CrossRefGoogle ScholarPubMed
Burger, G. C. E., Sandstead, H. R., & Drummond, J. (1945). Starvation in Western Holland: 1945. The Lancet, 2, 282283.CrossRefGoogle Scholar
Burger, K. S., & Stice, E. (2012). Frequent ice cream consumption is associated with reduced striatal response to receipt of an ice cream-based milkshake. American Journal of Clinical Nutrition, 95, 810817.CrossRefGoogle ScholarPubMed
Burger, K. S., & Stice, E. (2014). Neural responsivity during soft drink intake, anticipation, and advertisement exposure in habitually consuming youth. Obesity, 22, 441450.CrossRefGoogle ScholarPubMed
Burkle, F. M., Chan, J. T. S., & Yeung, R. D. S. (2013). Hunger strikers: Historical perspectives from the emergency management of refugee camp asylum seekers. Prehospital and Disaster Medicine, 28, 625629.CrossRefGoogle ScholarPubMed
Burley, V. J., Kreitzman, S. N., Hill, A. J., & Blundell, J. E. (1992). Across-the-day monitoring of mood and energy intake before, during, and after a very-low-calorie diet. The American Journal of Clinical Nutrition, 56, 277S278S.CrossRefGoogle ScholarPubMed
Burrows, T. L., Ho, Y. Y., Rollo, M. E., & Collins, C. E. (2019). Validity of dietary assessment methods when compared to the method of doubly labelled water: A systematic review in adults. Frontiers in Endocrinology, 10, e00850.CrossRefGoogle Scholar
Butterly, J., & Shepherd, J. (2010). Hunger: The Biology and Politics of Starvation. Lebanon, PA: Dartmouth College Press.Google Scholar
Cahill, G. F. (1970). Starvation in man. New England Journal of Medicine, 282, 668675.Google ScholarPubMed
Callahan, L. S., Thibert, K. A., Wobken, J. D., & Georgieff, M. K. (2013). Early-life iron deficiency anemia alters the development and long-term expression of parvalbumin and perineuronal nets in the rat hippocampus. Developmental Neuroscience, 35, 427436.CrossRefGoogle ScholarPubMed
Calugi, S., Miniati, M., & Milanese, C. (2017). The Starvation Symptom Inventory: Development and psychometric properties. Nutrients, 9, 967.CrossRefGoogle ScholarPubMed
Canda, E., Ucar, S. K., & Coker, M. (2020). Biotinidase deficiency: Prevalence, impact and management strategies. Pediatric Health, Medicine & Therapeutics, 11, 127133.Google ScholarPubMed
Canhada, S., Castro, K., Perry, I. S., & Luft, V. C. (2018). Omega-3 fatty acids’ supplementation in Alzheimer’s disease: A systematic review. Nutritional Neuroscience, 21, 529538.CrossRefGoogle ScholarPubMed
Cannell, J. J. (2008). Autism and vitamin D. Medical Hypotheses, 70, 750759.CrossRefGoogle ScholarPubMed
Capewell, S., & Lloyd-Williams, F. (2018). The role of the food industry in health: Lessons from tobacco? British Medical Bulletin, 125, 131143.CrossRefGoogle ScholarPubMed
Cappelletti, S., Piacentino, D., Fineschi, V., Frati, P., Cipolloni, L., & Aromatario, M. (2018). Caffeine-related deaths: Manner of deaths and categories at risk. Nutrients, 10, 611.CrossRefGoogle ScholarPubMed
Cappello, S., Cereda, E., & Rondanelli, M. (2017). Elevated plasma vitamin B12 concentrations are independent predictors of in-hospital mortality in adult patients at nutritional risk. Nutrients, 9, 1.CrossRefGoogle Scholar
Cardoso, A., Castro, J. P., Pereira, P. A., & Andrade, J. P. (2013). Prolonged protein deprivation, but not food restriction, affects parvalbumin-containing interneurons in the dentate gyrus of adult rats. Brain Research, 1522, 2230.CrossRefGoogle Scholar
Cardoso, B. R., Ong, T. P., & Jacob-Filho, W. (2010). Nutritional status of selenium in Alzheimer’s disease patients. British Journal of Nutrition, 103, 803806.CrossRefGoogle ScholarPubMed
Cardoso, B. R., Szymlek-Gay, E. A., & Roberts, B. R. (2018). Selenium status is not associated with cognitive performance: A cross-sectional study in 154 older Australian adults. Nutrients, 10, 1847.CrossRefGoogle Scholar
Carlson, E. S., Stead, J. D., Neal, C. R., Petryk, A., & Georgieff, M. K. (2007). Perinatal iron deficiency results in altered developmental expression of genes mediating energy metabolism and neuronal morphogenesis in hippocampus. Hippocampus, 17, 679691.CrossRefGoogle ScholarPubMed
Carpenter, K. J. (2003). A short history of nutritional science: Part 1 (1795–1885). Journal of Nutrition, 133, 638645.CrossRefGoogle Scholar
Carr, K. D. (1996). Feeding, drug abuse, and the sensitization of reward by metabolic need. Neurochemical Research, 21, 14551467.CrossRefGoogle ScholarPubMed
Carr, K. D., Park, T. H., Zhang, Y., & Stone, E. A. (1998). Neuroanatomical patterns of Fos-like immunoreactivity induced by naltrexone in food-restricted and ad libitum fed rats. Brain Research, 779, 2632.CrossRefGoogle ScholarPubMed
Carter, A., Hendrikse, J., Lee, N., Yücel, M., Verdejo-Garcia, A., Andrews, Z. B., & Hall, W. (2016). The neurobiology of ‘food addition’ and its implications for obesity treatment and policy. Annual Review of Nutrition, 36, 105128.CrossRefGoogle Scholar
Carter, E. C., Kofler, L. M., Forster, D. E., & McCullough, M. E. (2015). A series of meta-analytic tests of the depletion effect: Self-control does not seem to rely on a limited resource. Journal of Experimental Psychology: General, 144, 796815.CrossRefGoogle Scholar
Carter, R. C., Jacobson, J. L., Burden, M. J., Armony-Sivan, R., Dodge, N. C., Angelilli, M. L., & Jacobson, S. W. (2010). Iron deficiency anemia and cognitive function in infancy. Pediatrics, 126, e427–434.CrossRefGoogle ScholarPubMed
Carvalho, K. M. B., Ronca, D. B., Michels, N., Huybrechts, I., Cuenca-Garcia, M., Marcos, A., & Carvalho, L. A. (2018). Does the Mediterranean diet protect against stress-induced inflammatory activation in European adolescents? The HELENA Study. Nutrients, 10, Article 1770.CrossRefGoogle ScholarPubMed
