Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-23T15:49:21.306Z Has data issue: false hasContentIssue false

1 - Introduction

Co-constructing Culture, Mind, and Brain

Published online by Cambridge University Press:  18 September 2020

Laurence J. Kirmayer
Affiliation:
McGill University, Montréal
Carol M. Worthman
Affiliation:
Emory University, Atlanta
Shinobu Kitayama
Affiliation:
University of Michigan, Ann Arbor
Robert Lemelson
Affiliation:
University of California, Los Angeles
Constance A. Cummings
Affiliation:
The Foundation for Psychocultural Research
Get access

Summary

In this introductory chapter, we outline some conceptual building blocks for an ecosocial view of the co-construction of mind, brain, and culture. The brain is the organ of culture; mind and experience are processes located in loops of active engagement of brain and body with the social world. This engagement occurs on multiple time scales, from evolution and co-evolutionary adaptation to humanly designed niches, through the cultural history of populations and communities, to individual developmental trajectories, narratives of the self, and moment-to-moment engagements with social contexts. We are born biologically equipped to acquire culture and, across our lifespan, we become attuned to particular social and cultural environments. The niches we inhabit are cooperatively constructed and presented to us as cultural affordances that enable our cognitive capacities, sense of self, adaptive skills, and meaning-making capacity. The rewiring of brain circuits, synaptic plasticity, and underlying changes in gene regulation only make sense in relation to the particular resources, affordances, and adaptive tasks presented to us by specific cultural environments. Answering the question of what makes us human then turns out to involve not just an evolutionary story in deep time, but also cultural and individual stories in historical, developmental, and biographical time.

Type
Chapter
Information
Culture, Mind, and Brain
Emerging Concepts, Models, and Applications
, pp. 1 - 50
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allis, C. D., & Jenuwein, T. (2016). The molecular hallmarks of epigenetic control. Nature Reviews Genetics, 17(8), 487500. https://doi.org/10.1038/nrg.2016.59Google Scholar
Anderson, M. L. (2014). After phrenology: Neural reuse and the interactive brain. MIT Press.Google Scholar
Aplin, L. M., Farine, D. R., Morand-Ferron, J., Cockburn, A., Thornton, A., & Sheldon, B. C. (2015). Experimentally induced innovations lead to persistent culture via conformity in wild birds. Nature, 518(7540), 538–41. https://doi.org/10.1038/nature13998Google Scholar
Ashby, W. R. (1952). Design for a brain: The origin of adaptive behaviour. Chapman & Hall.Google Scholar
Babiloni, F., & Astolfi, L. (2014). Social neuroscience and hyperscanning techniques: Past, present and futureNeuroscience & Biobehavioral Reviews44, 7693. https://doi.org/10.1016/j.neubiorev.2012.07.006CrossRefGoogle ScholarPubMed
Badcock, P. B., Friston, K. J., & Ramstead, M. J. D. (2019). The hierarchically mechanistic mind: A free-energy formulation of the human psyche. Physics of Life Reviews. Advance online publication. https://doi.org/10.1016/j.plrev.2018.10.002CrossRefGoogle Scholar
Badcock, P. B., Friston, K. J., Ramstead, M. J. D., Ploeger, A., & Hohwy, J. (2019). The hierarchically mechanistic mind: An evolutionary systems theory of the human brain, cognition, and behavior. Cognitive, Affective, & Behavioral Neuroscience. Advance online publication. https://doi.org/10.3758/s13415–019-00721-3Google Scholar
Baldwin, J. M. (1896). A new factor in evolution. The American Naturalist, 30(354), 441–51. www.jstor.org/stable/2453130Google Scholar
Bargh, J. A., Gollwitzer, P. M., Lee-Chai, A., Barndolla, K., & Trötschel, R. (2001). The automated will: Nonconscious activation and pursuit of behavioral goals. Journal of Personality and Social Psychology, 81(6), 1014–27. https://doi.org/10.1037/0022-3514.81.6.1014CrossRefGoogle ScholarPubMed
Barsalou, L. W. (2010). Grounded cognition: Past, present, and futureTopics in Cognitive Science2(4), 716–24. https://doi.org/10.1111/j.1756-8765.2010.01115.xGoogle Scholar
Bateson, G. (1972). Steps to an ecology of mind. Ballantine Books.Google Scholar
Bateson, M. C. (1991). Our own metaphor: A personal account of a conference on the effects of conscious purpose on human adaptation. Smithsonian Institution Press.Google Scholar
Belsky, J., & Pluess, M. (2009). Beyond diathesis stress: Differential susceptibility to environmental influences. Psychological Bulletin, 135(6), 885908. https://doi.org/10.1037/a0017376Google Scholar
Bengio, Y. (2014). Evolving culture versus local minima. In Kowaliw, T., Bredeche, N., & Doursat, R. (Eds.), Growing adaptive machines (pp. 109–38). Springer-Verlag. https://doi.org/10.1007/978-3-642-55337-0_3Google Scholar
Bennett, M. R., & Hacker, P. M. S. (2008). History of cognitive neuroscience. Blackwell.Google Scholar
Benvenuto, J., Woolford, A., & Hinton, A. L., (Eds.). (2014). Colonial genocide in Indigenous North America. Duke University Press. https://doi.org/10.1215/9780822376149Google Scholar
Bilek, E., Ruf, M., Schäfer, A., Akdeniz, C., Calhoun, V. D., Schmahl, C., Demanuele, C., Tost, H., Kirsch, P., & Meyer-Lindenberg, A. (2015). Information flow between interacting human brains: Identification, validation, and relationship to social expertiseProceedings of the National Academy of Sciences of the United States of America112(16), 5207–12. https://doi.org/10.1073/pnas.1421831112Google ScholarPubMed
Black, J. (2015). The Atlantic slave trade in world history. Routledge.Google Scholar
Bonner, J. T. (1983). The evolution of culture in animals. Princeton University Press.Google Scholar
Borck, C. (2012). Toys are us: Models and metaphors in brain research. In Choudhury, S. & Slaby, J. (Eds.), Critical neuroscience: A handbook of the social and cultural contexts of neuroscience (pp. 111–33). Wiley-Blackwell. https://doi.org/10.1002/9781444343359.ch5Google Scholar