Casadesus, G., Shukitt-Hale, B., Stellwagen, H. M., Zhu, X. W., Lee, H. G., Smith, M. A., & Joseph, J. A. (2004). Modulation of hippocampal plasticity and cognitive behavior by short-term blueberry supplementation in aged rats. Nutritional Neuroscience, 7, 309316.CrossRefGoogle ScholarPubMed
Casper, R. C., Voderholzer, U., Naab, S., & Schlegl, S. (2020). Increased urge for movement, physical and mental restlessness, fundamental symptoms of restricting anorexia nervosa. Brain & Behavior, 10, e01556.CrossRefGoogle ScholarPubMed
Cassin, S. E., Buchman, D. Z., Leung, S. E., Kantarvoich, K., Hawa, A., Carter, A., & Sockalingam, S. (2019). Ethical, stigma, and policy implications of food addiction: A scoping review. Nutrients, 11, 710.CrossRefGoogle ScholarPubMed
Castoldi, A. F., Johansson, C., & Onishchenko, N. (2008). Human developmental neurotoxicity of methylmercury: Impact of variables and risk modifiers. Regulatory Toxicology & Pharmacology, 51, 201214.CrossRefGoogle ScholarPubMed
Castro, K., Baronio, D., Perry, I. S., Riesgo, R. D. S., & Gottfried, C. (2017). The effect of ketogenic diet in an animal model of autism induced by prenatal exposure to valproic acid. Nutritional Neuroscience, 20, 343350.CrossRefGoogle Scholar
Ceccatelli, S., Bose, R., Edoff, K., Onishchenko, N., & Spulber, S. (2013). Long-lasting neurotoxic effects of exposure to methylmercury during development. Journal of Internal Medicine, 273, 490497.CrossRefGoogle ScholarPubMed
Cederholm, T., Salem, N., Jr, & Palmblad, J. (2013). ω-3 Fatty acids in the prevention of cognitive decline in humans. Advances in Nutrition, 4, 672676.CrossRefGoogle ScholarPubMed
Chae, J., Nahas, Z., & Lomarev, M. (2003). A review of functional neuroimaging studies of vagus nerve stimulation (VNS). Journal of Psychiatric Research, 37, 443455.CrossRefGoogle ScholarPubMed
Challa, S., Sharkey, J. R., Chen, M., & Phillips, C. D. (2007). Association of resident, facility, and geographic characteristics with chronic undernutrition in a nationally represented sample of older residents in U.S. nursing homes. Journal of Nutrition Health and Aging, 11, 179184.Google Scholar
Chamari, K., Briki, W., & Farooq, A. (2016). Impact of Ramadan intermittent fasting on cognitive function in trained cyclists: A pilot study. Biology of Sport, 33, 4956.CrossRefGoogle ScholarPubMed
Champ, C. E., Palmer, J. D., Volek, J. S., Werner-Wasik, M., Andrews, D. W., Evans, J. J., & Shi, W. (2014). Targeting metabolism with a ketogenic diet during the treatment of glioblastoma multiforme. Journal of Neurooncology, 117, 125131.CrossRefGoogle ScholarPubMed
Chandrakumar, A., Bhardwaj, A., & Jong, G. W. (2019). Review of thiamine deficiency disorders: Wernicke encephalopathy and Korsakoff psychosis. Journal of Basic and Clinical Physiology and Pharmacology, 30, 153162.CrossRefGoogle Scholar
Chang, S., Zeng, L., Brouwer, I. D., Kok, F. J., & Yan, H. (2013). Effect of iron deficiency anemia in pregnancy on child mental development in rural China. Pediatrics, 131, e755–763.CrossRefGoogle ScholarPubMed
Chaplin, K., & Smith, A. P. (2011). Breakfast and snacks: Associations with cognitive failures, minor injuries, accidents, and stress. Nutrients, 3, 515528.CrossRefGoogle ScholarPubMed
Chatzi, L., Papadopoulou, E., Koutra, K., Roumeliotaki, T., Georgiou, V., Stratakis, N., & Kogevinas, M. (2012). Effect of high doses of folic acid supplementation in early pregnancy on child neurodevelopment at 18 months of age: The mother-child cohort ‘Rhea’ study in Crete, Greece. Public Health Nutrition, 15, 17281736.CrossRefGoogle ScholarPubMed
Cheatham, R. A., Roberts, S. B., & Das, S. K.(2009). Long-term effects of provided low and high glycemic load low energy diets on mood and cognition. Physiology & Behavior, 98, 374379.CrossRefGoogle ScholarPubMed
Chen, G., Li, Y., Li, X., Zhou, D., Wang, Y., Wen, X., Wang, C., Liu, X., Feng, Y., Li, B., & Li, N. (2021). Functional foods and intestinal homeostasis: The perspective of in vivo evidence. Trends in Food Science & Technology, 111, 475482.CrossRefGoogle Scholar
Chen, L. -Y., Liu, L. -K., & Hwang, A., -C. (2016). Impact of malnutrition on physical, cognitive function and mortality among older men living in veteran homes by minimum data set: A prospective cohort study in Taiwan. Journal of Nutrition, Health & Aging, 20, 4147.CrossRefGoogle ScholarPubMed
Chen, X., Liu, Z., Sachdev, P. S., Kochan, N. A., O’Leary, F., & Brodaty, H. (2021). Dietary patterns and cognitive health in older adults: Findings from the Sydney Memory and Ageing Study. Journal of Nutrition Health & Aging, 25, 255262.CrossRefGoogle ScholarPubMed
Chen, Y., & Xue, F. (2020). The impact of gestational hypothyroxinemia on the cognitive and motor development of offspring. Journal of Maternal-Fetal & Neonatal Medicine, 33, 19401945.CrossRefGoogle ScholarPubMed
Chen, Y. X, Liu, Z. R., Yu, Y., Yao, E. S., Liu, X. H., & Liu, L. (2017). Effect of recurrent severe hypoglycaemia on cognitive performance in adult patients with diabetes: A meta-analysis. Journal of Huazhong University of Science and Technology, 37, 642648.Google ScholarPubMed
Cherian, L., Wang, Y., Holland, T., Agarwal, P., Aggarwal, N., & Morris, M. C. (2020). DASH and Mediterranean-DASH intervention for neurodegenerative delay (MIND) diets are associated with fewer depressive symptoms over time. Journals of Gerontology: Series A, 76, 151156.CrossRefGoogle Scholar
Chesler, B. E. (2005). Implications of the Holocaust for eating and weight problems among survivors’ offspring: An exploratory study. European Eating Disorders Review, 13, 3847.CrossRefGoogle Scholar
Chiang, M., Natarajan, R., & Fan, X. D. (2016). Vitamin D in schizophrenia: A clinical review. Evidence-Based Mental Health, 19, 69.CrossRefGoogle ScholarPubMed
Chiovato, L., Magri, F., & Carlé, A. (2019). Hypothyroidism in context: Where we’ve been and where we’re going. Advances in Therapy, 36, S47S58.CrossRefGoogle ScholarPubMed
Chiu, C., Liu, S., & Willett, W. C. (2011). Informing food choices and health outcomes by use of dietary glycemic index. Nutritional Reviews, 69, 231242.CrossRefGoogle ScholarPubMed
Choi, I. Y., Piccio, L., Childress, P., Bollman, B., Ghosh, A., Brandhorst, S., & Longo, V. D. (2016). A diet mimicking fasting promotes regeneration and reduces autoimmunity and multiple sclerosis symptoms. Cell Reports, 15, 21362146.CrossRefGoogle ScholarPubMed
Choudhary, K. M., Mishra, A., Poroikov, V. V., & Goel, R. K. (2013). Ameliorative effect of Curcumin on seizure severity, depression like behavior, learning and memory deficit in post-pentylenetetrazole-kindled mice. European Journal of Pharmacology, 704, 3340.CrossRefGoogle ScholarPubMed
Chouet, J., Ferland, G., & Féart, C. (2015). Dietary vitamin K intake is associated with cognition and behaviour among geriatric patients: The CLIP study. Nutrients, 7, 67396750.CrossRefGoogle Scholar
Chowdhury, R., Warnakula, S., Kenutsor, S., Crows, F., Ward, H. A., Johnson, L., Franco, O. H., Butterworth, A. S., Forouhi, N. G., Thompson, S. G., Khaw, K. -T., Mozaffarian, D., Danesh, J., & Di Angelantonio, E. (2014). Association of dietary, circulating, and supplement fatty acids with coronary risk: A systematic review and meta-analysis. Annals of Internal Medicine, 160, 398406.CrossRefGoogle Scholar
Christian, P., Murray-Kolb, L. E., Khatry, S. K., Katz, J., Schaefer, B. A., Cole, P. M., & Tielsch, J. M. (2010). Prenatal micronutrient supplementation and intellectual and motor function in early school-aged children in Nepal. Journal of the American Medical Association, 304, 27162723.CrossRefGoogle ScholarPubMed
Chugh, G., Asghar, M., Patki, G., Bohat, R., Jafri, F., Allam, F., & Salim, S. (2013). A high-salt diet further impairs age-associated declines in cognitive, behavioral, and cardiovascular functions in male Fischer brown Norway rats. Journal of Nutrition, 143, 14061413.CrossRefGoogle ScholarPubMed
Clark, I., & Landolt, H. P. (2017). Coffee, caffeine, and sleep: A systematic review of epidemiological studies and randomized controlled trials. Sleep Medicine Reviews, 31, 7078.CrossRefGoogle ScholarPubMed
Clarkson, T. W., & Magos, L. (2006). The toxicology of mercury and its chemical compounds. Clinical Reviews in Toxicology, 36, 609662.Google ScholarPubMed
Cliff, J., Muquingue, H., Nhassico, D., Nzwalo, H., & Bradbury, J. H. (2011). Konzo and continuing cyanide intoxication from cassava in Mozambique. Food and Chemical Toxicology, 631635.CrossRefGoogle Scholar
Cliff, J., & Nicala, D. (1997). Long term follow-up on konzo patients. Transaction of the Royal Society of Tropical Medicine & Hygiene, 91, 447449.CrossRefGoogle ScholarPubMed
Cocco, S., Diaz, G., & Stancampiano, R. (2002). Vitamin A deficiency produces spatial learning and memory impairment in rats. Neuroscience, 115, 475482.CrossRefGoogle ScholarPubMed
Cogswell, M. E., Loria, C. M., Terry, A. L., Zhao, L., Wang, C. Y., Chen, T. C., & Appel, L. J. (2018). Estimated 24-hour urinary sodium and potassium excretion in US adults. Journal of the American Medical Association, 319, 12091220.CrossRefGoogle ScholarPubMed
Cohen, J., Gorski, M., Gruber, S., Kurdziel, L., & Rimm, E. (2016). The effect of healthy dietary consumption on executive cognitive functioning in children and adolescents: A systematic review. British Journal of Nutrition, 116, 9891000.CrossRefGoogle ScholarPubMed
Colen, C. G., & Ramey, D. M. (2014). Is breast truly best? Estimating the effects of breastfeeding on long-term child health and wellbeing in the United States using sibling comparisons. Social Science & Medicine, 109, 5565.CrossRefGoogle ScholarPubMed
Collee, J. G., & Bradley, R. (1997). BSE: A decade on – Part 2. The Lancet, 349, 715721.CrossRefGoogle ScholarPubMed
Collie, A., Maruff, P., Darby, D., & McStephen, M. (2003). The effects of practice on the cognitive test performance of neurologically normal individuals assessed at brief test-retest intervals. Journal of the International Neuropsychological Society, 9, 419428.CrossRefGoogle ScholarPubMed
Collinge, J., Whitfield, J., & McKintosh, E. (2006). Kuru in the twenty-first century – An acquired human prion disease with very long incubation periods. The Lancet, 367, 20682074.CrossRefGoogle Scholar
Collins, S. (1995). The limit of human adaptation to starvation. Nature Medicine, 1, 810814.CrossRefGoogle ScholarPubMed
Collins, S., Dash, S., Allender, S., Jacka, F., & Hoare, E. (2020). Diet and mental health during emerging adulthood: A systematic review. Emerging Adulthood, 10, 645659.CrossRefGoogle Scholar
Collins, S., Dent, N., Binns, P., Bahwere, P., Sadler, K., & Hallam, A. (2006). Management of severe acute malnutrition in children. The Lancet, 368, 19922000.CrossRefGoogle ScholarPubMed
Colman, R. J., Anderson, R. M., & Johnson, S. C. (2009). Caloric restriction delays disease onset and mortality in rhesus monkeys. Science, 325, 201204.CrossRefGoogle ScholarPubMed
Colombo, J., Carlson, S. E., Cheatham, C. L., Fitzgerald-Gustafson, K. M., Kepler, A., & Doty, T. (2011). Long-chain polyunsaturated fatty acid supplementation in infancy reduces heart rate and positively affects distribution of attention. Pediatric Research, 70, 406410.CrossRefGoogle ScholarPubMed