Boyce, W. T. (2019). The orchid and the dandelion: Why some children struggle and how all can thrive. Knopf.Google Scholar
Boyd, B. (2018). The evolution of stories: From mimesis to language, from fact to fictionWiley Interdisciplinary Reviews: Cognitive Science9(1), e1444. https://doi.org/10.1002/wcs.1444Google ScholarPubMed
Boyer, P., & Wertsch, J. V. (Eds.). (2009). Memory in mind and culture. Cambridge University Press. https://doi.org/10.1017/CBO9780511626999Google Scholar
Brown, T. T., & Jernigan, T. L. (2012). Brain development during the preschool years. Neuropsychology Review, 22(4), 313–33. https://doi.org/10.1007/s11065–012-9214-1Google Scholar
Bugnyar, T. (2011). Knower-guesser differentiation in ravens: Others’ viewpoints matter. Proceedings of the Royal Society B: Biological Sciences, 278(1705), 634–40. https://doi.org/10.1098/rspb.2010.1514Google Scholar
Burke, P. (2009). Cultural hybridity. Polity Press.Google Scholar
Burke, P. (2019). What is cultural history? (3rd ed.). Polity Press.Google Scholar
Caldji, C., Diorio, J., & Meaney, M. J. (2000). Variations in maternal care in infancy regulate the development of stress reactivity. Biological Psychiatry, 48(12), 1164–74. https://doi.org/10.1016/S0006–3223(00)01084-2Google Scholar
Catala, A., Mang, B., Wallis, L., & Huber, L. (2017). Dogs demonstrate perspective taking based on geometrical gaze following in a Guesser-Knower task. Animal Cognition, 20(4), 581–89. https://doi.org/10.1007/s10071–017-1082-xGoogle Scholar
Cavalli-Sforza, L. L., Menozzi, P., & Piazza, A. (1994). The history and geography of human genes. Princeton University Press.Google Scholar
Champagne, F. A. (2018). Social and behavioral epigenetics: Evolving perspectives on nature-nurture interplay, plasticity, and inheritance. In Meloni, M., Cromby, J., Fitzgerald, D., & Lloyd, S. (Eds.), The Palgrave handbook of biology and society (pp. 227–50). Palgrave Macmillan. https://doi.org/10.1057/978-1-137-52879-7_10Google Scholar
Champagne, F., & Meaney, M. J. (2001). Like mother, like daughter: Evidence for non-genomic transmission of parental behavior and stress responsivity. In Russell, J. A., Douglas, A. J., Windle, R. J., & Ingram, C. D. (Eds.), Progress in brain research. The maternal brain. (Vol. 133, pp. 287302). Elsevier. https://doi.org/10.1016/S0079–6123(01)33022-4Google Scholar
Chartrand, T. L., Maddux, W. W., & Lakin, J. L. (2005). Beyond the perception-behavior link: The ubiquitous utility and motivational moderators of nonconscious mimicry. In Hassin, R. R., Uleman, J. S., & Bargh, J. A. (Eds.), Oxford series in social cognition and social neuroscience. The new unconscious (pp. 334–61). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780195307696.003.0014Google Scholar
Chemero, A. (2011). Radical embodied cognitive science. MIT Press.Google Scholar
Chen, Q., Yan, W., & Duan, E.-K. (2016). Epigenetic inheritance of acquired traits through sperm RNAs and sperm RNA modifications. Nature Reviews Genetics, 17(12), 733–43. https://doi.org/10.1038/nrg.2016.106Google Scholar
Choudhury, S., & Slaby, J. (Eds.). (2012). Critical neuroscience: A handbook of the social and cultural contexts of neuroscience. Wiley-Blackwell.Google Scholar
Churchland, P. M. (1984). Matter and consciousness. MIT Press.Google Scholar
Churchland, P. M. (1989). A neurocomputational perspective: The nature of mind and the structure of science. MIT Press.Google Scholar
Clark, A. (2008). Supersizing the mind: Embodiment, action, and cognitive extension. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780195333213.001.0001Google Scholar
Clark, A. (2015). Surfing uncertainty: Prediction, action, and the embodied mind. Oxford University Press.Google Scholar
Clauset, A., Moore, C., & Newman, M. E. J. (2008). Hierarchical structure and the prediction of missing links in networks. Nature, 453, 98–101. https://doi.org/10.1038/nature06830Google Scholar
Coan, J. A., Schaefer, H. S., & Davidson, R. J. (2006). Lending a hand: Social regulation of the neural response to threatPsychological Science, 17(12), 1032–9. https://doi.org/10.1111/j.1467-9280.2006.01832.xGoogle Scholar
Collin, G., & van den Heuvel, M. P. (2013). The ontogeny of the human connectome: Development and dynamic changes of brain connectivity across the life spanThe Neuroscientist19(6), 616–28. https://doi.org/10.1177/1073858413503712Google Scholar
Constant, A., Ramstead, M. J. D., Veissière, S. P. L., Campbell, J. O., & Friston, K. J. (2018). A variational approach to niche construction. Journal of the Royal Society Interface, 15(141), 20170685. https://doi.org/10.1098/rsif.2017.0685Google Scholar
Constant, A., Ramstead, M. J. D., Veissière, S. P., & Friston, K. (2019). Regimes of expectations: An active inference model of social conformity and decision making. Frontiers in Psychology, 10, 679. https://doi.org/10.3389%2Ffpsyg.2019.00679Google Scholar
Costello, E. J., Worthman, C., Erkanli, A., & Angold, A. (2007). Prediction from low birth weight to female adolescent depression: A test of competing hypotheses. Archives of General Psychiatry, 64, 338–44. https://doi.org/10.1001/archpsyc.64.3.338Google Scholar
Damasio, A. (1995).  Descartes’ error: Emotion, reason, and the human brain. Avon.Google Scholar
Damasio, A. (2018). The strange order of things: Life, feeling, and the making of cultures. Pantheon.Google Scholar
Danziger, K. (2009). Marking the mind: A history of memory. Cambridge University Press.Google Scholar
Davidson, E. H. (2006). The regulatory genome: Gene regulatory networks in development and evolution. Academic Press.Google Scholar
Dehaene, S. (2009). Reading in the brain: The new science of how we read. Penguin.Google Scholar
Dennett, D. C. (1991). Consciousness explained. Little, Brown and Company.Google Scholar
Descartes, R. (1989). Passions of the soul. Hackett Publishing. (Original work published 1649)Google Scholar
Doidge, N. (2007). The brain that changes itself: Stories of personal triumph from the frontiers of brain science. Viking Penguin.Google Scholar