Colombo, J., Carlson, S. E., Cheatham, C. L., Shaddy, D. J., Kerling, E. H., Thodosoff, J. M., & Brez, C. (2013). Long-term effects of LCPUFA supplementation on childhood cognitive outcomes. American Journal of Clinical Nutrition, 98, 403412.CrossRefGoogle ScholarPubMed
Coltheart, M. (2013). How can functional neuroimaging inform cognitive theories? Perspectives on Psychological Science, 8, 98103.CrossRefGoogle ScholarPubMed
Colzato, L. S., Steenbergen, L., de Kwaadsteniet, E. W., Sellaro, R., Liepelt, R., & Hommel, B. (2013). Tryptophan promotes interpersonal trust. Psychological Science, 24, 25752577.CrossRefGoogle ScholarPubMed
Colzato, L. S., Steenbergen, L., Sellaro, R., Stock, A., Arning, L., & Beste, C. (2016). Effects of L-tyrosine on working memory and inhibitory control are determined by DRD2 genotypes: A randomized controlled trial. Cortex, 82, 217224.CrossRefGoogle ScholarPubMed
Combs, C. K. (2009). Inflammation and microglia actions in Alzheimer’s disease. Journal of Neuroimmune Pharmacology, 4, 380388.CrossRefGoogle ScholarPubMed
Conner, K. R., Pinquart, M., & Gamble, S. A. (2008). Meta-analyses of depression and substance use among individuals with alcohol use disorders. Journal of Substance Abuse Treatment, 37, 127137.CrossRefGoogle Scholar
Conner, K.R., Pinquart, M., & Gamble, S. (2009). Meta-analysis of depression and substance use among individuals with alcohol use disorders. Journal of Substance Abuse and Treatment, 37, 127137.CrossRefGoogle ScholarPubMed
Convit, A. (2005). Links between cognitive impairment in insulin resistance: An explanatory model. Neurobiology of Aging, 26, S31S35.CrossRefGoogle ScholarPubMed
Cook, C. C., Hallwood, P. H., & Thomson, A. D. (1998). B vitamin deficiency and neuropsychiatric syndromes in alcohol misuse. Alcohol & Alcoholism, 33, 317336.CrossRefGoogle ScholarPubMed
Cooke, G. E., Mullally, S., Correia, N., O’Mara, S. M., & Gibney, J. (2014). Hippocampal volume is decreased in adults with hypothyroidism. Thyroid, 24, 433440.CrossRefGoogle ScholarPubMed
Cooper, S. B., Bandelow, S., Nute, M. L., Morris, J. G., & Nevill, M. E. (2015). Breakfast glycaemic index and exercise: Combined effects of adolescents’ cognition. Physiology & Behavior, 139, 104111.CrossRefGoogle ScholarPubMed
Copeland, J., Stevenson, R. J., Gates, P., & Dillon, P. (2007). Young Australians and alcohol: The acceptability of ready-to-drink (RTD) alcoholic beverages among 12-30-year-olds. Addiction, 102, 17401746.CrossRefGoogle ScholarPubMed
Copp, R. P., Wisniewski, T., & Hentati, F. (1999). Localisation of alpha-tocopherol transfer protein in the brains of patients with ataxia with vitamin E deficiency and other oxidative stress related neurodegenerative disorders. Brain Research, 822, 8087.CrossRefGoogle ScholarPubMed
Corbit, L. (2016). Effects of obesogenic diets on learning and habitual responding. Current Opinion in Behavioral Sciences, 9, 8490.CrossRefGoogle Scholar
Cordain, L., Eaton, S. B., Sebastian, A., Mann, N., Lindeberg, S., Watkins, B. A., & Brand-Miller, J. (2005). Origins and evolution of the Western diet: Health implications for the twenty-first century. American Journal of Clinical Nutrition, 81, 341354.CrossRefGoogle Scholar
Cornu, C., Mercier, C., Ginhoux, T., Masson, S., Mouchet, J., Nony, P., & Revol, O. (2018). A double-blind placebo-controlled randomised trial of omega-3 supplementation in children with moderate ADHD symptoms. European Child & Adolescent Psychiatry, 27, 377384.CrossRefGoogle ScholarPubMed
Cova, I., Leta, V., Mariani, C., Pantoni, L., & Pomati, S. (2019). Exploring cocoa properties: Is theobromine a cognitive modulator? Psychopharmacology, 236, 561572.CrossRefGoogle ScholarPubMed
Covaci, A., Voorspoels, S., & Schepens, P. (2008). The Belgian PCB/dioxin crisis–8 years later: An overview. Environmental Toxicology & Pharmacology, 25, 164170.CrossRefGoogle ScholarPubMed
Cox, P. A., Davis, D. A. Mash, D. C., Metcalf, J. S., & Banack, S. A. (2016). Dietary exposure to an environmental toxin triggers neurofibrillary tangles and amyloid deposits in the brain. Proceedings of the Royal Society B: Biological Sciences, 283, 19.Google Scholar
Craciunescu, C. N., Brown, E. C., Mar, M. H., Albright, C. D., Nadeau, M. R., & Zeisel, S. H. (2004). Folic acid deficiency during late gestation decreases progenitor cell proliferation and increases apoptosis in fetal mouse brain. Journal of Nutrition, 134, 162166.CrossRefGoogle ScholarPubMed
Craft, S., Murphy, C., & Wemstrom, J. (1994). Glucose effects on complex memory and nonmemory tasks: The influence of age, sex, and glucoregulatory response. Psychobiology, 22, 95105.CrossRefGoogle Scholar
Craig, A., Baer, K., & Diekmann, A. (1981). The effects of lunch on sensory-perceptual functioning in man. International Archives of Occupational & Environmental Health, 49, 105114.CrossRefGoogle Scholar
Craig, A., & Richardson, E. (1989). Effects of experimental and habitual lunch-size on performance, arousal, hunger, and mood. International Archives of Occupational & Environmental Health, 61, 313319.CrossRefGoogle ScholarPubMed
Crook, W. G. (1974). Letter: An alternate method of managing the hyperactive child. Pediatrics, 54, 656.CrossRefGoogle ScholarPubMed
Cryan, J. F., O’Riordan, K. J., Sandhu, K., Peterson, V., & Dinan, T. G. (2020). The gut microbiome in neurological disorders. The Lancet Neurology, 19, 179194.CrossRefGoogle ScholarPubMed
Cuajungco, M. P., & Lees, G. J. (1997). Zinc metabolism in the brain: Relevance to human neurodegenerative disorders. Neurobiology of Disease, 4, 137169.CrossRefGoogle ScholarPubMed
Cubo, E., Rivadeneyra, J., Armesto, D., Mariscal, N., Martinez, A., Camara, R. J., & Spanish members of the European Huntington Disease Network. (2015). Relationship between nutritional status and the severity of Huntington’s disease. A Spanish multicenter dietary intake study. Journal of Huntington’s Disease, 4, 7885.Google ScholarPubMed
Cucarella, J. O., Tortajada, R. E., & Moreno, L. R. (2012). Neuropsychology and anorexia nervosa: Cognitive and radiological findings. Neurología, 27, 504510.CrossRefGoogle Scholar
Cui, X. Y., Gooch, H., & Groves, N. J. (2015). Vitamin D and the brain: Key questions for future research. Journal of Steroid Biochemistry & Molecular Biology, 148, 305309.CrossRefGoogle ScholarPubMed
Cusick, K. D., & Sayler, G. S. (2013). An overview on the marine neurotoxin, saxitoxin: Genetics, molecular targets, methods of detection, and ecological functions. Marine Drugs, 11, 9911018.CrossRefGoogle ScholarPubMed
Cutuli, D. (2017). Functional and structural benefits induced by omega-3 polyunsaturated fatty acids during aging. Current Neuropharmacology, 15, 534542.CrossRefGoogle ScholarPubMed
Czeizel, A. E., & Dudas, I. (1992). Prevention of the first occurrence of neural-tube defects by periconceptional vitamin supplementation. New England Journal of Medicine, 327, 18321835.CrossRefGoogle ScholarPubMed
D’Amour-Horvat, V., & Leyton, M. (2014). Impulsive actions and choices in laboratory animals and humans: Effects of high vs. low dopamine states produced by systemic treatments given to neurologically intact subjects. Frontiers in Behavioral Neuroscience, 8, Article 432.Google ScholarPubMed
da Costa, K. -A., Kozyreva, O. G., & Song, J. (2006). Common genetic polymorphisms affect the human requirement for the nutrient choline. FASEB Journal, 20, 13361344.CrossRefGoogle ScholarPubMed
da Rosa, M. I., Beck, W. O., & Colonetti, T. (2019). Association of vitamin D and vitamin B-12 with cognitive impairment in elderly aged 80 years or older: A cross-sectional study. Journal of Human Nutrition & Dietetics, 32, 518524.CrossRefGoogle ScholarPubMed
da Silva, T. M., Munhoz, R. P., Alvarez, C., Naliwaiko, K., Kiss, Á., Andreatini, R., & Ferraz, A. C. (2008). Depression in Parkinson’s disease: A double-blind, randomized, placebo-controlled pilot study of omega-3 fatty-acid supplementation. Journal of Affective Disorders, 111, 351359.CrossRefGoogle ScholarPubMed
Dang, J. (2016). Testing the role of glucose in self-control: A meta-analysis. Appetite, 107, 222230.CrossRefGoogle ScholarPubMed
Danzer, S. C., Kotloski, R. J., Walter, C., Hughes, M., & McNamara, J. O. (2008). Altered morphology of hippocampal dentate granule cell presynaptic and postsynaptic terminals following conditional deletion of TrkB. Hippocampus, 18, 668678.CrossRefGoogle ScholarPubMed
Davidson, T. L., Chan, K., Jarrard, L. E., Kanoski, S. E., Clegg, D. J., & Benoit, S. C. (2009). Contributions of the hippocampus and medial prefrontal cortex to energy and body weight regulation. Hippocampus, 19, 235252.CrossRefGoogle ScholarPubMed
Davidson, T. L., Hargrave, S. L., Swithers, S. E., Sample, C. H., Fu, X., Kinzig, K. P., & Zheng, W. (2013). Inter-relationships among diet, obesity and hippocampal-dependent cognitive function. Neuroscience, 253, 110122.CrossRefGoogle ScholarPubMed
Davidson, T. L., & Jarrard, L. E. (1993). A role for hippocampus in the utilization of hunger signals. Behavioral & Neural biology, 59, 167171.CrossRefGoogle ScholarPubMed
Davidson, T. L., Monnot, A., Neal, A. U., Martin, A. A., Horton, J. J., & Zheng, W. (2012). The effects of a high-energy diet on hippocampal-dependent discrimination performance and blood-brain barrier integrity differ for diet-induced obese and diet-resistant rats. Physiology & Behavior, 107, 2633.CrossRefGoogle ScholarPubMed
Davis, C. (2017). A commentary on the associations among ‘food addiction’, binge eating disorder, and obesity: Overlapping conditions with idiosyncratic clinical features. Appetite, 115, 38.CrossRefGoogle ScholarPubMed
Davis, C., Patte, J., Levitan, R., Reid, C., Tweed, S., & Curtis, C. (2007). From motivation to behavior: A model of reward sensitivity, overeating, and food preferences in the risk profile for obesity. Appetite, 48, 1219.CrossRefGoogle Scholar
Davis, T. Z., Lee, S. T., & Collett, M. G. (2015). Toxicity of white snakeroot (Ageratina altissima) and chemical extracts of white snakeroot in goats. Journal of Agricultural & Food Chemistry, 63, 20922097.CrossRefGoogle ScholarPubMed
de Benoist, B., Andersson, M., Takkouche, B., & Egli, I. (2003). Prevalence of iodine deficiency worldwide. The Lancet, 362, 18591860.CrossRefGoogle ScholarPubMed
de Cabo, R., & Mattson, M. P. (2019). Effects of intermittent fasting on health, aging, and disease. New England Journal of Medicine, 381, 25412551.CrossRefGoogle ScholarPubMed
de Escobar, G. M., Obregon, M. J., & del Rey, F. E. (2004a). Maternal thyroid hormones early in pregnancy and fetal brain development. Best Practice and Research Clinical Endocrinology & Metabolism, 18, 225248.CrossRefGoogle ScholarPubMed
de Escobar, G. M., Obregon, M. J., & del Rey, F. E. (2004b). Role of thyroid hormone during early brain development. European Journal of Endocrinology, 151, U25U37.CrossRefGoogle Scholar
De Filippis, F., Pellegrini, N., Vannini, L., Jeffery, I. B., La Storia, A., Laghi, L., & Lazzi, C. (2016). High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut, 65, 18121821.CrossRefGoogle ScholarPubMed
de Jager, C. A., Dye, L., de Bruin, E. A., Butler, L., Fletcher, J., Lamport, D. J., Latulippe, M. E., Spencer, P. E., & Wesnes, K. (2014). Criteria for validation and selection of cognitive tests for investigation and the effects of food and nutrients. Nutrition Reviews, 72, 162179.CrossRefGoogle Scholar