Draganski, B., Gaser, C., Busch, V., Schuierer, G., Bogdahn, U., & May, A. (2004). Neuroplasticity: Changes in grey matter induced by training. Nature, 427(6972), 311–2. https://doi.org/10.1038/427311aGoogle Scholar
Dudley, R. (2014). The drunken monkey: Why we drink and abuse alcohol. University of California Press.Google Scholar
Dunbar, R. (2016). Human evolution: Our brains and behavior. Oxford University Press.Google Scholar
Dunbar, R. I. M. (1998). The social brain hypothesis. Evolutionary Anthropology, 6(5), 178–90. https://doi.org/10.1080/03014460902960289Google Scholar
Dunbar, R. I. M. (2008). Cognitive constraints on the structure and dynamics of social networks. Group Dynamics: Theory, Research, and Practice, 12(1), 716. https://doi.org/10.1037/1089-2699.12.1.7Google Scholar
Dunbar, R. I. M., & Shultz, S. (2017). Why are there so many explanations for primate brain evolution? Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1727), 20160244. https://doi.org/10.1098/rstb.2016.0244Google Scholar
Durt, C., Fuchs, T., & Tewes, C., (Eds.). (2017). Embodiment, enaction, and culture: Investigating the constitution of the shared world. MIT Press. https://doi.org/10.7551/mitpress/9780262035552.001.0001Google Scholar
Edelman, G. M. (1987). Neural Darwinism: The theory of neuronal group selection. Basic Books.Google Scholar
Edenberg, H. J. (2007). The genetics of alcohol metabolism: Role of alcohol dehydrogenase and aldehyde dehydrogenase variantsAlcohol Research & Health30(1), 513. www.ncbi.nlm.nih.gov/pmc/articles/PMC3860432/Google Scholar
Eisenberger, N. I., Taylor, S. E., Gable, S. L., Hilmert, C. J., & Lieberman, M. D. (2007). Neural pathways link social support to attenuated neuroendocrine stress responses. NeuroImage, 35(4), 1601–12. https://doi.org/10.1016%2Fj.neuroimage.2007.01.038Google Scholar
Ellis, B. J., Figueredo, A. J., Brumbach, B. H., & Schlomer, G. L. (2009). Fundamental dimensions of environmental risk: The impact of harsh versus unpredictable environments on the evolution and development of life history strategies. Human Nature, 20(2), 204–68. https://doi.org/10.1007/s12110–009-9063-7Google Scholar
Feinberg, T. E., & Mallatt, J. M. (2016). The ancient origins of consciousness: How the brain created experience. MIT Press.Google Scholar
Fivush, R., & Haden, C. A. (Eds.). (2003). Autobiographical memory and the construction of a narrative self: Developmental and cultural perspectives. Lawrence Erlbaum.Google Scholar
Freeman, M. (2015). Rewriting the self: History, memory, narrative. Routledge.Google Scholar
Friston, K. (2010). The free-energy principle: A unified brain theory? Nature Reviews Neuroscience11(2), 127–38. https://doi.org/10.1038/nrn2787Google Scholar
Fuchs, T. (2017). Ecology of the brain: The phenomenology and biology of the embodied mind. Oxford University Press.Google Scholar
Gallagher, S. (2006). How the body shapes the mind. Clarendon Press.Google Scholar
Gallagher, S. (2017). Enactivist interventions: Rethinking the mind. Oxford University Press.Google Scholar
Gettler, L. T., McDade, T. W., Bragg, J. M., Feranil, A. B., & Kuzawa, C. W. (2015). Developmental energetics, sibling death, and parental instability as predictors of maturational tempo and life history scheduling in males from Cebu, Philippines. American Journal of Physical Anthropology, 158(2), 175–84. https://doi.org/10.1002/ajpa.22783Google Scholar
Gibbs, R. W. Jr. (2005). Embodiment and cognitive science. Cambridge University Press.Google Scholar
Gilovich, T. (1990). Differential construal and the false consensus effectJournal of Personality and Social Psychology59(4), 623–34. https://doi.org/10.1037/0022-3514.59.4.623Google Scholar
González-Forero, M., & Gardner, A. (2018). Inference of ecological and social drivers of human brain-size evolution. Nature, 557(7706), 554–7. https://doi.org/10.1038/s41586–018-0127-xGoogle Scholar
Gottlieb, G. (1991). Experiential canalization of behavioral development: Results. Developmental Psychology, 27(1), 35–9. https://doi.org/10.1037/0012-1649.27.1.35Google Scholar
Gottlieb, G. (1998). Normally occurring environmental and behavioral influences on gene activity: From central dogma to probabilistic epigenesis. Psychological Review, 105(4), 792802. https://doi.org/10.1037/0033-295X.105.4.792-802Google Scholar
Gottlieb, G. (2007). Probabilistic epigenesisDevelopmental Science10(1), 111. https://doi.org/10.1111/j.1467-7687.2007.00556.xGoogle Scholar
Gravlee, C. C. (2009). How race becomes biology: Embodiment of social inequalityAmerican Journal of Physical Anthropology139(1), 4757. https://doi.org/10.1002/ajpa.20983Google Scholar
Griffiths, P., & Stotz, K. (2013). Genetics and philosophy: An introduction. Cambridge University Press. https://doi.org/10.1017/CBO9780511744082Google Scholar
Hacking, I. (1999). The social construction of what? Harvard University Press.Google Scholar
Hacking, I. (2002). Historical ontology. Harvard University Press.Google Scholar
Hahn, J. D., Sporns, O., Watts, A. G., & Swanson, L. W. (2019). Macroscale intrinsic network architecture of the hypothalamusProceedings of the National Academy of Sciences of the United States of America116(16), 8018–27. https://doi.org/10.1073/pnas.1819448116Google Scholar
Hamilton, J. P., Farmer, M., Fogelman, P., & Gotlib, I. H. (2015). Depressive rumination, the default-mode network, and the dark matter of clinical neuroscience. Biological Psychiatry, 78(4), 224–30. https://doi.org/10.1016/j.biopsych.2015.02.020Google Scholar
Harkness, S., & Super, C. M. (1994). The developmental niche: A theoretical framework for analyzing the household production of health. Social Science & Medicine, 38(2), 218–26. https://doi.org/10.1016/0277-9536(94)90391-3CrossRefGoogle ScholarPubMed
Hatfield, G. (2007). The passions of the soul and Descartes’s machine psychology. Studies in History and Philosophy of Science Part A, 38(1), 1–35.Google Scholar
Heine, S. J., Lehman, D. R., Markus, H. R., & Kitayama, S. (1999). Is there a universal need for positive self-regard? Psychological Review106(4), 766–94. https://doi.org/10.1037/0033-295X.106.4.766Google Scholar