de la Torre, R., de Sola, S., Hernandez, G., Farre, M., Pujol, J., & Rodriguez, J. (2016). Safety and efficacy of cognitive training plus epigallocatechin-3-gallate in young adults with Down’s syndrome (TESDAD): A double-blind, randomised, placebo-controlled, phase 2 trial. The Lancet Neurology, 15, 801810.CrossRefGoogle ScholarPubMed
De Lau, L., Bornebroek, M., Witteman, J., Hofman, A., Koudstaal, P., & Breteler, M. (2005). Dietary fatty acids and the risk of Parkinson disease: The Rotterdam study. Neurology, 64, 20402045.CrossRefGoogle ScholarPubMed
de Oliveira Alves, A., Bortalto, T., & Filho, F. B. (2017). Pellagra. Journal of Emergency Medicine, 54, 238240.CrossRefGoogle ScholarPubMed
de Paula, J., Farah, A. (2019). Caffeine consumption through coffee: Content in the beverage, metabolism, health benefits and risks. Beverages, 5, 37.CrossRefGoogle Scholar
Defeyter, M. A., & Russo, R. (2013). The effect of breakfast cereal consumption on adolescents’ cognitive performance and mood. Frontiers in Human Neuroscience, 7, 789.CrossRefGoogle ScholarPubMed
Deijen, J. B., van der Beck, E. J., Orlebeke, J. F., & van den Berg, H. (1992). Vitamin B-6 supplementation in elderly men: Effects on mood, memory, performance and mental effort. Psychopharmacology, 109, 489496.CrossRefGoogle ScholarPubMed
Deitrich, R., Zimatkin, S., & Pronko, S. (2006). Oxidation of ethanol in the brain and its consequences. Alcohol, Research & Health, 29, 266273.Google ScholarPubMed
Dekker, L. H., Boer, J. M., Stricker, M. D., Busschers, W. B., Snijder, M. B., Nicolaou, M., & Verschuren, W. M. (2013). Dietary patterns within a population are more reproducible than those of individuals. Journal of Nutrition, 143, 17281735.CrossRefGoogle ScholarPubMed
Del Parigi, A., Gautier, J. -F., & Chen, K. (2002). Mapping the brain responses to hunger and satiation in humans using positron emission tomography. Annals of the New York Academy of Sciences, 967, 387397.Google ScholarPubMed
Delange, F. (1994). The disorders induced by iodine deficiency. Thyroid, 4, 107128.CrossRefGoogle ScholarPubMed
Delcourt, N., Claudepierre, T., Maignien, T., Arnich, N., & Mattei, C. (2018). Cellular and molecular aspects of the β-N-methylamino-L-alanine (BMAA) mode of action within the neurodegenerative pathway: Facts of controversy. Toxins, 10, 115.Google Scholar
Deng-Bryant, Y., Prins, M. L., Hovda, D. A., & Harris, N. G. (2011). Ketogenic diet prevents alterations in brain metabolism in young but not adult rats after traumatic brain injury. Journal of Neurotrauma, 28, 18131825.CrossRefGoogle Scholar
DeNinno, M. P. (1998). Chapter 11: Adenosine. Annual Reports in Medicinal Chemistry, 33, 111120.CrossRefGoogle Scholar
Deoni, S. C. L., Dean, D. C., Piryatinsky, I., O’Muircheartaigh, J., Waskiewicz, N., Lehman, K., & Dirks, H. (2013). Breastfeeding and early white matter development: A cross-sectional study. Neuroimage, 82, 7786.CrossRefGoogle ScholarPubMed
Der, G., Batty, G. D., & Deary, I. J. (2006). Effect of breast feeding on. intelligence in children: Prospective study, sibling pairs analysis, and meta-analysis. British Medical Journal, 333, 945948a.CrossRefGoogle ScholarPubMed
Derr, R. L., Ye, X., Islas, M. U., Desideri, S., Saudek, C. D., & Grossman, S. A. (2009). Association between hyperglycemia and survival in patients with newly diagnosed glioblastoma. Journal of Clinical Oncology, 27, 10821086.CrossRefGoogle ScholarPubMed
Desrumaux, C. M., Mansuy, M., & Lemaire, S. (2018). Brain vitamin E deficiency during development is associated with increased glutamate levels and anxiety in adult mice. Frontiers in Behavioral Neuroscience, 12, 310.CrossRefGoogle ScholarPubMed
Dettling, A., Grass, H., & Schuff, A. (2004). Absinthe: Attention performance and mood under the influence of thujone. Journal of Studies on Alcohol, 65, 573581.CrossRefGoogle ScholarPubMed
Devathasan, G., & Koh, C. (1982). Wernicke’s encephalopathy in prolonged fasting. The Lancet, 2, 11081109.CrossRefGoogle ScholarPubMed
Devkota, S., Wang, Y., Musch, M. W., Leone, V., Fehlner-Peach, H., Nadimpalli, A., & Chang, E. B. (2012). Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10-/- mice. Nature, 487, 104108.CrossRefGoogle ScholarPubMed
Devore, E. E., Kang, J. H., Breteler, M. M. B., & Grodstein, F. (2012). Dietary intakes of berries and flavonoids in relation to cognitive decline. Annals of Neurology, 72, 135143.CrossRefGoogle ScholarPubMed
Devore, E. E., Stampfer, M. J., Breteler, M. M., Rosner, B., Kang, J. H., Okereke, O., & Grodstein, F. (2009). Dietary fat intake and cognitive decline in women with type 2 diabetes. Diabetes Care, 32, 635640.CrossRefGoogle ScholarPubMed
Dhir, S., Tarasenko, M., Napoli, E., & Giulivi, C. (2019). Neurological, psychiatric, and biochemical aspects of thiamine deficiency in children and adults. Frontiers in Psychiatry, 10, 207.CrossRefGoogle ScholarPubMed
Dias, G. P., Cavegn, N., Nix, A., do Nascimento Bevilaqua, M. C., Stangl, D., Zainuddin, M. S., & Thuret, S. (2012). The role of dietary polyphenols on adult hippocampal neurogenesis: Molecular mechanisms and behavioural effects on depression and anxiety. Oxidative Medicine & Cellular Longevity, 2012, 541971.CrossRefGoogle ScholarPubMed
Dick, D. M., & Beirut, L. J. (2006). The genetics of alcohol dependence. Current Psychiatry Reports, 8, 151157.CrossRefGoogle ScholarPubMed
Dick, D. M., Smith, G., Olausson, P., Mitchell, S. H., Leeman, R. F., O’Malley, S. S., & Sher, K. (2010). Understanding the construct of impulsivity and its relationship to alcohol use disorders. Addiction Biology, 15, 217226.CrossRefGoogle ScholarPubMed
Dickey, R. W., & Plakas, S. M. (2010). Ciguatera: A public health perspective. Toxicon, 56, 123136.CrossRefGoogle ScholarPubMed
Diethelm, K., Remer, T., Jilani, H., Kunz, C., & Buyken, A. E. (2011). Associations between the macronutrient composition of the evening meal and average daily sleep duration in early childhood. Clinical Nutrition, 30, 640646.CrossRefGoogle ScholarPubMed
Dietler, M. (2006). Alcohol: Anthropological/archaeological perspectives. Annual Review of Anthropology, 35, 229249.CrossRefGoogle Scholar
Dinan, T. G., Stanton, C., Long-Smith, C., Kennedy, P., Cryan, J. F., Cowan, C. S., & Sanz, Y. (2019). Feeding melancholic microbes: MyNewGut recommendations on diet and mood. Clinical Nutrition, 38, 19952001.CrossRefGoogle ScholarPubMed
Dinh, Q. N., Drummond, G. R., Sobey, C. G., & Chrissobolis, S. (2014). Roles of inflammation, oxidative stress, and vascular dysfunction in hypertension. Biomedical Research International, Article 406960.CrossRefGoogle Scholar
Dixit, S., Bernardo, A., & Walker, J. M. (2015). Vitamin C deficiency in the brain impairs cognition, increases amyloid accumulation and deposition, and oxidative stress in APP/PSEN1 and normally aging mice. ACS Chemical Neuroscience, 6, 570581.CrossRefGoogle ScholarPubMed
Dobo, M., & Czeizel, A. E. (1998). Long-term somatic and mental development of children after periconceptional multivitamin supplementation. European Journal of Pediatrics, 157, 719723.Google ScholarPubMed
Dobrovolny, J., Smrcka, M., & Bienertova-Vasku, J. (2018). Therapeutic potential of vitamin E and its derivatives in traumatic brain injury-associated dementia. Neurological Sciences, 39, 989998.CrossRefGoogle ScholarPubMed
Dolan, L. C., Matulka, R. A., & Burdock, G. A. (2010). Naturally occurring food toxins. Toxins, 2, 22892332.Google ScholarPubMed
Donald, K. A., Eastman, E., Howells, F. M., Adnams, C., Riley, E. P., Woods, R. P., Narr, R. L., & Stein, D. J. (2015). Neuroimaging effects of prenatal alcohol exposure on the developing brain: A magnetic resonance imaging review. Acta Neuropsychiatrica, 27, 251269.CrossRefGoogle Scholar
Doniger, G. M., Simon, E. S., & Zivotofsky, A. Z. (2006). Comprehensive computerised assessment of cognitive sequelae of a complete 12–16 hour fast. Behavioral Neuroscience, 120, 804816.CrossRefGoogle ScholarPubMed
Donoso, F., Egerton, S., Bastiaanssen, T. F., Fitzgerald, P., Gite, S., Fouhy, F., & Cryan, J. F. (2020). Polyphenols selectively reverse early-life stress-induced behavioural, neurochemical and microbiota changes in the rat. Psychoneuroendocrinology, 116, 104673.CrossRefGoogle ScholarPubMed
Dooling, E. C., Schoene, W. C., & Richardson, E. P. (1974). Hallervorden-Spatz syndrome. Archives of Neurology, 30, 7083.CrossRefGoogle ScholarPubMed
Doweiko, H. E. (2009). Concepts of Chemical Dependency. Belmont, CA: Brooks/Cole.Google Scholar
Dowjat, W. K., Adayev, T., Kuchna, I., Nowicki, K., Palminiello, S., Hwang, Y. W., & Wegiel, J. (2007). Trisomy-driven overexpression of DYRK1A kinase in the brain of subjects with Down syndrome. Neuroscience Letters, 413, 7781.CrossRefGoogle ScholarPubMed
Drenick, E. J., Swendseid, M. E., Blahd, W. H., & Tuttle, S. G. (1964). Prolonged starvation as treatment for severe obesity. Journal of the American Medical Association, 187, 100105.Google ScholarPubMed
Drewnowski, A., & Rehm, C. D. (2014). Consumption of added sugars among US children and adults by food purchase location and food source. American Journal of Clinical Nutrition, 100, 901907.CrossRefGoogle ScholarPubMed
Driver, H. S., Shulman, I., Baker, F. C., & Buffenstein, R. (1999). Energy content of the evening meal alters nocturnal body temperature but not sleep. Physiology & Behavior, 68, 1723.CrossRefGoogle Scholar
Drover, J. R., Felius, J., Hoffman, D. R., Castaneda, Y. S., Garfield, S., Wheaton, D. H., & Birch, E. E. (2012). A randomized trial of DHA intake during infancy: School readiness and receptive vocabulary at 2–3.5 years of age. Early Human Development, 88, 885891.CrossRefGoogle ScholarPubMed
Duclos, M., Bouchet, M., Vettier, A., & Richard, D. (2005). Genetic differences in hypothalamic-pituitary-adrenal axis activity and food restriction-induced hyperactivity in three inbred strains of rats. Journal of Neuroendocrinology, 17, 740752.CrossRefGoogle ScholarPubMed
Duke, A. A., Bégue, L., Bell, R., & Eisenlohr-Moul, T. (2013). Revisiting the serotonin-aggression relation in humans: A meta-analysis. Psychological Bulletin, 139, 11481172.CrossRefGoogle ScholarPubMed
Dumetz, F., Buré, C., & Alfos, S.(2020). Normalization of hippocampal retinoic acid level corrects age-related memory deficits in rats. Neurobiology of Aging, 85, 110.CrossRefGoogle ScholarPubMed
Duncan, G. G., Jenson, W. K., Fraser, R. I., & Cristofori, F. C. (1962). Correction and control of intractable obesity. Journal of the American Medical Association, 181, 309312.CrossRefGoogle ScholarPubMed
Duvanel, C. B., Fawer, C. L., Cotting, J., Hohlfeld, P., & Matthieu, J. M. (1999). Long-term effects of neonatal hypoglycemia on brain growth and psychomotor development in small-for-gestational-age preterm infants. Journal of Pediatrics, 134, 492498.CrossRefGoogle ScholarPubMed
Dyall, S. C. (2015). Long-chain omega-3 fatty acids and the brain: A review of the independent and shared effects of EPA, DPA, and DHA. Frontiers in Aging Neuroscience, 7, 52.CrossRefGoogle Scholar
Dye, L., Boyle, N. B., Champ, C., & Lawton, C. (2017). The relationship between obesity and cognitive health and decline. Proceedings of the Nutrition Society, 76, 443454.CrossRefGoogle ScholarPubMed