Helfman, G. S., & Schultz, E. T. (1984). Social transmission of behavioural traditions in a coral-reef fish. Animal Behaviour, 32(2), 379–84. https://doi.org/10.1016/s0003–3472(84)80272-9Google Scholar
Henrich, J. (2015). The secret of our success: How culture is driving human evolution, domesticating our species, and making us smarter. Princeton University Press.Google Scholar
Hertzman, C., & Boyce, T. (2010). How experience gets under the skin to create gradients in developmental health. Annual Review of Public Health, 31, 329–47 3p following 347. https://doi.org/10.1146/annurev.publhealth.012809.103538Google Scholar
Heyes, C. (2015). Animal mindreading: What’s the problem? Psychonomic Bulletin & Review, 22(2), 313–27. https://doi.org/10.3758/s13423–014-0704-4Google Scholar
Heyes, C. (2018). Cognitive gadgets: The cultural evolution of thinking. Harvard University Press.Google Scholar
Hillman, C. H., Erickson, K. I., & Kramer, A. F. (2008). Be smart, exercise your heart: Exercise effects on brain and cognition. Nature Reviews Neuroscience, 9(1), 5865. https://doi.org/10.1038/nrn2298Google Scholar
Hirata, S., Watanabe, K., & Kawai, M. (2001). “Sweet-potato washing” revisited. In Matsuzawa, T. (Ed.), Primate origins of human cognition and behavior (pp. 487508). Springer-Verlag. https://doi.org/10.1007/978-4-431-09423-4_24Google Scholar
Hirsch, J., Zhang, X., Noah, J. A., & Ono, Y. (2017). Frontal temporal and parietal systems synchronize within and across brains during live eye-to-eye contact. NeuroImage157, 314–30. https://doi.org/10.1016/j.neuroimage.2017.06.018Google Scholar
Hohwy, J. (2013). The predictive mind. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199682737.001.0001Google Scholar
Hong, Y. Y., Morris, M., Chiu, C. Y., & Benet-Martínez, V. (2000). Multicultural minds: A dynamic constructivist approach to culture and cognition. American Psychologist, 55 (7), 709–20. https://doi.org/10.1037/0003-066X.55.7.709Google Scholar
Hrdy, S. B. (2009). Mothers and others: The evolutionary origins of mutual understanding. Harvard University Press.Google Scholar
Hutto, D. D. (2012). Folk psychological narratives: The sociocultural basis of understanding reasons. MIT Press.Google Scholar
Hutto, D. D., & Myin, E. (2012). Radicalizing enactivism: Basic minds without content. MIT Press.Google Scholar
Hutto, D. D., & Myin, E. (2017). Evolving enactivism: Basic minds meet content. MIT Press.Google Scholar
Hyde, L. (1998). Trickster makes this world: Mischief, myth, and art. Farrar, Straus and Giroux.Google Scholar
Jablonka, E. (2013). Epigenetic inheritance and plasticity: The responsive germline. Progress in Biophysics and Molecular Biology, 111(2–3), 99107. https://doi.org/10.1016/j.pbiomolbio.2012.08.014Google Scholar
Jablonka, E., & Lamb, M. J. (2006). Evolution in four dimensions: Genetic, epigenetic, behavioral, and symbolic variation in the history of life. MIT Press.Google Scholar
Jablonka, E., & Raz, G. (2009). Transgenerational epigenetic inheritance: Prevalence, mechanisms, and implications for the study of heredity and evolution. Quarterly Review of Biology, 84(2), 131–76. https://doi.org/10.1086/598822Google Scholar
Kaiser, M., Hilgetag, C. C., & Kötter, R. (2010). Hierarchy and dynamics of neural networks. Frontiers in Neuroinformatics, 4, 112. https://doi.org/10.3389%2Ffninf.2010.00112Google Scholar
Kaplan, H., Hill, K., Lancaster, J., & Hurtado, A. M. (2000). A theory of human life history evolution: Diet, intelligence, and longevity. Evolutionary Anthropology, 9(4), 156–85. https://doi.org/10.1002/1520-6505(2000)9:4<156::aid-evan5>3.0.co;2-7Google Scholar
Kimel, S. Y., Grossman, I., & Kitayama, S. (2012). When gift-giving produces dissonance: Effects of subliminal affiliation priming on choices for one’s self versus others. Journal of Experimental Social Psychology, 48(5), 1221–4. https://doi.org/10.1016/j.jesp.2012.05.012Google Scholar
Kimel, S. Y., Grossman, I., & Kitayama, S. (2017). When gift-giving produces dissonance: Effects of subliminal affiliation priming on choices for one’s self versus others [Corrigendum]. Journal of Experimental Social Psychology, 71, 153. https://doi.org/10.1016/j.jesp.2017.02.002Google Scholar
Kinreich, S., Djalovski, A., Kraus, L., Louzoun, Y., & Feldman, R. (2017). Brain-to-brain synchrony during naturalistic social interactionsScientific Reports7(1), 17060. https://doi.org/10.1038/s41598–017-17339-5Google Scholar
Kirmayer, L. J., Gone, J. P., & Moses, J. (2014). Rethinking historical trauma. Transcultural Psychiatry, 51(3), 299319. https://doi.org/10.1177%2F1363461514536358Google Scholar
Kitayama, S., King, A., Hsu, M., Liberzon, I., & Yoon, C. (2016). Dopamine-system genes and cultural acquisition: The norm sensitivity hypothesis. Current Opinion in Psychology, 8, 167–74. https://doi.org/10.1016/j.copsyc.2015.11.006Google Scholar
Kitayama, S., King, A., Yoon, C., Tompson, S., Huff, S., & Liberzon, I. (2014). The dopamine D4 receptor gene (DRD4) moderates cultural difference in independent versus interdependent social orientation. Psychological Science, 25(6), 1169–77. https://doi.org/10.1177/0956797614528338Google Scholar
Kitayama, S., & Uskul, A. K. (2011). Culture, mind, and the brain: Current evidence and future directionsAnnual Review of Psychology62, 419–49. https://doi.org/10.1146/annurev-psych-120709-145357Google Scholar
Kitayama, S., Varnum, M. E. W., & Salvador, C. (2019). Cultural neuroscience. In Cohen, D. & Kitayama, S. (Eds.), The handbook of cultural psychology (2nd ed., pp. 79118). Guilford Press.Google Scholar
Klemm, S. L., Shipony, Z., & Greenleaf, W. J. (2019). Chromatin accessibility and the regulatory epigenome. Nature Reviews Genetics, 20(4), 207–20. https://doi.org/10.1038/s41576–018-0089-8Google Scholar
Kohrt, B. A., Jordans, M. J. D., Koirala, S., & Worthman, C. M. (2015). Designing mental health interventions informed by child development and human biology theory: A social ecology intervention for child soldiers in Nepal. America Journal of Human Biology, 27(1), 2740. https://doi.org/10.1002/ajhb.22651Google Scholar
Kolodny, O., Edelman, S., & Lotem, A. (2015). Evolution of protolinguistic abilities as a by-product of learning to forage in structured environments. Proceedings of the Royal Society B: Biological Sciences, 282(1811), 20150353. https://doi.org/10.1098/rspb.2015.0353Google Scholar
Konner, M. (2010). The evolution of childhood: Relationships, emotion, mind. Belknap Press.Google Scholar
Konner, M. J. (2002). The tangled wing: Biological constraints on the human spirit (2nd ed.). Henry Holt.Google Scholar
Krupenye, C., Kano, F., Hirata, S., Call, J., & Tomasello, M. (2016). Great apes anticipate that other individuals will act according to false beliefs. Science, 354(6308), 110–14. https://doi.org/10.1126/science.aaf8110Google Scholar
Kühnen, U., & Oyserman, D. (2002). Thinking about the self influences thinking in general: Cognitive consequences of salient self-concept. Journal of Experimental Social Psychology, 38(5), 492–9.Google Scholar
Kuzawa, C. W., & Bragg, J. M. (2012). Plasticity in human life history strategy: Implications for contemporary human variation and the evolution of genus Homo. Current Anthropology, 53(S6), S369S382. https://doi.org/10.1086/667410CrossRefGoogle Scholar
Kuzawa, C. W., Chugani, H. T., Grossman, L. I., Lipovich, L., Muzik, O., Hof, P. R., Wildman, D. E., Sherwood, C. C., Leonard, W. R., & Lange, N. (2014). Metabolic costs and evolutionary implications of human brain development. Proceedings of the National Academy of Sciences of the United States of America, 111(36), 13010–15. https://doi.org/10.1073/pnas.1323099111Google Scholar
Kuzawa, C. W., & Thayer, Z. M. (2011). Timescales of human adaptation: The role of epigenetic processes. Epigenomics, 3(2), 221–34. https://doi.org/10.2217/epi.11.11Google Scholar
Kwon, H., & Sasaki, J. Y. (2019). Gene–Culture Interactions: Toward an Explanatory Framework. Cambridge University Press.Google Scholar
Lakin, J. L., & Chartrand, T. L. (2003). Using unconscious behavioral mimicry to create affiliation and rapport. Psychological Science, 14(4), 334–9. https://doi.org/10.1111/1467-9280.14481Google Scholar
Lakoff, G. (2012). Explaining embodied cognition resultsTopics in Cognitive Science4(4), 773–85. https://doi.org/10.1111/j.1756-8765.2012.01222.xGoogle Scholar
Lakoff, G., & Johnson, M. (1980). Metaphors we live by. University of Chicago Press.Google Scholar
Laland, K. N. (2017). Darwin’s unfinished symphony: How culture made the human mind. Princeton University Press.Google Scholar
Laland, K., Matthews, B., & Feldman, M. W. (2016). An introduction to niche construction theory. Evolutionary Ecology, 30(2), 191202. https://doi.org/10.1007/s10682–016-9821-zGoogle Scholar
Laland, K. N., Odling-Smee, J., & Myles, S. (2010). How culture shaped the human genome: Bringing genetics and the human sciences togetherNature Reviews Genetics11(2), 137–48. https://doi.org/10.1038/nrg2734Google Scholar
Laland, K. N., Uller, T., Fellman, M. W., Sterelny, K., Müller, G. B., Moczek, A., Jablonka, E., & Odling-Smee, J. (2015). The extended evolutionary synthesis: Its structure, assumptions and predictions. Proceedings of the Royal Society B: Biological Sciences, 282(1813), 20151019. https://doi.org/10.1098/rspb.2015.1019Google Scholar
Laland, K., Uller, T., Feldman, M., Sterelny, K., Müller, G. B., Moczek, A., Jablonka, E., Odling-Smee, J., Wray, G. A., Hoekstra, H. E., Futuyma, D. J., Lenski, R. E., Mackay, T. F. C., Schluter, D., & Strassman, J. E. (2014). Does evolutionary theory need a rethink? Nature, 514(7521), 161–4. https://doi.org/10.1038/514161aGoogle Scholar
Lansing, J. S., & Fox, K. M. (2011). Niche construction on Bali: The gods of the countrysidePhilosophical Transactions of the Royal Society B: Biological Sciences366(1566), 927–34. https://doi.org/10.1098/rstb.2010.0308Google Scholar
Lifshitz, M., Sheiner, E., & Kirmayer, L. J. (2018). Cultural neurophenomenology of psychedelic thought: Guiding the “unconstrained” mind through ritual context. In Christoff, K. & Fox, K. C. R. (Eds.), The Oxford handbook of spontaneous thought: Mind-wandering, creativity, and dreaming (pp. 573–94). Oxford University Press. https://doi.org/10.1093/oxfordhb/9780190464745.013.4Google Scholar
Lock, M., & Palsson, G. (2016). Can science resolve the nature/nurture debate? Polity Press.Google Scholar
Ma, Y., Bang, D., Wang, C., Allen, M., Frith, C., Roepstorff, A., & Han, S. (2014). Sociocultural patterning of neural activity during self-reflection. Social Cognitive and Affective Neuroscience, 9(1), 7380. https://doi.org/10.1093/scan/nss103Google Scholar
Maguire, E. A., Woollett, K., & Spiers, H. J. (2006). London taxi drivers and bus drivers: A structural MRI and neuropsychological analysis. Hippocampus, 16(12), 10911101. https://doi.org/10.1002/hipo.20233Google Scholar
Markus, H. R., & Kitayama, S. (1991). Culture and the self: Implications for cognition, emotion, and motivation. Psychological Review, 98(2), 224–53. https://doi.org/10.1037/0033-295X.98.2.224Google Scholar
Martin, K. C., Bartsch, D., Bailey, C. H., Kandel, E. R., Lynch, G., Levine, E. S., McEwen, B. S., Katz, L. C., Weliky, M., Crowley, J. C., Zhou, R., Black, I. B., Kaas, J. H., & Recanzone, G. H. (2000). Plasticity. In Gazzaniga, M. S. (Ed.), The new cognitive neurosciences (2nd ed., pp. 121247). MIT Press.Google Scholar
McAdams, D. P. (2019). “First we invented stories, then they changed us”: The evolution of narrative identityEvolutionary Studies in Imaginative Culture3(1), 118. https://www.jstor.org/stable/10.26613/esic.3.1.110CrossRefGoogle Scholar
McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activityBulletin of Mathematical Biophysics5(4), 115–33. https://doi.org/10.1007/BF02478259Google Scholar