East, P., Delker, E., Lozoff, B., Delva, J., Castillo, M., & Gahagan, S. (2018). Associations among infant iron deficiency, childhood emotion and attention regulation, and adolescent problem behaviors. Child Development, 89, 593608.CrossRefGoogle ScholarPubMed
East, P., Lozoff, B., Blanco, E., Delker, E., Delva, J., Encina, P., & Gahagan, S. (2017). Infant iron deficiency, child affect, and maternal unresponsiveness: Testing the long-term effects of functional isolation. Developmental Psychology, 53, 22332244.CrossRefGoogle ScholarPubMed
Eckardt, M. J., File, S. E., Gessa, G. L., Grant, K. A., Guerri, C., Hoffman, P. L., Kalant, H., Koob, G. F., Li, T. -K., & Tabakoff, B. (1998). Effects of moderate alcohol consumption on the central nervous system. Alcoholism: Clinical and Experimental Research, 22, 9981040.CrossRefGoogle ScholarPubMed
Eckert, E. D., Gottesman, I. J., Swigart, S. E., & Casper, R. C. (2018). A 57-year follow-up investigation and review of the Minnesota study on human starvation and its relevance to eating disorders. Archives of Psychology, 2, 119.Google Scholar
Edefonti, V., Bravi, F., & Ferraroni, M. (2017). Breakfast and behaviour in morning tasks: Facts or fads? Journal of Affective Disorders, 224, 1626.CrossRefGoogle ScholarPubMed
Edefonti, V., Rosato, V., & Parpinel, M. (2014). The effect of breakfast composition and energy contribution on cognitive and academic performance: A systematic review. American Journal of Clinical Nutrition, 100, 626656.CrossRefGoogle ScholarPubMed
Edington, J., & Kon, P. (1997). Prevalence of malnutrition in the community. Nutrition, 13, 238240.CrossRefGoogle ScholarPubMed
Edlow, A. (2017). Maternal obesity and neurodevelopmental and psychiatric disorders in offspring. Prenatal Diagnosis, 37, 95110.CrossRefGoogle ScholarPubMed
Edwards, L. M., Murray, A. J., Holloway, C. J., Carter, E. E., Kemp, G. J., Codreanu, I., & Clarke, K. (2011). Short-term consumption of a high-fat diet impairs whole-body efficiency and cognitive function in sedentary men. FASEB Journal, 25, 10881096.CrossRefGoogle ScholarPubMed
Eilander, A., Gera, T., Sacdev, H., Transler, C., van der Knaap, H., Kok, F., & Osendarp, S. (2010). Multiple micronutrient supplementation for improving cognitive performance in children: Systematic review of randomized controlled trials. American Journal of Clinical Nutrition, 91, 115130.CrossRefGoogle ScholarPubMed
Ekino, S., Susa, M., Ninomiya, T., Imamura, K., & Kitamura, T. (2007). Minamata disease revisited: An update on the acute and chronic manifestations of methyl mercury poisoning. Journal of the Neurological Sciences, 262, 131144.CrossRefGoogle ScholarPubMed
Elgen, I., Sommerfelt, K., & Ellertsen, B. (2003). Cognitive performance in a low birth weight cohort at 5 and 11 years of age. Pediatric Neurology, 29, 111116.CrossRefGoogle Scholar
El-Rashidy, O., El-Baz, F., El-Gendy, Y., Khalaf, R., Reda, D., & Saad, K. (2017). Ketogenic diet versus gluten free casein free diet in autistic children: A case-control study. Metabolic Brain Disease, 32, 19351941.CrossRefGoogle ScholarPubMed
Ely, A. V., Winter, S., & Lowe, M. R. (2013). The generation and inhibition of hedonically-driven food intake: Behavioral and neurophysiological determinants in healthy weight individuals. Physiology & Behavior, 121, 2534. pCrossRefGoogle ScholarPubMed
Erol, A., & Karpyak, V. M. (2015). Sex and gender-related differences in alcohol use and its consequences: Contemporary knowledge and future research considerations. Drug & Alcohol Dependence, 156, 113.CrossRefGoogle ScholarPubMed
Eschleman, M. M. (1996). Introductory Nutrition and Nutrition Therapy. Philadelphia, PA: Lippincott-Raven Publishers.Google Scholar
Escudero-Lourdes, C. (2016). Toxicity mechanisms of arsenic that are shared with neurodegenerative diseases and cognitive impairment: Role of oxidative stress and inflammatory responses. NeuroToxicology, 53, 223235.CrossRefGoogle ScholarPubMed
Esgate, A., Groome, D., & Baker, K. (2005). An Introduction to Applied Cognitive Psychology. Madrid, ESP: Psychology Press.Google Scholar
Estruch, R. (2010). Anti-inflammatory effects of the Mediterranean diet: The experience of the PREDIMED study. Proceedings of the Nutrition Society, 69, 333340.CrossRefGoogle ScholarPubMed
Estruch, R., Ros, E., Salas-Salvado, J., Covas, M. I., Corella, D., & Aros, F.(2018). Primary prevention of cardiovascular disease with a Mediterranean diet supplemented with extra-virgin olive oil or nuts. New England Journal of Medicine, 378, e34.CrossRefGoogle ScholarPubMed
European Food Safety Authority. (2010). Scientific opinion on dietary reference values for fats, including saturated fatty acids, polyunsaturated fatty acids, monounsaturated fatty acids, trans fatty acids, and cholesterol. EFSA Journal, 8, 1461.Google Scholar
Evangeliou, A., Vlachonikolis, I., Mihailidou, H., Spilioti, M., Skarpalezou, A., Makaronas, N., & Smeitink, J. (2003). Application of a ketogenic diet in children with autistic behavior: Pilot study. Journal of Child Neurology, 18, 113118.CrossRefGoogle ScholarPubMed
Eveleigh, E. R., Coneyworth, L. J., Avery, A., & Welham, S. J. M. (2020). Vegans, vegetarian, and omnivores: How does dietary choice influence iodine intake? A systematic review. Nutrients, 12, 1606.Google ScholarPubMed
Evenhouse, E., & Reilly, S. (2005). Improved estimates of the benefits of breastfeeding using sibling comparisons to reduce selection bias. Health Services Research, 40, 17811802.CrossRefGoogle ScholarPubMed
Exley, C. (2017). Aluminum should now be considered a primary etiological factor in Alzheimer’s disease. Journal of Alzheimer’s Disease Reports, 1, 2325.CrossRef