McDade, T. W., Ryan, C., Jones, M. J., MacIsaac, J. L., Morin, A. M., Meyer, J. M., Borja, J. B., Miller, G. E., Kobor, M.S., & Kuzawa, C. W. (2017). Social and physical environments early in development predict DNA methylation of inflammatory genes in young adulthood. Proceedings of the National Academy of Sciences of the United States of America, 114(29), 7611–16. https://doi.org/10.1073/pnas.1620661114Google Scholar
McGowan, P. O., Sasaki, A., D’Alessio, A. C., Dymov, S., Labonté, B., Szyf, M., Turecki, G., & Meaney, M. J. (2009). Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nature Neuroscience, 12(3), 342–8. https://doi.org/10.1038/nn.2270Google Scholar
Merabet, L. B., & Pascual-Leone, A. (2010). Neural reorganization following sensory loss: The opportunity of change. Nature Reviews Neuroscience, 11(1), 4452. https://doi.org/10.1038/nrn2758Google Scholar
Merzenich, M. M., Nahum, M., & Van Vleet, T. M. (2013). Introduction. In Merzenich, M. M., Nahum, M., & Van Vleet, T. M. (Eds.), Progress in brain research. Changing brains: Applying brain plasticity to advance and recover human ability (Vol. 207, pp. xxixxvi). Elsevier. https://doi.org/10.1016/B978–0-444-63327-9.10000-1Google Scholar
Muehsam, D., Lutgendorf, S., Mills, P. J., Rickhi, B., Chevalier, G., Bat, N., Chopra, D., & Gurfein, B. (2017). The embodied mind: A review on functional genomic and neurological correlates of mind-body therapies. Neuroscience & Biobehavioral Reviews, 73, 165–81. https://doi.org/10.1016/j.neubiorev.2016.12.027Google Scholar
Nelson, E. E., Jarcho, J. M., & Guyer, A. E. (2016). Social re-orientation and brain development: An expanded and updated view. Developmental Cognitive Neuroscience, 17, 118–27. https://doi.org/10.1016/j.dcn.2015.12.008Google Scholar
Newen, A., de Bruin, L., & Gallagher, S. (Eds.). (2018). The Oxford handbook of 4E cognition. Oxford University Press.Google Scholar
Niedenthal, P. M., Rychlowska, M., Zhao, F., & Wood, A. (2019). Historical migration patterns shape contemporary cultures of emotionPerspectives on Psychological Science, 14(4), 560–73. https://doi.org/10.1177/1745691619849591Google Scholar
Niezen, R. (2003). The origins of indigenism: Human rights and the politics of identity. University of California Press.Google Scholar
Nisbett, R. E., Peng, K., Choi, I., & Norenzayan, A. (2001). Culture and systems of thought: Holistic versus analytic cognition. Psychological Review, 108(2), 291310. https://doi.org/10.1037/0033-295X.108.2.291Google Scholar
Noë, A. (2004). Action in perception. MIT Press.Google Scholar
O’Brien, E., & Ellsworth, P. C. (2012). More than skin deep: Visceral states are not projected onto dissimilar others. Psychological Science, 23(4), 391–6. https://doi.org/10.1177/0956797611432179Google Scholar
Odling-Smee, F. J., Laland, K. N., & Feldman, M. W. (2003). Niche construction: The neglected process in evolution. Princeton University Press. http://www.jstor.org/stable/j.ctt24hqpdGoogle Scholar
Over, H., & Uskul, A. K. (2016). Culture moderates children’s responses to ostracism situations. Journal of Personality and Social Psychology, 110(5), 710–24. https://doi.org/10.1037/pspi0000050Google Scholar
Oyserman, D., & Lee, S. W. S. (2008). Does culture influence what and how we think? Effects of priming individualism and collectivism. Psychological Bulletin, 134, 311–42. https://doi.org/10.1037/0033-2909.134.2.311Google Scholar
Oyserman, D., Novin, S., Flinkenflögel, N., & Krabbendam, L. (2014). Integrating culture-as-situated-cognition and neuroscience prediction modelsCulture and Brain2(1), 126. https://doi.org/10.1007/s40167–014-0016-6Google Scholar
Oyserman, D., Sorensen, N., Reber, R., & Chen, S. X. (2009). Connecting and separating mind-sets: Culture as situated cognition. Journal of Personality and Social Psychology, 97(2), 217–35. https://doi.org/10.1037/a0015850Google Scholar
Park, H.-J., & Friston, K. (2013). Structural and functional brain networks: From connections to cognition. Science, 342(6158), 1238411. https://doi.org/10.1126/science.1238411Google Scholar
Pavlov, I. P. (1928). Lectures on conditioned reflexes: Twenty-five years of objective study of the higher nervous activity (behaviour) of animals (Gantt, W. H., Trans.). Liverwright Publishing Corporation. https://doi.org/10.1037/11081-000Google Scholar
Peng, Y., Shi, H., Qi, X.-b., Xiao, C.-j., Zhong, H., Ma, R.-l. Z., & Su, B. (2010). The ADH1B Arg47His polymorphism in East Asian populations and expansion of rice domestication in history. BMC Evolutionary Biology, 10(1), 15. https://doi.org/10.1186/1471-2148-10-15CrossRefGoogle ScholarPubMed
Pickering, A. (2010). The cybernetic brain: Sketches of another future. University of Chicago Press.Google Scholar
Pinker, S. (2010). The cognitive niche: Coevolution of intelligence, sociality, and languageProceedings of the National Academy of Sciences of the United States of America107(Supplement 2), 8993–9. https://doi.org/10.1073/pnas.0914630107Google Scholar
Potts, R. (1998). Environmental hypotheses of hominin evolution. American Journal of Physical Anthropology, 107(S27), 93136.Google Scholar
Potts, R., & Faith, J. T. (2015). Alternating high and low climate variability: The context of natural selection and speciation in Plio-Pleistocene hominin evolution. Journal of Human Evolution, 87, 520. https://doi.org/10.1016/j.jhevol.2015.06.014Google Scholar
Ramón y Cajal, S. (1909). Histologie du système nerveux de l’homme et des vertébrés. Maloine.Google Scholar
Ramstead, M. J. D., Veissière, S. P. L., & Kirmayer, L. J. (2016). Cultural affordances: Scaffolding local worlds through shared intentionality and regimes of attention. Frontiers in Psychology, 7, 1090. https://doi.org/10.3389%2Ffpsyg.2016.01090Google Scholar
Ren, D., Wesselmann, E. D., & Williams, K. D. (2013). Interdependent self-construal moderates coping with (but not the initial pain of) ostracism. Asian Journal of Social Psychology, 16, 320–6. https://doi.org/10.1111/ajsp.12037Google Scholar
Rendell, L., & Whitehead, H. (2001). Culture in whales and dolphins. Behavioral and Brain Sciences, 24(2), 309–24. https://doi.org/10.1017/s0140525x0100396xGoogle Scholar
Richerson, P. J., & Boyd, R. (2005). Not by genes alone: How culture transformed human evolution. University of Chicago Press.Google Scholar
Rilling, J. K., Glasser, M. F., Preuss, T. M., Ma, X., Zhao, T., Hu, X., & Behrens, T. E. J. (2008). The evolution of the arcuate fasciculus revealed with comparative DTI. Nature Neuroscience, 11(4), 426–8. https://doi.org/10.1038/nn2072Google Scholar
Roepstorff, A., & Frith, C. (2004). What’s at the top in the top-down control of action? Script-sharing and ‘top-top’ control of action in cognitive experimentsPsychological Research68(2–3), 189–98. https://doi.org/10.1007/s00426–003-0155-4Google Scholar
Rose, N., & Abi-Rached, J. M. (2013). Neuro: The new brain sciences and the management of the mind. Princeton University Press.Google Scholar
Ross, L., Greene, D., & House, P. (1977). The “false consensus effect”: An egocentric bias in social perception and attribution processes. Journal of Experimental Social Psychology, 13(3), 279301. https://doi.org/10.1016/0022-1031(77)90049-XGoogle Scholar
Ross, L., & Nisbett, R. E. (1991). The person and the situation: Perspectives of social psychology. McGraw-Hill.Google Scholar
Ruben, R. J. (1997). A time frame of critical/sensitive periods of language development. Acta Oto-Laryngologica, 117(2), 202–5. https://doi.org/10.3109/00016489709117769Google Scholar
Saito, D. N., Tanabe, H. C., Izuma, K., Hayashi, M. J., Morito, Y., Komeda, H., Uchiyama, H., Kosaka, H., Okazawa, H., Fujibayashi, Y., & Sadato, N. (2010). “Stay tuned”: Inter-individual neural synchronization during mutual gaze and joint attentionFrontiers in Integrative Neuroscience4, 127. https://doi.org/10.3389/fnint.2010.00127Google Scholar
Schechtman, M. (1996). The constitution of selves. Cornell University Press.Google Scholar
Schulz, K. M., & Sisk, C. L. (2016). The organizing actions of adolescent gonadal steroid hormones on brain and behavioral development. Neuroscience & Biobehavioral Reviews, 70, 148–58. https://doi.org/10.1016/j.neubiorev.2016.07.036Google Scholar
Schwartz, J. H. (Ed.). (2018). Rethinking human evolution. MIT Press.Google Scholar
Sechenov, I. M. (1965). Reflexes of the brain by I. Sechenov (Belsky, S., Trans.). Koshtoyants, K. (Ed., Russian) & Gibbons, G. (Ed., English). MIT Press. (original work published 1863)Google Scholar
Seligman, R., Choudhury, S., & Kirmayer, L. J. (2015). Locating culture in the brain and in the world: From social categories to the ecology of mind. In Chiao, J. Y., Li, S.-C., Seligman, R., & Turner, R. (Eds.), The Oxford handbook of cultural neuroscience (pp. 320). Oxford University Press. https://doi.org/10.1093/oxfordhb/9780199357376.013.3Google Scholar
Sherrington, C. S. (1906). The integrative action of the central nervous system. Yale University Press.Google Scholar
Sherwood, C. C., & Gómez-Robles, A. (2017). Brain plasticity and human evolutionAnnual Review of Anthropology46, 399419. https://doi.org/10.1146/annurev-anthro-102215-100009Google Scholar
Shi, Y., & Toga, A. (2017). Connectome imaging for mapping human brain pathways. Molecular Psychiatry, 22(9), 1230–40. https://doi.org/10.1038/mp.2017.92Google Scholar
Shonkoff, J. P., & Garner, A. S.; The Committee on Psychosocial Aspects of Child and Family Health, Committee on Early Childhood, Adoption, and Dependent Care, Section on Developmental and Behavioral Pediatrics. (2012). The lifelong effects of early childhood adversity and toxic stress. Pediatrics, 129(1), e232e246. https://doi.org/10.1542/peds.2011-2663Google Scholar
Silani, G., Lamm, C., Ruff, C. C., & Singer, T. (2013). Right supramarginal gyrus is crucial to overcome emotional egocentricity bias in social judgments. Journal of Neuroscience, 33(39), 15466–76. https://doi.org/10.1523/JNEUROSCI.1488-13.2013Google Scholar
Sinclair, R. C., Hoffman, C., Mark, M. M., Martin, L. L., & Pickering, T. L. (1994). Construct accessibility and the misattribution of arousal: Schachter and Singer revisitedPsychological Science5(1), 1519. https://doi.org/10.1111%2Fj.1467-9280.1994.tb00607.xGoogle Scholar
Smith, C. A., & Ellsworth, P. C. (1985). Patterns of cognitive appraisal in emotion. Journal of Personality and Social Psychology, 48(4), 813–38. https://doi.org/10.1037/0022-3514.48.4.813Google Scholar
Sporns, O. (2011). The human connectome: A complex networkAnnals of the New York Academy of Sciences1224(1), 109–25. https://doi.org/10.1111/j.1749-6632.2010.05888.xCrossRefGoogle ScholarPubMed
Sporns, O. (2012). Discovering the human connectome. MIT Press.Google Scholar
Stearns, S. C. (1992). The evolution of life histories. Oxford University Press.Google Scholar
Stearns, S. C., & Koella, J. C. (1986). The evolution of phenotypic plasticity in life-history traits: Predictions for norms of reaction for age- and size-at-maturity. Evolution, 40(5), 893913. https://doi.org/10.1111/j.1558-5646.1986.tb00560.xGoogle Scholar
Stevenson, E. G. J., & Worthman, C. M. (2014). Child well-being: Anthropological perspectives. In Ben-Arieh, A., Casas, F., Frønes, I., & Korbin, J. E. (Eds.), Handbook of child well-being. Theories, methods and policies in global perspective (pp. 485512). Springer. https://doi.org/10.1007/978-90-481-9063-8_20Google Scholar
Talhelm, T., Zhang, X., Oishi, S., Shimin, C., Duan, D., Lan, X., & Kitayama, S. (2014). Large-scale psychological differences within China explained by rice versus wheat agriculture. Science, 344(6184), 603–8. https://doi.org/10.1126/science.1246850Google Scholar
Taylor, C. (1989). Sources of the self: The making of modern identity. Harvard University Press.Google Scholar
Taylor, C. (2016). The language animal. Harvard University Press.Google Scholar
Thompson, E. (2007). Mind in life: Biology, phenomenology, and the sciences of mind. Belknap Press.Google Scholar
Tishkoff, S. A., Reed, F. A., Ranciaro, A., Voight, B. F., Babbitt, C. C., Silverman, J. S., Powell, K., Mortensen, H. M., Hirbo, J. B., Osman, M., Ibrahim, M., Omar, S. A., Lema, G., Nyambo, T. B., Ghori, J., Bumpstead, S., Pritchard, J. K., Wray, G. A., & Deloukas, P. (2007). Convergent adaptation of human lactase persistence in Africa and Europe. Nature Genetics, 39(1), 3140. https://doi.org/10.1038/ng1946Google Scholar
Tomasello, M. (2019). Becoming human: A theory of ontogeny. Belknap Press.Google Scholar
Tomasello, M., Carpenter, M., Call, J., Behne, T., & Moll, H. (2005). Understanding and sharing intentions: The origins of cultural cognition. Behavioral and Brain Sciences, 28(5), 675–91. https://doi.org/10.1017/S0140525X05000129Google Scholar
Tomlinson, G. (2018). Culture and the course of human evolution. University of Chicago Press.Google Scholar
Tononi, G., & Cirelli, C. (2014). Sleep and the price of plasticity: From synaptic and cellular homeostasis to memory consolidation and integration. Neuron, 81(1), 1234. https://doi.org/10.1016/j.neuron.2013.12.025Google Scholar
Tsai, J. L., Knutson, B., & Fung, H. H. (2006). Cultural variation in affect valuation. Journal of Personality and Social Psychology, 90(2), 288307. https://doi.org/10.1037/0022-3514.90.2.288Google Scholar
Turecki, G., & Meaney, M. J. (2016). Effects of the social environment and stress on glucocorticoid receptor gene methylation: A systematic review. Biological Psychiatry, 79(2), 8796. https://doi.org/10.1016/j.biopsych.2014.11.022Google Scholar
Uskul, A. K., & Over, H. (2014). Responses to social exclusion in cultural context: Evidence from farming and herding communities. Journal of Personality and Social Psychology, 106(5), 752–71. https://doi.org/10.1037/a0035810Google Scholar
Vågerö, D., Pinger, P. R., Aronsson, V., & van den Berg, G. J. (2018). Paternal grandfather’s access to food predicts all-cause and cancer mortality in grandsons. Nature Communications, 9, 5124. https://doi.org/10.1038/s41467–018-07617-9Google Scholar
Van Boven, L., & Loewenstein, G. (2003). Social projection of transient drive states. Personality and Social Psychology Bulletin, 29(9), 1159–68. https://doi.org/10.1177/0146167203254597Google Scholar
van IJzendoorn, M. H., Bakermans-Kranenburg, M. J., Belsky, J., Beach, S., Brody, G., Dodge, K. A., Greenberg, M., Posner, M., & Scott, S. (2011). Gene-by-environment experiments: A new approach to finding the missing heritability. Nature Reviews Genetics, 12(12), 881. https://doi.org/10.1038/nrg2764-c1Google Scholar
van Schaik, C. P. (2016). The primate origins of human nature. John Wiley & Sons.Google Scholar
Varela, F. J., Thompson, E., & Rosch, E. (1991). The embodied mind: Cognitive science and human experience. MIT Press.Google Scholar
Veissière, S. P. L., Constant, A., Ramstead, M. J. D., Friston, K. J., & Kirmayer, L. J. (2020). Thinking through other minds: A variational approach to cognition and cultureBehavioral and Brain Sciences, 43, e90: 1–75. https://10.1017/S0140525X19001213Google Scholar
Vidal, F., & Ortega, F. (2017). Being brains: Making the cerebral subject. Fordham University Press.Google Scholar
von Neumann, J. (1958). The computer and the brain. Yale University Press.Google Scholar
Wall, T. L., Luczak, S. E., & Hiller-Sturmhöfel, S. (2016). Biology, genetics, and environment: Underlying factors influencing alcohol metabolismAlcohol Research: Current Reviews38(1), 5968. www.ncbi.nlm.nih.gov/pmc/articles/PMC4872614/Google Scholar
Wang, C., Ma, Y., & Han, S. (2014). Self-construal priming modulates pain perception: Event-related potential evidence. Cognitive Neuroscience, 5(1), 39. https://doi.org/10.1080/17588928.2013.797388Google Scholar
Watson, R. A., & Szathmáry, E. (2016). How can evolution learn? Trends in Ecology & Evolution, 31(2), 147–57. https://doi.org/10.1016/j.tree.2015.11.009Google Scholar
Weaver, I. C. G., Cervoni, N., Champagne, F. A., D’Alessio, A. C., Sharma, S., Seckl, J. R., Dymov, S., Szyf, M., & Meaney, M. J. (2004). Epigenetic programming by maternal behavior. Nature Neuroscience, 7(8), 847–54. https://doi.org/10.1038/nn1276Google Scholar
West-Eberhard, M. J. (2003). Developmental plasticity and evolution. Oxford University Press.Google Scholar
Wexler, B. E. (2006). Brain and culture: Neurobiology, ideology, and social change. MIT Press.Google Scholar
Whiten, A. (2017). A second inheritance system: The extension of biology through culture. Interface Focus, 7(5), 20160142. https://doi.org/10.1098/rsfs.2016.0142Google Scholar
Whiten, A., Goodall, J., McGrew, W. C., Nishida, T., Reynolds, V., Sugiyama, Y., Tutin, C. E. G., Wrangham, R. W., & Boesch, C. (1999). Cultures in chimpanzees. Nature, 399(6737), 682–5. https://doi.org/10.1038/21415Google Scholar
Wiener, N. (1948). Cybernetics: Or control and communication in the animal and the machine. MIT Press.Google Scholar
Wilson, D. S. (2019). This view of life: Completing the Darwinian revolution. Pantheon Books.Google Scholar
Wittgenstein, L. (1953). Philosophical investigations (Anscombe, G. E. M., Trans.). Basil Blackwell.Google Scholar
Worthman, C. M. (2009). Habits of the heart: Life history and the developmental neuroendocrinology of emotion. American Journal of Human Biology, 21(6), 772–81. https://doi.org/10.1002/ajhb.20966Google Scholar
Worthman, C. M. (2010). The ecology of human development: Evolving models for cultural psychology. Journal for Cross-Cultural Psychology, 41(4), 546–62. https://doi.org/10.1177%2F0022022110362627Google Scholar
Worthman, C. M., Plotsky, P. M., Schechter, D. S., & Cummings, C. A. (Eds.). (2010). Formative experiences: The interaction of caregiving, culture, and developmental psychobiology. Cambridge University Press.Google Scholar
Yu, Q., Abe, N., King, A., Yoon, C., Liberzon, I., & Kitayama, S. (2019). Cultural variation in the gray matter volume of the prefrontal cortex is moderated by the dopamine D4 receptor gene (DRD4). Cerebral Cortex, 29(9): 3922–31. https://doi.org/10.1093/cercor/bhy271Google Scholar
Zhang, T.-Y., Labonté, B., Wen, X. L., Turecki, G., & Meaney, M. J. (2013). Epigenetic mechanisms for the early environmental regulation of hippocampal glucocorticoid receptor gene expression in rodents and humans. Neuropsychopharmacology, 38(1), 111–23. https://doi.org/10.1038/npp.2012.149Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats