Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-19T20:04:50.021Z Has data issue: false hasContentIssue false

Part II - Applications

Introduction

Published online by Cambridge University Press:  18 September 2020

Laurence J. Kirmayer
Affiliation:
McGill University, Montréal
Carol M. Worthman
Affiliation:
Emory University, Atlanta
Shinobu Kitayama
Affiliation:
University of Michigan, Ann Arbor
Robert Lemelson
Affiliation:
University of California, Los Angeles
Constance A. Cummings
Affiliation:
The Foundation for Psychocultural Research
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Culture, Mind, and Brain
Emerging Concepts, Models, and Applications
, pp. 363 - 512
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Spector, T. D. (2013). Identically different: Why we can change our genes. Overlook Press.Google Scholar

References

Allen, M., & Tsakiris, M. (2018). The body as first prior: Interoceptive predictive processing and the primacy of self–models. In Tsakiris, M. & De Preester, H. (Eds.), The interoceptive mind: From homeostasis to awareness (pp. 2745). Oxford University Press. https://doi.org/10.1093/oso/9780198811930.003.0002Google Scholar
Barrett, L. F. (2006a). Are emotions natural kinds? Perspectives on Psychological Science, 1(1), 2858. https://doi.org/10.1111/j.1745-6916.2006.00003.xGoogle Scholar
Barrett, L. F. (2006b). Solving the emotion paradox: Categorization and the experience of emotion. Personality and Social Psychology Review, 10(1), 2046. https://doi.org/10.1207/s15327957pspr1001_2Google Scholar
Barrett, L. F. (2017). How emotions are made: The secret life of the brain. Houghton Mifflin Harcourt.Google Scholar
Boddice, R. (Ed.). (2014). Pain and emotion in modern history. Palgrave Macmillan. https://doi.org/10.1057/9781137372437Google Scholar
Boddice, R. (2016). The science of sympathy: Morality, evolution and Victorian civilization. University of Illinois Press. www.jstor.org/stable/10.5406/j.ctt1hfr069CrossRefGoogle Scholar
Boddice, R. (2018a). The history of emotions. Manchester University Press.Google Scholar
Boddice, R. (with Smail, Daniel Lord). (2018b). Neurohistory. In Tamm, M. & Burke, P. (Eds.), Debating new approaches to history (pp. 301–25). Bloomsbury.Google Scholar
Boddice, R. (2019). A history of feelings. Reaktion Books Ltd.Google Scholar
Boddice, R., & Smith, M. (2020). Emotion, sense, experience. Cambridge University Press.CrossRefGoogle Scholar
Bourke, J. (2005). Fear: A cultural history. Virago.Google Scholar
Bourke, J. (2014). The story of pain: From prayer to painkillers. Oxford University Press.Google Scholar
Burman, J. T. (2012). History from within? Contextualizing the new neurohistory and seeking its methods. History of Psychology, 15(1), 8499. https://doi.org/10.1037/a0023500Google Scholar
Cohen, E. (2009). The modulated scream: Pain in late medieval culture. University of Chicago Press.Google Scholar
Dixon, T. (2003). From passions to emotions: The creation of a secular psychological category. Cambridge University Press.Google Scholar
Eustace, N. (2008). Passion is the gale: Emotion, power, and the coming of the American Revolution. University of North Carolina Press.Google Scholar
Febvre, L. (1941). La sensibilité et l’histoire: Comment reconstituer la vie affective d’autrefois? Annales D’histoire Sociale (1939–1941), 3(1–2), 520. http://www.jstor.org/stable/27574143Google Scholar
Febvre, L. (1992). Une vue d’ensemble: Histoire et psychologie. In Toussaint, R. & Simonet, J.-M. (Eds.), Combats pour l’histoire (pp. 207–20). Armand Colin. (Original work published 1938)Google Scholar
Frevert, U. (2011). Emotions in history: Lost and found. Central European University Press. www.jstor.org/stable/10.7829/j.ctt1281z9Google Scholar
Geroulanos, S., & Meyers, T. (2018). The human body in the age of catastrophe: Brittleness, integration, science and the Great War. University of Chicago Press.Google Scholar
Gross, D. M. (2006). The secret history of emotion: From Aristotle’s rhetoric to modern brain science. University of Chicago Press.Google Scholar
Hoemann, K., Xu, F., & Barrett, L. F. (2019). Emotion words, emotion concepts, and emotional development in children: A constructionist hypothesis. Developmental Psychology, 55(9), 1830–49. https://doi.org/10.1037/dev0000686Google Scholar
Lanzoni, S. (2018). Empathy: A history. Yale University Press.Google Scholar
Leder, D. (2018). Inside insight: A phenomenology of interoception. In Tsakiris, M. & De Preester, H. (Eds.), The interoceptive mind: From homeostasis to awareness (pp. 307–22). Oxford University Press. https://doi.org/10.1093/oso/9780198811930.003.0017Google Scholar
Lock, M., & Kaufert, P. (2001). Menopause, local biologies, and cultures of aging. American Journal of Human Biology, 13(4), 494504. https://doi.org/10.1002/ajhb.1081Google Scholar
Lock, M., & Palsson, G. (2016). Can science resolve the nature/nurture debate? Polity Press.Google Scholar
McGrath, L. S. (2017). Historiography, affect, and the neurosciences. History of Psychology, 20(2), 129–47. https://doi.org/10.1037/hop0000047Google Scholar
Meloni, M. (2016). Political biology: Science and social values in human heredity from eugenics to epigenetics. Palgrave Macmillan. https://doi.org/10.1057/9781137377722Google Scholar
Moscoso, J. (2012). Pain: A cultural history (Thomas, S. & House, P., Trans.). Palgrave Macmillan. https://doi.org/10.1057/9781137284235Google Scholar
Plamper, J. (2015). The history of emotions: An introduction (Tribe, K., Trans.). Oxford University Press.Google Scholar
Reckwitz, A. (2012). Affective spaces: A praxeological outlook. Rethinking History, 16(2), 241–58. https://doi.org/10.1080/13642529.2012.681193CrossRefGoogle Scholar
Reddy, W. M. (1997). Against constructionism: The historical ethnography of emotions. Current Anthropology, 38(3), 327–51. https://doi.org/10.1086/204622Google Scholar
Reddy, W. M. (2001). The navigation of feeling: A framework for the history of emotions. Cambridge University Press.Google Scholar
Rosenwein, B. H. (2002). Worrying about emotions in history. The American Historical Review, 107(3), 821–45. https://doi.org/10.1086/ahr/107.3.821Google Scholar
Scheer, M. (2012). Are emotions a kind of practice (and is that what makes them have a history)? A Bourdieuian approach to understanding emotion. History and Theory, 51(2), 193220. https://doi.org/10.1111/j.1468-2303.2012.00621.xGoogle Scholar
Smail, D. L. (2008). On deep history and the brain. University of California Press. www.jstor.org/stable/10.1525/j.ctt1pp7mzGoogle Scholar
Smith, M. M. (2007). Sensing the past: Seeing, hearing, smelling, tasting, and touching in history. University of California Press.Google Scholar
Stearns, P. N., & Stearns, C. Z. (1985). Emotionology: Clarifying the history of emotions and emotional standards. The American Historical Review, 90(4), 813–36. https://doi.org/10.1086/ahr/90.4.813CrossRefGoogle ScholarPubMed
Sullivan, E. (2016). Beyond melancholy: Sadness and selfhood in renaissance England. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780198739654.001.0001Google Scholar
Vallgårda, K., Alexander, K., & Olsen, S. (2015). Emotions and the global politics of childhood. In Olsen, S. (Ed.), Childhood, youth and emotions in modern history: National, colonial and global perspectives (pp. 1234). Palgrave Macmillan. https://doi.org/10.1057/9781137484840_2Google Scholar
van Dijkhuizen, J. F., & Enenkel, K. A. E. (Eds.). (2009). The sense of suffering: Constructions of physical pain in early modern culture. Brill. https://doi.org/10.1163/ej.9789004172470.i-520Google Scholar
von Mohr, M., & Fotopoulou, A. (2018). The cutaneous borders of interoception: Active and social inference of pain and pleasure on the skin. In Tsakiris, M. & De Preester, H. (Eds.), The interoceptive mind: From homeostasis to awareness (pp. 102–20). Oxford University Press. https://doi.org/10.1093/oso/9780198811930.003.0006Google Scholar

References

Alvarez, P., Zola-Morgan, S., & Squire, L. R. (1995). Damage limited to the hippocampal region produces long-lasting memory impairment in monkeys. Journal of Neuroscience, 15(5 Pt 2), 3796–807. https://doi.org/10.1523/JNEUROSCI.15-05-03796.1995Google Scholar
Amico, F., Meisenzahl, E., Koutsouleris, N., Reiser, M., Möller, H. J., & Frodl, T. (2011). Structural MRI correlates for vulnerability and resilience to major depressive disorder. Journal of Psychiatry and Neuroscience, 36(1), 1522. https://doi.org/10.1503/jpn.090186Google Scholar
Andersen, N. E., Dahmani, L., Konishi, K., & Bohbot, V. D. (2012). Eye tracking, strategies, and sex differences in virtual navigation. Neurobiology of Learning and Memory, 97(1), 81–9. https://doi.org/10.1016/j.nlm.2011.09.007Google Scholar
Apostolova, L. G., Dutton, R. A., Dinov, I. D., Hayashi, K. M., Toga, A. W., Cummings, J. L., & Thompson, P. M. (2006). Conversion of mild cognitive impairment to Alzheimer disease predicted by hippocampal atrophy maps. Archives of Neurology, 63(5), 693–9. https://doi.org/10.1001/archneur.63.5.693Google Scholar
Barnes, C. A., Nadel, L., & Honig, W. K. (1980). Spatial memory deficit in senescent rats. Canadian Journal of Psychology/Revue canadienne de psychologie, 34(1), 2939. https://doi.org/10.1037/h0081022Google Scholar
Bherer, L., Kramer, A. F., Peterson, M. S., Colcombe, S., Erickson, K., & Becic, E. (2006). Testing the limits of cognitive plasticity in older adults: Application to attentional control. Acta Psychologica, 123(3), 261–78. https://doi.org/10.1016/j.actpsy.2006.01.005Google Scholar
Bohbot, V. D., Del Balso, D., Conrad, K., Konishi, K., & Leyton, M. (2013). Caudate nucleus-dependent navigational strategies are associated with increased use of addictive drugs. Hippocampus, 23(11), 973–84. https://doi.org/10.1002/hipo.22187Google Scholar
Bohbot, V. D., Iaria, G., & Petrides, M. (2004). Hippocampal function and spatial memory: Evidence from functional neuroimaging in healthy participants and performance of patients with medial temporal lobe resections. Neuropsychology, 18(3), 418–25. https://doi.org/10.1037/0894-4105.18.3.418CrossRefGoogle ScholarPubMed
Bohbot, V. D., Konishi, K., Sodums, D., Dahmani, L., & Bherer, L. (2015, October). Hippocampus and cortical plasticity following a virtual spatial memory intervention program promote spontaneous hippocampus-dependent navigation strategies in healthy older adults [Paper presentation]. Society for Neuroscience, 45th Annual Meeting, Chicago, IL, United States.Google Scholar
Bohbot, V. D., Lerch, J., Thorndycraft, B., Iaria, G., & Zijdenbos, A. P. (2007). Gray matter differences correlate with spontaneous strategies in a human virtual navigation task. Journal of Neuroscience, 27(38), 10078–83. https://doi.org/10.1523/JNEUROSCI.1763-07.2007Google Scholar
Bohbot, V. D., McKenzie, S., Konishi, K., Fouquet, C., Kurdi, V., Schachar, R., Boivin, M., & Robaey, P. (2012). Virtual navigation strategies from childhood to senescence: Evidence for changes across the life span. Frontiers in Aging Neuroscience, 4, 28. https://doi.org/10.3389/fnagi.2012.00028Google Scholar
Boyke, J., Driemeyer, J., Gaser, C., Büchel, C., & May, A. (2008). Training-induced brain structure changes in the elderly. Journal of Neuroscience, 28(28), 7031–5. https://doi.org/10.1523/JNEUROSCI.0742-08.2008Google Scholar
Chang, Q., & Gold, P. E. (2003). Switching memory systems during learning: Changes in patterns of brain acetylcholine release in the hippocampus and striatum in rats. Journal of Neuroscience, 23(7), 3001–5. https://doi.org/10.1523/JNEUROSCI.23-07-03001.2003Google Scholar
Cohen, N. J., Poldrack, R. A., & Eichenbaum, H. (1997). Memory for items and memory for relations in the procedural/declarative memory framework. Memory, 5(1–2), 131–78. https://doi.org/10.1080/741941149Google Scholar
Conejero-Goldberg, C., Gomar, J. J., Bobes-Bascaran, T., Hyde, T. M., Kleinman, J. E., Herman, M. M., Chen, S., Davies, P., & Goldberg, T. E. (2014). APOE2 enhances neuroprotection against Alzheimer’s disease through multiple molecular mechanisms. Molecular Psychiatry, 19(11), 1243–50. https://doi.org/10.1038/mp.2013.194Google Scholar
de Toledo-Morrell, L., Goncharova, I., Dickerson, B., Wilson, R.S., & Bennett, D.A. (2000). From healthy aging to early Alzheimer’s disease: In vivo detection of entorhinal cortex atrophy. Annals of the New York Academy of Sciences, 911, 240–53. https://nyaspubs.onlinelibrary.wiley.com/doi/abs/10.1111/j.1749-6632.2000.tb06730.x?sid=nlm%3ApubmedGoogle Scholar
Draganski, B., Gaser, C., Kempermann, G., Kuhn, H. G., Winkler, J., Büchel, C., & May, A. (2006). Temporal and spatial dynamics of brain structure changes during extensive learning. Journal of Neuroscience, 26(23), 6314–17. https://doi.org/10.1523/JNEUROSCI.4628-05.2006Google Scholar
Eichenbaum, H., Stewart, C., & Morris, R. G. (1990). Hippocampal representation in place learning. Journal of Neuroscience, 10(11), 3531–42. https://doi.org/10.1523/JNEUROSCI.10-11-03531.1990Google Scholar
Erickson, K. I., Voss, M. W., Prakash, R. S., Basak, C., Szabo, A., Chaddock, L., Kim, J. S., Heo, S., Alves, H., White, S. M., Wojcicki, T. R., Mailey, E., Vieira, V. J., Martin, S. A., Pence, B. D., Woods, J. A., McAuley, E., & Kramer, A. F. (2011). Exercise training increases size of hippocampus and improves memory. Proceedings of the National Academy of Sciences of the United States of America, 108(7), 3017–22. https://doi.org/10.1073/pnas.1015950108Google ScholarPubMed
Etchamendy, N., & Bohbot, V. D. (2007). Spontaneous navigational strategies and performance in the virtual town. Hippocampus, 17(8), 595–9. https://doi.org/10.1002/hipo.20303Google Scholar
Etchamendy, N., Konishi, K., Pike, G. B., Marighetto, A., & Bohbot, V. D. (2012). Evidence for a virtual human analog of a rodent relational memory task: A study of aging and fMRI in young adults. Hippocampus, 22(4), 869–80. https://doi.org/10.1002/hipo.20948Google Scholar
Filippi, M., Ceccarelli, A., Pagani, E., Gatti, R., Rossi, A., Stefanelli, L., Falini, A., Comi, G., & Rocca, M. A. (2010). Motor learning in healthy humans is associated to gray matter changes: A tensor-based morphometry study. PLoS ONE, 5(4), e10198. https://doi.org/10.1371/journal.pone.0010198Google Scholar
Gardner, R. S., Gold, P. E., & Korol, D. L. (2018, November). A multiple memory systems approach to understanding cognitive aging: Not all aging is equal [Paper presentation]. Society for Neuroscience, 48th Annual Meeting, San Diego, CA, United States.Google Scholar
Gearbox Software. (2009). Borderlands [Video game]. 2K Games. https://borderlands.com/en-US/Google Scholar
Gilbertson, M. W., Shenton, M. E., Ciszewski, A., Kasai, K., Lasko, N. B., Orr, S. P., & Pitman, R. K. (2002). Smaller hippocampal volume predicts pathologic vulnerability to psychological trauma. Nature Neuroscience, 5(11), 1242–7. https://doi.org/10.1038/nn958Google Scholar
Gould, E., Beylin, A., Tanapat, P., Reeves, A., & Shors, T. J. (1999). Learning enhances adult neurogenesis in the hippocampal formation. Nature Neuroscience, 2(3), 260–5. https://doi.org/10.1038/6365Google Scholar
Gould, E., Reeves, A. J., Fallah, M., Tanapat, P., Gross, C. G., & Fuchs, E. (1999). Hippocampal neurogenesis in adult Old World primates. Proceedings of the National Academy of Sciences of the United States of America, 96(9), 5263–7. https://doi.org/10.1073/pnas.96.9.5263Google Scholar
Haroutunian, V., Perl, D. P., Purohit, D. P., Marin, D., Khan, K., Lantz, M., Davis, K. L., & Mohs, R. C. (1998). Regional distribution of neuritic plaques in the nondemented elderly and subjects with very mild Alzheimer disease. Archives of Neurology, 55(9), 1185–91. https://jamanetwork.com/journals/jamaneurology/fullarticle/774252Google Scholar
Hartley, T., Maguire, E. A., Spiers, H. J., & Burgess, N. (2003). The well-worn route and the path less traveled: Distinct neural bases of route following and wayfinding in humans. Neuron, 37(5), 877–88. https://doi.org/10.1016/S0896-6273(03)00095-3Google Scholar
Head, D., & Isom, M. (2010). Age effects on wayfinding and route learning skills. Behavioural Brain Research, 209(1), 4958. https://doi.org/10.1016/j.bbr.2010.01.012Google Scholar
Iaria, G., Petrides, M., Dagher, A., Pike, B., & Bohbot, V. D. (2003). Cognitive strategies dependent on the hippocampus and caudate nucleus in human navigation: Variability and change with practice. Journal of Neuroscience, 23(13), 5945–52. https://doi.org/10.1523/JNEUROSCI.23-13-05945.2003Google Scholar
Infinity Ward. (2003). Call of Duty [Video game]. Activision. https://www.callofduty.com/Google Scholar
Kempermann, G., Brandon, E. P., & Gage, F. H. (1998). Environmental stimulation of 129/SvJ mice causes increased cell proliferation and neurogenesis in the adult dentate gyrus. Current Biology, 8(16), 939–42. https://doi.org/10.1016/S0960-9822(07)00377-6Google Scholar
Kempermann, G., Kuhn, H. G., & Gage, F. H. (1998). Experience-induced neurogenesis in the senescent dentate gyrus. Journal of Neuroscience, 18(9), 3206–12. https://doi.org/10.1523/JNEUROSCI.18-09-03206.1998Google Scholar
Kim, J. J., Lee, H. J., Han, J. S., & Packard, M. G. (2001). Amygdala is critical for stress-induced modulation of hippocampal long-term potentiation and learning. Journal of Neuroscience, 21(14), 5222–8. https://doi.org/10.1523/JNEUROSCI.21-14-05222.2001Google Scholar
Konishi, K., Bhat, V., Banner, H., Poirier, J., Joober, R., & Bohbot, V. D. (2016). APOE2 is associated with spatial navigational strategies and increased gray matter in the hippocampus. Frontiers in Human Neuroscience, 10, 349. https://doi.org/10.3389/fnhum.2016.00349Google Scholar
Konishi, K., & Bohbot, V. D. (2013). Spatial navigational strategies correlate with gray matter in the hippocampus of healthy older adults tested in a virtual maze. Frontiers in Aging Neuroscience, 5, 1. https://doi.org/10.3389/fnagi.2013.00001Google Scholar
Konishi, K., Etchamendy, N., Roy, S., Marighetto, A., Rajah, N., & Bohbot, V. D. (2013). Decreased functional magnetic resonance imaging activity in the hippocampus in favor of the caudate nucleus in older adults tested in a virtual navigation task. Hippocampus, 23(11), 1005–14. https://doi.org/10.1002/hipo.22181Google Scholar
Kühn, S., & Gallinat, J. (2014). Amount of lifetime video gaming is positively associated with entorhinal, hippocampal and occipital volume. Molecular Psychiatry, 19(7), 842–7. https://doi.org/10.1038/mp.2013.100Google Scholar
Kühn, S., Gleich, T., Lorenz, R. C., Lindenberger, U., & Gallinat, J. (2014). Playing Super Mario induces structural brain plasticity: Gray matter changes resulting from training with a commercial video game. Molecular Psychiatry, 19(2), 265–71. https://doi.org/10.1038/mp.2013.120Google Scholar
La Grutta, V., Sabatino, M., Gravante, G., Morici, G., Ferraro, G., & La Grutta, G. (1988). A study of caudate inhibition on an epileptic focus in the cat hippocampus. Archives Internationales de Physiologie et de Biochimie, 96(2), 113–20. https://doi.org/10.3109/13813458809079632Google Scholar
Lee, D. W., Miyasato, L. E., & Clayton, N. S. (1998). Neurobiological bases of spatial learning in the natural environment: Neurogenesis and growth in the avian and mammalian hippocampus. NeuroReport, 9(7), R15R27. https://doi.org/10.1097/00001756-199805110-00076Google Scholar
Leong, K. C., & Packard, M.G. (2014). Exposure to predator odor influences the relative use of multiple memory systems: Role of basolateral amygdala. Neurobiology of Learning and Memory, 109, 5661. www.sciencedirect.com/science/article/pii/S1074742713002438?via%3DihubGoogle Scholar
Lerch, J. P., Yiu, A. P., Martínez-Canabal, A., Pekar, T., Bohbot, V. D., Frankland, P. W., Henkelman, R. M., Josselyn, S. A., & Sled, J. G. (2011). Maze training in mice induces MRI-detectable brain shape changes specific to the type of learning. NeuroImage, 54(3), 2086–95. https://doi.org/10.1016/j.neuroimage.2010.09.086Google Scholar
Lin, S. Y., Calcott, R., Germann, J., Konishi, K., Bohbot, V. D., & Lerch, J. P. (2012, October). Decreased use of hippocampus-dependent spatial strategy in favor of caudate nucleus-dependent response strategy from childhood to adolescence [Poster presentation]. Society for Neuroscience, 42nd Annual Meeting, New Orleans, LA, United States.Google Scholar
Lupien, S. J., de Leon, M., de Santi, S., Convit, A., Tarshish, C., Nair, N. P. V., Thakur, M., McEwen, B. S., Hauger, R. L., & Meaney, M. J. (1998). Cortisol levels during human aging predict hippocampal atrophy and memory deficits. Nature Neuroscience, 1(1), 6973. https://doi.org/10.1038/271Google Scholar
Lustig, C., Shah, P., Seidler, R., & Reuter-Lorenz, P. A. (2009). Aging, training, and the brain: A review and future directions. Neuropsychology Review, 19(4), 504–22. https://doi.org/10.1007/s11065-009-9119-9Google Scholar
Maguire, E. A., Spiers, H. J., Good, C. D., Hartley, T., Frackowiak, R. S., & Burgess, N. (2003). Navigation expertise and the human hippocampus: A structural brain imaging analysis. Hippocampus, 13(2), 250–9. https://doi.org/10.1002/hipo.10087Google Scholar
McDonald, R. J., & White, N. M. (1993). A triple dissociation of memory systems: Hippocampus, amygdala, and dorsal striatum. Behavioral Neuroscience, 107(1), 322. https://doi.org/10.1037/0735-7044.107.1.3Google Scholar
Mishkin, M., & Petri, H. L. (1984). Memories and habits: Some implications for the analysis of learning and retention. In Squire, L. R. & Butters, N. (Eds.), Neuropsychology of memory (pp. 287–96). Guilford Press.Google Scholar
Nintendo. (1996). Super Mario 64 [Video game]. Nintendo.Google Scholar
O’Dwyer, L., Lamberton, F., Matura, S., Tanner, C., Scheibe, M., Miller, J., Rujescu, D., Prvulovic, D., & Hampel, H. (2012). Reduced hippocampal volume in healthy young ApoE4 carriers: An MRI study. PLoS ONE, 7(11), e48895. https://doi.org/10.1371/journal.pone.0048895Google Scholar
O’Keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map. Oxford University Press. www.cognitivemap.net/Google Scholar
Packard, M. G., Hirsh, R., & White, N. M. (1989). Differential effects of fornix and caudate nucleus lesions on two radial maze tasks: Evidence for multiple memory systems. Journal of Neuroscience, 9(5), 1465–72. https://doi.org/10.1523/JNEUROSCI.09-05-01465.1989Google Scholar
Packard, M. G., & McGaugh, J. L. (1992). Double dissociation of fornix and caudate nucleus lesions on acquisition of two water maze tasks: Further evidence for multiple memory systems. Behavioral Neuroscience, 106(3), 439–46. https://doi.org/10.1037/0735-7044.106.3.439Google Scholar
Packard, M. G., & McGaugh, J. L. (1996). Inactivation of hippocampus or caudate nucleus with lidocaine differentially affects expression of place and response learning. Neurobiology of Learning and Memory, 65(1), 6572. https://doi.org/10.1006/nlme.1996.0007Google Scholar
Pantelis, C., Velakoulis, D., McGorry, P. D., Wood, S. J., Suckling, J., Phillips, L. J., Yung, A. R., Bullmore, E. T., Brewer, W., Soulsby, B., Desmond, P., & McGuire, P. K. (2003). Neuroanatomical abnormalities before and after onset of psychosis: A cross-sectional and longitudinal MRI comparison. Lancet, 361(9354), 281–8. https://doi.org/10.1016/S0140-6736(03)12323-9Google Scholar
Pievani, M., Galluzzi, S., Thompson, P. M., Rasser, P. E., Bonetti, M., & Frisoni, G. B. (2011). APOE4 is associated with greater atrophy of the hippocampal formation in Alzheimer’s disease. NeuroImage, 55(3), 909–19. https://doi.org/10.1016/j.neuroimage.2010.12.081Google Scholar
Pinaud, R., Tremere, L. A., Penner, M. R., Hess, F. F., Robertson, H. A., & Currie, R. W. (2002). Complexity of sensory environment drives the expression of candidate-plasticity gene, nerve growth factor induced-A. Neuroscience, 112(3), 573–82. https://doi.org/10.1016/S0306-4522(02)00094-5Google Scholar
Price, J. L., & Morris, J. C. (1999). Tangles and plaques in nondemented aging and “preclinical” Alzheimer’s disease. Annals of Neurology, 45(3), 358–68. https://doi.org/10.1002/1531-8249(199903)45:3<358::AID-ANA12>3.0.CO;2-XGoogle Scholar
Sánchez-Benavides, G., Grau-Rivera, O., Suárez-Calvet, M., Minguillon, C., Cacciaglia, R., Gramunt, N.; ALFA Study, Falcon, C., Gispert, J. D., & Molinuevo, J. L. (2018). Brain and cognitive correlates of subjective cognitive decline-plus features in a population-based cohort. Alzheimer’s Research & Therapy, 10(1), 123. https://doi.org/10.1186/s13195-018-0449-9Google Scholar
Sankar, T., Li, S. X., Obuchi, T., Fasano, A., Cohn, M., Hodaie, M., Chakravarty, M. M., & Lozano, A. M. (2016). Structural brain changes following subthalamic nucleus deep brain stimulation in Parkinson’s disease. Movement Disorders, 31(9), 1423–5. https://doi.org/10.1002/mds.26707Google Scholar
Schinazi, V. R., Nardi, D., Newcombe, N. S., Shipley, T. F., & Epstein, R. A. (2013). Hippocampal size predicts rapid learning of a cognitive map in humans. Hippocampus, 23(6), 515–28. https://doi.org/10.1002/hipo.22111Google Scholar
Schwabe, L., Dalm, S., Schächinger, H., & Oitzl, M. S. (2008). Chronic stress modulates the use of spatial and stimulus-response learning strategies in mice and man. Neurobiology of Learning and Memory, 90(3), 495503. https://doi.org/10.1016/j.nlm.2008.07.015Google Scholar
Schwabe, L., Oitzl, M. S., Philippsen, C., Richter, S., Bohringer, A., Wippich, W., & Schachinger, H. (2007). Stress modulates the use of spatial versus stimulus-response learning strategies in humans. Learning & Memory, 14(1), 109–16. https://doi.org/10.1101/lm.435807Google Scholar
Shohamy, D., & Adcock, R. A. (2010). Dopamine and adaptive memory. Trends in Cognitive Sciences, 14(10), 464–72. https://doi.org/10.1016/j.tics.2010.08.002Google Scholar
Smulders, T. V., Sasson, A. D., & DeVoogd, T. J. (1995). Seasonal variation in hippocampal volume in a food-storing bird, the black-capped chickadee. Journal of Neurobiology, 27(1), 1525. https://doi.org/10.1002/neu.480270103Google Scholar
Squire, L. R., & Zola, S. M. (1996). Structure and function of declarative and nondeclarative memory systems. Proceedings of the National Academy of Sciences of the United States of America, 93(24), 13515–22. https://doi.org/10.1073/pnas.93.24.13515Google Scholar
Swan, G. E., & Lessov-Schlaggar, C. N. (2007). The effects of tobacco smoke and nicotine on cognition and the brain. Neuropsychology Review, 17(3), 259–73. https://doi.org/10.1007/s11065-007-9035-9Google Scholar
Tang, Y. Y., Lu, Q., Geng, X., Stein, E. A., Yang, Y., & Posner, M. I. (2010). Short-term meditation induces white matter changes in the anterior cingulate. Proceedings of the National Academy of Sciences of the United States of America, 107(35), 15649–52. https://doi.org/10.1073/pnas.1011043107Google Scholar
Techland. (2011). Dead Island [Video game]. Deep Silver. https://www.deepsilver.com/us/games/dead-island/Google Scholar
Tulving, E., & Markowitsch, H. J. (1998). Episodic and declarative memory: Role of the hippocampus. Hippocampus, 8(3), 198204. https://doi.org/10.1002/(SICI)1098-1063(1998)8:3<198::AID-HIPO2>3.0.CO;2-GGoogle Scholar
West, G. L., Konishi, K., Diarra, M., Benady-Chorney, J., Drisdelle, B. L., Dahmani, L., Sodums, D. J., Lepore, F., Jolicoeur, P., & Bohbot, V. D. (2018). Impact of video games on plasticity of the hippocampus. Molecular Psychiatry, 23(7), 1566–74. https://doi.org/10.1038/mp.2017.155Google Scholar
West, G. L., Zendel, B. R., Konishi, K., Benady-Chorney, J., Bohbot, V. D., Peretz, I., & Belleville, S. (2017). Playing Super Mario 64 increases hippocampal grey matter in older adults. PLoS ONE, 12(12), e0187779. https://doi.org/10.1371/journal.pone.0187779Google Scholar
Wolbers, T., Weiller, C., & Büchel, C. (2004). Neural foundations of emerging route knowledge in complex spatial environments. Cognitive Brain Research, 21(3), 401–11. https://doi.org/10.1016/j.cogbrainres.2004.06.013Google Scholar
Woollett, K., & Maguire, E. A. (2011). Acquiring “the knowledge” of London’s layout drives structural brain changes. Current Biology, 21(24), 2109–14. https://doi.org/10.1016/j.cub.2011.11.018Google Scholar

References

Battro, A. M., Fischer, K. W., & Léna, P. J. (Eds.). (2008). The educated brain: Essays in neuroeducation. Cambridge University Press. https://doi.org/10.1017/CBO9780511489907Google Scholar
Berson, J. (2015). Computable bodies: Instrumented life and the human somatic niche. Bloomsbury.Google Scholar
Blakemore, S.-J. (2012). Development of the social brain in adolescence. Journal of the Royal Society of Medicine, 105(3), 111–16. https://doi.org/10.1258/jrsm.2011.110221Google Scholar
Blakemore, S.-J. (2018). Avoiding social risk in adolescence. Current Directions in Psychological Science, 27(2), 116–22. https://doi.org/10.1177/0963721417738144CrossRefGoogle Scholar
Blakemore, S.-J., & Choudhury, S. (2006). Development of the adolescent brain: Implications for executive function and social cognition. Journal of Child Psychology and Psychiatry, 47(3–4), 296312. https://doi.org/10.1111/j.1469-7610.2006.01611.xGoogle Scholar
Blakemore, S.-J., & Frith, U. (2004). How does the brain deal with the social world? NeuroReport, 15(1), 119–28. https://doi.org/10.1097/00001756-200401190-00024Google Scholar
Bowles, N. (2017, December 4). Where Silicon Valley is going to get in touch with its soul. The New York Times. www.nytimes.com/Google Scholar
Choudhury, S., & McKinney, K. A. (2013). Digital media, the developing brain and the interpretive plasticity of neuroplasticity. Transcultural Psychiatry, 50(2), 192215. https://doi.org/10.1177/1363461512474623Google Scholar
Choudhury, S., Nagel, S. K., & Slaby, J. (2009). Critical neuroscience: Linking neuroscience and society through critical practice. BioSocieties, 4(1), 6177. https://doi.org/10.1017/S1745855209006437CrossRefGoogle Scholar
Choudhury, S., & Slaby, J. (Eds.). (2012). Critical neuroscience: A handbook of the social and cultural contexts of neuroscience. Wiley-Blackwell. https://doi.org/10.1002/9781444343359Google Scholar
Cosmelli, D., & Thompson, E. (2010). Embodiment or envatment? Reflections on the bodily basis of consciousness. In Stewart, J., Gapenne, O., & Di Paolo, E. A. (Eds.), Enaction: Toward a new paradigm for cognitive science (pp. 361–85). MIT Press. https://doi.org/10.7551/mitpress/9780262014601.003.0014Google Scholar
Fischer, K. W. (2009). Mind, brain, and education: Building a scientific groundwork for learning and teaching. Mind, Brain, and Education, 3(1), 316. https://doi.org/10.1111/j.1751-228X.2008.01048.xGoogle Scholar
Fricke, L., & Choudhury, S. (2011). Neuropolitik und plastische Gehirne. Eine Fallstudie des adoleszenten Gehirns. Deutsche Zeitschrift für Philosophie Zweimonatsschrift der internationalen philosophischen Forschung, 59(3), 391402. https://doi.org/10.1524/dzph.2011.0032Google Scholar
Fuhrmann, D., Knoll, L. J., & Blakemore, S. J. (2015). Adolescence as a sensitive period of brain development. Trends in Cognitive Sciences, 19(10), 558–66. https://doi.org/10.1016/j.tics.2015.07.008Google Scholar
Giedd, J. N., Blumenthal, J., Jeffries, N. O., Castellanos, F. X., Liu, H., Zijdenbos, A., Paus, T., Evans, A. C., & Rapoport, J. L. (1999). Brain development during childhood and adolescence: A longitudinal MRI study. Nature Neuroscience, 2(10), 861–3. https://doi.org/10.1038/13158Google Scholar
Goswami, U. (2006). Neuroscience and education: From research to practice? Nature Reviews Neuroscience, 7(5), 406–13. https://doi.org/10.1038/nrn1907Google Scholar
Harrington, A. (2008). The cure within: A history of mind-body medicine. W.W. Norton.Google Scholar
Hartmann, M. (2012). Against first nature: Critical theory and neuroscience. In Choudhury, S. & Slaby, J. (Eds.), Critical neuroscience: A handbook of the social and cultural contexts of neuroscience (pp. 6784). Wiley-Blackwell.Google Scholar
Howard-Jones, P. A. (2009). Scepticism is not enough. Cortex, 45(4), 550–1. https://doi.org/10.1016/j.cortex.2008.06.002Google Scholar
Ingold, T. (2004). Culture on the ground: The world perceived through the feet. Journal of Material Culture, 9(3), 315–40. https://doi.org/10.1177%2F1359183504046896Google Scholar
Kirmayer, L. J., & Gold, I. (2012). Re-socializing psychiatry: Critical neuroscience and the limits of reductionism. In Choudhury, S. & Slaby, J. (Eds.), Critical neuroscience: A handbook of the social and cultural contexts of neuroscience (pp. 307–30). Wiley-Blackwell.Google Scholar
MacDonald, K. (2007). Cross-cultural comparison of learning in human hunting: Implications for life history evolution. Human Nature, 18(4), 386402. https://doi.org/10.1007/s12110-007-9019-8Google Scholar
Malabou, C. (2010). Plasticity at the dusk of writing: Dialectic, destruction, deconstruction (Shread, C., Trans.). Columbia University Press. (Original work published 2005) https://doi.org/10.7312/mala14524Google Scholar
Maxwell, B., & Racine, E. (2012). The ethics of neuroeducation: Research, practice and policy. Neuroethics, 5(2), 101–3. https://doi.org/10.1007/s12152-012-9156-6Google Scholar
Miller, D. J., Duka, T., Stimpson, C. D., Schapiro, S. J., Baze, W. B, McArthur, M. J., Fobbs, A. J., Sousa, A. M. M., Šestan, N., Wildman, D. E., Lipovich, L., Kuzawa, C. W., Hof, P. R., & Sherwood, C. C. (2012). Prolonged myelination in human neocortical evolution. Proceedings of the National Academy of Sciences of the United States of America, 109(41), 16480–5. https://doi.org/10.1073/pnas.1117943109Google Scholar
Orben, A., & Przybylski, A. K. (2019). The association between adolescent well-being and digital technology use. Nature Human Behaviour, 3, 173–82. https://doi.org/10.1016/j.jaac.2019.06.017Google Scholar
Organisation for Economic Co-operation and Development (OECD). (2002). Understanding the brain: Towards a new learning science. OECD. https://doi.org/10.1787/9789264174986-enGoogle Scholar
Otis, L. (2000). Membranes: Metaphors of invasion in nineteenth-century literature, science, and politics. Johns Hopkins University Press.Google Scholar
Pitts-Taylor, V. (2010). The plastic brain: Neoliberalism and the neuronal self. Health, 14(6), 635–52. https://doi.org/10.1177/1363459309360796Google Scholar
Raichlen, D. A., & Polk, J. D. (2013). Linking brains and brawn: Exercise and the evolution of human neurobiology. Proceedings of the Royal Society B: Biological Sciences, 280(1750), 20122250. https://doi.org/10.1098/rspb.2012.2250Google Scholar
Rees, T. (2010). Being neurologically human today: Life and science and adult cerebral plasticity (An ethical analysis). American Ethnologist, 37(1), 150–66. https://doi.org/10.1111/j.1548-1425.2010.01247.xGoogle Scholar
Rose, S. (2005). The future of the brain: The promise and perils of tomorrow’s neuroscience. Oxford University Press.Google Scholar
Sánchez-Allred, A., & Choudhury, S. (2016). The imperative to shape young brains: Mindfulness as a neuroeducational intervention. In Pykett, J., Jones, R. & Whitehead, M. (Eds.), Psychological governance and public policy: Governing the mind, brain and behaviour (pp. 116–35). Routledge.Google Scholar
Sherwood, C. C., & Gómez-Robles, A. (2017). Brain plasticity and human evolution. Annual Review of Anthropology, 46, 399419. https://doi.org/10.1146/annurev-anthro-102215-100009Google Scholar
Singer, N., & Ivory, D. (2017, November 3). How Silicon Valley plans to conquer the classroom. The New York Times. www.nytimes.com/2017/11/03/technology/silicon-valley-baltimore-schools.htmlGoogle Scholar
Slaby, J., & Choudhury, S. (2018). Proposal for a critical neuroscience. In Meloni, M., Cromby, J., Fitzgerald, D., & Lloyd, S. (Eds.), The Palgrave handbook of biology and society (pp. 341–70). Palgrave Macmillan. https://doi.org/10.1057/978-1-137-52879-7_15Google Scholar
Tallis, R. (2004). Why the mind is not a computer: A pocket lexicon of neuromythology. Imprint Academic.Google Scholar
Thomson, J. M., Leong, V., & Goswami, U. (2013). Auditory processing interventions and developmental dyslexia: A comparison of phonemic and rhythmic approaches. Reading and Writing, 26(2), 139–61. https://doi.org/10.1007/s11145-012-9359-6Google Scholar
Weisberg, D. S., Keil, F. C., Goodstein, J., Rawson, E., & Gray, J. R. (2008). The seductive allure of neuroscience explanations. Journal of Cognitive Neuroscience, 20(3), 470–77. https://doi.org/10.1162/jocn.2008.20040Google Scholar
Whitehead, M., Jones, R., Lilley, R., Pykett, J., & Howell, R. (2017). Neuroliberalism: Behavioural government in the twenty-first century. Routledge.Google Scholar
Worthman, C. M. (2011). Developmental cultural ecology of sleep. In El-Sheikh, M. (Ed.), Sleep and development: Familial and socio-cultural considerations (pp. 167–94). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780195395754.003.0008Google Scholar
Worthman, C. M., & Trang, K. (2018). Dynamics of body time, social time and life history at adolescence. Nature, 554(7693), 451–7. https://doi.org/10.1038/nature25750Google Scholar

References

Anselme, P. (2013). Dopamine, motivation, and the evolutionary significance of gambling-like behaviour. Behavioural Brain Research, 256, 14. https://doi.org/10.1016/j.bbr.2013.07.039Google Scholar
Barascud, N., Pearce, M. T., Griffiths, T. D., Friston, K. J., & Chait, M. (2016). Brain responses in humans reveal ideal observer-like sensitivity to complex acoustic patterns. Proceedings of the National Academy of Sciences of the United States of America, 113(5), E616E625. https://doi.org/10.1073/pnas.1508523113Google Scholar
Bennett, D., Bode, S., Brydevall, M., Warren, H., & Murawski, C. (2016). Intrinsic valuation of information in decision making under uncertainty. PLoS Computional Biology, 12(7), e1005020. https://doi.org/10.1371/journal.pcbi.1005020Google Scholar
Berlyne, D. E. (1960). McGraw-Hill series in psychology. Conflict, arousal, and curiosity. McGraw-Hill Book Company. https://doi.org/10.1037/11164-000Google Scholar
Berlyne, D. E. (Ed.). (1974). Studies in the new experimental aesthetics: Steps toward an objective psychology of aesthetic appreciation. Hemisphere.Google Scholar
Berridge, K. C., & Kringelbach, M. L. (2008). Affective neuroscience of pleasure: Reward in humans and animals. Psychopharmacology, 199(3), 457–80. https://doi.org/10.1007/s00213-008-1099-6Google Scholar
Bigand, E., Poulin, B., Tillmann, B., Madurell, F., & D’Adamo, D. A. (2003). Sensory versus cognitive components in harmonic priming. Journal of Experimental Psychology: Human Perception and Performance, 29(1), 159–71. https://doi.org/10.1037/0096-1523.29.1.159Google Scholar
Blood, A. J., Zatorre, R. J., Bermudez, P., & Evans, A. C. (1999). Emotional responses to pleasant and unpleasant music correlate with activity in paralimbic brain regions. Nature Neuroscience, 2(4), 382–7. https://doi.org/10.1038/7299Google Scholar
Bogert, B., Numminen-Kontti, T., Gold, B., Sams, M., Numminen, J., Burunat, I., Lampinen, J., & Brattico, E. (2016). Hidden sources of joy, fear, and sadness: Explicit versus implicit neural processing of musical emotions. Neuropsychologia, 89, 393402. https://doi.org/10.1016/j.neuropsychologia.2016.07.005Google Scholar
Brattico, E., Bogert, B., Alluri, V., Tervaniemi, M., Eerola, T., & Jacobsen, T. (2016). It’s sad but I like it: The neural dissociation between musical emotions and liking in experts and laypersons. Frontiers in Human Neuroscience, 9, 676. https://doi.org/10.3389/fnhum.2015.00676Google Scholar
Brattico, E., Jacobsen, T., De Baene, W., Glerean, E., & Tervaniemi, M. (2010). Cognitive vs. affective listening modes and judgments of music: An ERP study. Biological Psychology, 85(3), 393409. https://doi.org/10.1016/j.biopsycho.2010.08.014Google Scholar
Brattico, E., & Pearce, M. (2013). The neuroaesthetics of music. Psychology of Aesthetics, Creativity, and the Arts, 7(1), 4861. https://doi.org/10.1037/a0031624Google Scholar
Bromberg-Martin, E. S., & Hikosaka, O. (2009). Midbrain dopamine neurons signal preference for advance information about upcoming rewards. Neuron, 63(1), 119–26. https://doi.org/10.1016/j.neuron.2009.06.009Google Scholar
Bromberg-Martin, E. S., Matsumoto, M., & Hikosaka, O. (2010). Dopamine in motivational control: Rewarding, aversive, and alerting. Neuron, 68(5), 815–34. https://doi.org/10.1016/j.neuron.2010.11.022Google Scholar
Brydevall, M., Bennett, D., Murawski, C., & Bode, S. (2018). The neural encoding of information prediction errors during non-instrumental information seeking. Scientific Reports, 8(1), 6134. https://doi.org/10.1038/s41598-018-24566-xGoogle Scholar
Burgdorf, J., & Panksepp, J. (2006). The neurobiology of positive emotions. Neuroscience & Biobehavioral Reviews, 30(2), 173–87. https://doi.org/10.1016/j.neubiorev.2005.06.001Google Scholar
Chase, H. W., Kumar, P., Eickhoff, S. B., & Dombrovski, A. Y. (2015). Reinforcement learning models and their neural correlates: An activation likelihood estimation meta-analysis. Cognitive, Affective, & Behavioral Neuroscience, 15(2), 435–59. https://doi.org/10.3758/s13415-015-0338-7Google Scholar
Chmiel, A., & Schubert, E. (2017). Back to the inverted-U for music preference: A review of the literature. Psychology of Music, 45(6), 886909. https://doi.org/10.1177%2F0305735617697507Google Scholar
Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36(3), 181204. https://doi.org/10.1017/S0140525X12000477Google Scholar
Demorest, S. M., Morrison, S. J., Jungbluth, D., & Beken, M. N. (2008). Lost in translation: An enculturation effect in music memory performance. Music Perception, 25(3), 213–23. https://doi.org/10.1525/mp.2008.25.3.213Google Scholar
den Ouden, H. E. M., Daunizeau, J., Roiser, J., Friston, K. J., & Stephan, K. E. (2010). Striatal prediction error modulates cortical coupling. Journal of Neuroscience, 30(9), 3210–19. https://doi.org/10.1523/JNEUROSCI.4458-09.2010Google Scholar
den Ouden, H. E. M., Kok, P., & de Lange, F. P. (2012). How prediction errors shape perception, attention, and motivation. Frontiers in Psychology, 3, 548. https://doi.org/10.3389/fpsyg.2012.00548Google Scholar
Egermann, H., Pearce, M. T., Wiggins, G. A., & McAdams, S. (2013). Probabilistic models of expectation violation predict psychophysiological emotional responses to live concert music. Cognitive, Affective, & Behavioral Neuroscience, 13(3), 533–53. https://doi.org/10.3758/s13415-013-0161-yGoogle Scholar
Ferreri, L., Mas-Herrero, E., Zatorre, R. J., Ripollés, P., Gomez-Andres, A., Alicart, H., Olivé, G., Marco-Pallarés, J., Antonijoan, R. M., Valle, M., Riba, J., & Rodriguez-Fornells, A. (2019). Dopamine modulates the reward experiences elicited by music. Proceedings of the National Academy of Sciences of the United States of America, 116(9), 3793–8. https://doi.org/10.1073/pnas.1811878116Google Scholar
Fiorillo, C. D., Tobler, P. N., & Schultz, W. (2003). Discrete coding of reward probability and uncertainty by dopamine neurons. Science, 299(5614), 1898–902. https://doi.org/10.1126/science.1077349Google Scholar
Frank, M. J., Seeberger, L. C., & O’Reilly, R. C. (2004). By carrot or by stick: Cognitive reinforcement learning in parkinsonism. Science, 306(5703), 1940–3. https://doi.org/10.1126/science.1102941Google Scholar
Franklin, R. G. Jr., & Adams, R. B. Jr. (2011). The reward of a good joke: Neural correlates of viewing dynamic displays of stand-up comedy. Cognitive, Affective, & Behavioral Neuroscience, 11(4), 508–15. https://doi.org/10.3758/s13415-011-0049-7Google Scholar
Friston, K. (2005). A theory of cortical responses. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1456), 815–36. https://doi.org/10.1098/rstb.2005.1622Google Scholar
Friston, K. (2008). Hierarchical models in the brain. PLoS Computational Biology, 4(11), e1000211. https://doi.org/10.1371/journal.pcbi.1000211Google Scholar
Gebauer, L., Kringelbach, M. L., & Vuust, P. (2012). Ever-changing cycles of musical pleasure: The role of dopamine and anticipation. Psychomusicology: Music, Mind, and Brain, 22(2), 152–67. https://doi.org/10.1037/a0031126Google Scholar
Gold, B. P., Mas-Herrero, E., Zeighami, Y., Benovoy, M., Dagher, A., & Zatorre, R. J. (2019b). Musical reward prediction errors engage the nucleus accumbens and motivate learning. Proceedings of the National Academy of Sciences of the United States of America, 116(8), 3310–15. https://doi.org/10.1073/pnas.1809855116Google Scholar
Gold, B. P., Pearce, M. T., Mas-Herrero, E., Dagher, A., & Zatorre, R. J. (2019a). Predictability and uncertainty in the pleasure of music: A reward for learning? Journal of Neuroscience, 39(47), 9397–409. https://doi.org/10.1523/JNEUROSCI.0428-19.2019Google Scholar
Grewe, O., Nagel, F., Kopiez, R., & Altenmüller, E. (2005). How does music arouse “chills”? Investigating strong emotions, combining psychological, physiological, and psychoacoustical methods. Annals of the New York Academy of Sciences, 1060(1), 446–9. https://doi.org/10.1196/annals.1360.041Google Scholar
Grewe, O., Nagel, F., Kopiez, R., & Altenmüller, E. (2007). Listening to music as a re-creative process: Physiological, psychological, and psychoacoustical correlates of chills and strong emotions. Music Perception, 24(3), 297314. https://doi.org/10.1525/mp.2007.24.3.297Google Scholar
Hannon, E. E., Soley, G., & Ullal, S. (2012a). Familiarity overrides complexity in rhythm perception: A cross-cultural comparison of American and Turkish listeners. Journal of Experimental Psychology: Human Perception and Performance, 38(3), 543–8. https://doi.org/10.1037/a0027225Google Scholar
Hannon, E. E., & Trehub, S. E. (2005). Tuning in to musical rhythms: Infants learn more readily than adults. Proceedings of the National Academy of Sciences of the United States of America, 102(35), 12639–43. https://doi.org/10.1073/pnas.0504254102Google Scholar
Hannon, E. E., Vanden Bosch der Nederlanden, C. M., & Tichko, P. (2012b). Effects of perceptual experience on children’s and adults’ perception of unfamiliar rhythms. Annals of the New York Academy of Sciences, 1252(1), 92–9. https://doi.org/10.1111/j.1749-6632.2012.06466.xGoogle Scholar
Hansen, N. C., Dietz, M. J., & Vuust, P. (2017). Commentary: Predictions and the brain: How musical sounds become rewarding. Frontiers in Human Neuroscience, 11, 168. https://doi.org/10.3389/fnhum.2017.00168Google Scholar
Hansen, N. C., & Pearce, M. T. (2014). Predictive uncertainty in auditory sequence processing. Frontiers in Psychology, 5, 1052. https://doi.org/10.3389/fpsyg.2014.01052Google Scholar
Hargreaves, D. J., & North, A. C. (2010). Experimental aesthetics and liking for music. In Juslin, P. N. & Sloboda, J. A. (Eds.), Series in affective science. Handbook of music and emotion: Theory, research, applications (pp. 515–46). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199230143.003.0019Google Scholar
Haumann, N. T., Vuust, P., Bertelsen, F., & Garza-Villarreal, E. A. (2018). Influence of musical enculturation on brain responses to metric deviants. Frontiers in Neuroscience, 12, 218. https://doi.org/10.3389/fnins.2018.00218Google Scholar
Huron, D. (2006). Sweet anticipation: Music and the psychology of expectation. MIT Press.Google Scholar
Jepma, M., Verdonschot, R. G., van Steenbergen, H., Rombouts, S. A. R. B., & Nieuwenhuis, S. (2012). Neural mechanisms underlying the induction and relief of perceptual curiosity. Frontiers in Behavioral Neuroscience, 6, 5. https://doi.org/10.3389/fnbeh.2012.00005Google Scholar
Juslin, P. N., & Laukka, P. (2004). Expression, perception, and induction of musical emotions: A review and a questionnaire study of everyday listening. Journal of New Music Research, 33(3), 217–38. https://doi.org/10.1080/0929821042000317813Google Scholar
Kanai, R., Komura, Y., Shipp, S., & Friston, K. (2015). Cerebral hierarchies: Predictive processing, precision and the pulvinar. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1668), 20140169. https://doi.org/10.1098/rstb.2014.0169Google Scholar
Kang, M. J., Hsu, M., Krajbich, I. M., Loewenstein, G., McClure, S. M., Wang, J. T.-Y., & Camerer, C. F. (2009). The wick in the candle of learning. Psychological Science, 20(8), 963–73. https://doi.org/10.1111/j.1467-9280.2009.02402.xGoogle Scholar
Koelsch, S. (2014). Brain correlates of music-evoked emotions. Nature Reviews Neuroscience, 15(3), 170–80. https://doi.org/10.1038/nrn3666Google Scholar
Koelsch, S., Fritz, T., & Schlaug, G. (2008). Amygdala activity can be modulated by unexpected chord functions during music listening. NeuroReport, 19(18), 1815–19. https://doi.org/10.1097/WNR.0b013e32831a8722Google Scholar
Koelsch, S., Vuust, P., & Friston, K. (2019). Predictive processes and the peculiar case of music. Trends in Cognitive Sciences, 23(1), 6377. https://doi.org/10.1016/j.tics.2018.10.006Google Scholar
Krumhansl, C. L. (2000). Rhythm and pitch in music cognition. Psychological Bulletin, 126(1), 159–79. https://doi.org/10.1037/0033-2909.126.1.159Google Scholar
Lonsdale, A. J., & North, A. C. (2011). Why do we listen to music? A uses and gratifications analysis. British Journal of Psychology, 102(1), 108–34. https://doi.org/10.1348/000712610X506831Google Scholar
Loui, P., & Wessel, D. (2008). Learning and liking an artificial musical system: Effects of set size and repeated exposure. Musicae Scientiae, 12(2), 207–30. https://doi.org/10.1177%2F102986490801200202Google Scholar
Loui, P., Wu, E. H., Wessel, D. L., & Knight, R. T. (2009). A generalized mechanism for perception of pitch patterns. Journal of Neuroscience, 29(2), 454–9. https://doi.org/10.1523/JNEUROSCI.4503-08.2009Google Scholar
Lumaca, M., Haumann, N. T., Brattico, E., Grube, M., & Vuust, P. (2019). Weighting of neural prediction error by rhythmic complexity: A predictive coding account using mismatch negativity. European Journal of Neuroscience, 49(12), 1597–609. https://doi.org/10.1111/ejn.14329Google Scholar
Martindale, C., & Moore, K. (1989). Relationship of musical preference to collative, ecological, and psychophysical variables. Music Perception, 6(4), 431–45. https://doi.org/10.2307/40285441Google Scholar
Mas-Herrero, E., Dagher, A., & Zatorre, R. J. (2018). Modulating musical reward sensitivity up and down with transcranial magnetic stimulation. Nature Human Behavior, 2, 2732. https://doi.org/10.1038/s41562-017-0241-zGoogle Scholar
Mas-Herrero, E., Marco-Pallares, J., Lorenzo-Seva, U., Zatorre, R. J., & Rodriguez-Fornells, A. (2013). Individual differences in music reward experiences. Music Perception, 31(2), 118–38. https://doi.org/10.1525/mp.2013.31.2.118Google Scholar
Menon, M., Jensen, J., Vitcu, I., Graff-Guerrero, A., Crawley, A., Smith, M. A., & Kapur, S. (2007). Temporal difference modeling of the blood-oxygen level dependent response during aversive conditioning in humans: Effects of dopaminergic modulation. Biological Psychiatry, 62(7), 765–72. https://doi.org/10.1016/j.biopsych.2006.10.020Google Scholar
Meyer, L. B. (1956). Emotion and meaning in music. University of Chicago Press.Google Scholar
North, A. C., Hargreaves, D. J., & Mckendrick, J. (2000). The effects of music on atmosphere in a bank and a bar. Journal of Applied Social Psychology, 30(7), 1504–22. https://doi.org/10.1111/j.1559-1816.2000.tb02533.xGoogle Scholar
Omigie, D., Pearce, M. T., Williamson, V. J., & Stewart, L. (2013). Electrophysiological correlates of melodic processing in congenital amusia. Neuropsychologia, 51(9), 1749–62. https://doi.org/10.1016/j.neuropsychologia.2013.05.010Google Scholar
Oudeyer, P. Y., Gottlieb, J., & Lopes, M. (2016). Intrinsic motivation, curiosity, and learning: Theory and applications in educational technologies. In Studer, B. & Knecht, S. (Eds.), Progress in brain research. Motivation: Theory, neurobiology and applications (Vol. 229, pp. 257–84). Academic Press. https://doi.org/10.1016/bs.pbr.2016.05.005Google Scholar
Partanen, E., Kujala, T., Tervaniemi, M., & Huotilainen, M. (2013). Prenatal music exposure induces long-term neural effects. PLoS ONE, 8(10), e78946. https://doi.org/10.1371/journal.pone.0078946Google Scholar
Pearce, J. M., & Hall, G. (1980). A model for Pavlovian learning: Variations in the effectiveness of conditioned but not of unconditioned stimuli. Psychological Review, 87(6), 532–52. https://doi.org/10.1037/0033-295X.87.6.532CrossRefGoogle Scholar
Pearce, M. T. (2005). The construction and evaluation of statistical models of melodic structure in music perception and composition [Unpublished doctoral dissertation]. City University London. http://openaccess.city.ac.uk/8459/Google Scholar
Pearce, M. T., Müllensiefen, D., & Wiggins, G. A. (2010). The role of expectation and probabilistic learning in auditory boundary perception: A model comparison. Perception, 39(1), 1365–89. https://doi.org/10.1068%2Fp6507CrossRefGoogle ScholarPubMed
Perruchet, P., & Pacton, S. (2006). Implicit learning and statistical learning: One phenomenon, two approaches. Trends in Cognitive Sciences, 10(5), 233–8. https://doi.org/10.1016/j.tics.2006.03.006CrossRefGoogle ScholarPubMed
Ripollés, P., Marco-Pallarés, J., Hielscher, U., Mestres-Missé, A., Tempelmann, C., Heinze, H.-J., Rodríguez-Fornells, A., & Noesselt, T. (2014). The role of reward in word learning and its implications for language acquisition. Current Biology, 24(21), 2606–11. https://doi.org/10.1016/j.cub.2014.09.044Google Scholar
Saarikallio, S., & Erkkilä, J. (2007). The role of music in adolescents’ mood regulation. Psychology of Music, 35(1), 88109. https://doi.org/10.1177%2F0305735607068889Google Scholar
Saffran, J. R., Johnson, E. K., Aslin, R. N., & Newport, E. L. (1999). Statistical learning of tone sequences by human infants and adults. Cognition, 70(1), 2752. https://doi.org/10.1016/S0010-0277(98)00075-4Google Scholar
Salimpoor, V. N., Benovoy, M., Larcher, K., Dagher, A., & Zatorre, R. J. (2011). Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nature Neuroscience, 14(2), 257–62. https://doi.org/10.1038/nn.2726Google Scholar
Salimpoor, V. N., Benovoy, M., Longo, G., Cooperstock, J. R., & Zatorre, R. J. (2009). The rewarding aspects of music listening are related to degree of emotional arousal. PLoS ONE, 4(10), e7487. https://doi.org/10.1371/journal.pone.0007487Google Scholar
Salimpoor, V. N., van den Bosch, I., Kovacevic, N., McIntosh, A. R., Dagher, A., & Zatorre, R. J. (2013). Interactions between the nucleus accumbens and auditory cortices predict music reward value. Science, 340(6129), 216–19. https://doi.org/10.1126/science.1231059Google Scholar
Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275(5306), 1593–9. https://doi.org/10.1126/science.275.5306.1593Google Scholar
Seymour, B., O’Doherty, J. P., Koltzenburg, M., Wiech, K., Frackowiak, R., Friston, K., & Dolan, R. (2005). Opponent appetitive-aversive neural processes underlie predictive learning of pain relief. Nature Neuroscience, 8(9), 1234–40. https://doi.org/10.1038/nn1527Google Scholar
Shany, O., Singer, N., Gold, B. P., Jacoby, N., Tarrasch, R., Hendler, T., & Granot, R. (2019). Surprise-related activation in the nucleus accumbens interacts with music-induced pleasantness. Social Cognitive and Affective Neuroscience, 14(4), 459–70. https://doi.org/10.1093/scan/nsz019Google Scholar
Sloboda, J. A. (1991). Music structure and emotional response: Some empirical findings. Psychology of Music, 19(2), 110–20. https://doi.org/10.1177%2F0305735691192002Google Scholar
Sloboda, J. A., & O’Neill, S. A. (2001). Emotions in everyday listening to music. In Juslin, P. N. & Sloboda, J. A. (Eds.), Series in affective science. Music and emotion: Theory and research (pp. 415–29). Oxford University Press.Google Scholar
Steinbeis, N., Koelsch, S., & Sloboda, J. A. (2006). The role of harmonic expectancy violations in musical emotions: Evidence from subjective, physiological, and neural responses. Journal of Cognitive Neuroscience, 18(8), 1380–93. https://doi.org/10.1162/jocn.2006.18.8.1380Google Scholar
Szpunar, K. K., Schellenberg, E. G., & Pliner, P. (2004). Liking and memory for musical stimuli as a function of exposure. Journal of Experimental Psychology: Learning, Memory, and Cognition, 30(2), 370–81. https://doi.org/10.1037/0278-7393.30.2.370Google Scholar
Van de Cruys, S., & Wagemans, J. (2011). Putting reward in art: A tentative prediction error account of visual art. i-Perception, 2(9), 1035–62. https://doi.org/10.1068/i0466aapGoogle Scholar
Virtala, P., Huotilainen, M., Partanen, E., Fellman, V., & Tervaniemi, M. (2013). Newborn infants’ auditory system is sensitive to Western music chord categories. Frontiers in Psychology, 4, 492. https://doi.org/10.3389/fpsyg.2013.00492Google Scholar
Vuoskoski, J. K., Thompson, W. F., McIlwain, D., & Eerola, T. (2011). Who enjoys listening to sad music and why? Music Perception, 29(3), 311–17. https://doi.org/10.1525/mp.2012.29.3.311Google Scholar
Wassiliwizky, E., Koelsch, S., Wagner, V., Jacobsen, T., & Menninghaus, W. (2017). The emotional power of poetry: Neural circuitry, psychophysiology and compositional principles. Social Cognitive and Affective Neuroscience, 12(8), 1229–40. https://doi.org/10.1093/scan/nsx069Google Scholar
Wilson, T. D., Lisle, D. J., Kraft, D., & Wetzel, C. G. (1989). Preferences as expectation-driven inferences: Effects of affective expectations on affective experience. Journal of Personality and Social Psychology, 56(4), 519–30. https://doi.org/10.1037/0022-3514.56.4.519Google Scholar
Wong, P. C. M., Roy, A. K., & Margulis, E. H. (2009). Bimusicalism: The implicit dual enculturation of cognitive and affective systems. Music Perception, 27(2), 81–8. https://doi.org/10.1525/mp.2009.27.2.81Google Scholar
Zald, D. H., & Zatorre, R. J. (2011). Music. In Gottfried, J. A. (Ed.), Neurobiology of sensation and reward (pp. 405–28). CRC Press. www.ncbi.nlm.nih.gov/books/NBK92781/Google Scholar

References

Armstrong, P. B. (2019). Neuroscience, narrative, and narratology. Poetics Today, 40(3), 395428.Google Scholar
Barthes, R. (1986). The rustle of language (Howard, R., Trans.). Hill and Wang. (Original work published 1967–1980)Google Scholar
Bill, V. T. (1986). Chekhov: The silent voice of freedom. Allied Books.Google Scholar
Caracciolo, M. (2014). The experientiality of narrative: An enactivist approach. De Gruyter.Google Scholar
Cave, T. (2016). Thinking with literature: Towards a cognitive criticism. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780198749417.001.0001Google Scholar
Chatterjee, A. (2010). Neuroaesthetics: A coming of age story. Journal of Cognitive Neuroscience, 23(1), 5362. https://doi.org/10.1162/jocn.2010.21457Google Scholar
Clark, A. (1997). Being there: Putting brain, body, and world together again. MIT Press.Google Scholar
Flaubert, G. (2005). Three tales (Whitehouse, R., Trans.). Penguin. (Original work published 1877)Google Scholar
Friston, K. (2003). Learning and inference in the brain. Neural Networks, 16(9), 1325–52. https://doi.org/10.1016/j.neunet.2003.06.005Google Scholar
Herman, D. (2011). 1880–1945: Re-minding modernism. In Herman, D. (Ed.), The emergence of mind: Representations of consciousness in narrative discourse in English (pp. 243–72). University of Nebraska Press.Google Scholar
Hogan, P. C. (2010). Literary universals. In Zunshine, L. (Ed.), Introduction to cognitive cultural studies (pp. 3760). Johns Hopkins University Press.Google Scholar
Kukkonen, K. (2014a). Bayesian narrative: Probability, plot and the shape of the fictional world. Anglia, 132(4), 720–39. https://doi.org/10.1515/ang-2014-0075Google Scholar
Kukkonen, K. (2014b). Presence and prediction: The embodied reader’s cascades of cognition. Style, 48(3), 367–84. http://www.jstor.org/stable/10.5325/style.48.3.367Google Scholar
Kukkonen, K., & Caracciolo, M. (2014). Introduction: What is the “second generation?” Style, 48(3), 261–74. www.jstor.org/stable/10.5325/style.48.3.261Google Scholar
Noë, A. (2015). Strange tools: Art and human nature. Hill and Wang.Google Scholar
Tomlinson, C. (Ed.). (1985). William Carlos Williams: Selected poems. New Directions.Google Scholar

References

Angelillo, C., Rogoff, B., & Chavajay, P. (2007). Examining shared endeavors by abstracting video coding schemes with fidelity to cases. In Goldman, R., Pea, R., & Derry, S. J. (Eds.), Video research in the learning sciences (pp. 189206). Erlbaum.Google Scholar
Asch, T., & Chagnon, N. (1968–1971). Yanomamö series. 7 hrs, 8 min. Documentary Educational Resources. https://store.der.org/yanomam-series-p970.aspxGoogle Scholar
Asch, T., & Chagnon, N. (1975). The ax fight. 30 min. [Documentary]. Documentary Educational Resources. https://store.der.org/the-ax-fight-p180.aspxGoogle Scholar
Asch, T., Marshall, J., & Spier, P. (1973). Ethnographic film: Structure and function. Annual Review of Anthropology, 2, 179–87. https://doi.org/10.1146/annurev.an.02.100173.001143Google Scholar
Banks, M., & Ruby, J. (Eds.). (2011). Made to be seen: Perspectives on the history of visual anthropology. University of Chicago Press.Google Scholar
Barbash, I., & Taylor, L. (1997). Cross-cultural filmmaking: A handbook for making documentary and ethnographic films and videos. University of California Press.Google Scholar
Bateson, G., & Mead, M. (1942). Balinese character: A photographic analysis. The New York Academy of Sciences.Google Scholar
Boyd, B. (2009). On the origin of stories: Evolution, cognition, and fiction. Belknap Press.Google Scholar
Brand, S. (1976). For God’s sake, Margaret [Conversation between Stewart Brand, Gregory Bateson, and Margaret Mead]. CoEvolutionary Quarterly, 10(21), 3244. www.wholeearth.com/issue/2010/article/361/for.god’s.sake.margaretGoogle Scholar
Buckner, R. L., Andrews-Hanna, J. R., & Schachter, D. L. (2008). The brain’s default mode network: Anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 1124(1), 138. https://doi.org/10.1196/annals.1440.011Google Scholar
Connor, L., Asch, T., & Asch, P. (1979–1983). The Jero Tapakan series. 2 hrs, 26 min. Documentary Educational Resources. https://store.der.org/the-jero-tapakan-series-p967.aspxGoogle Scholar
Curtis, E. S., & Hodge, F. W. (Ed.). (1970). The North American Indian, being a series of volumes picturing and describing the Indians of the United States and Alaska (20 Vols.). Johnson Reprint Corp. (Original work published 1907–1930).Google Scholar
Damasio, A. (2018). The strange order of things: Life, feeling, and the making of cultures. Pantheon Books.Google Scholar
Dressler, W. W. (2017). Culture and the individual: Theory and method of cultural consonance. Routledge. https://doi.org/10.4324/9781315164007Google Scholar
Edwards, E. (2001). Raw histories: Photographs, anthropology and museums. Berg.Google Scholar
Frijda, N. H. (1986). The emotions. Cambridge University Press.Google Scholar
Fruzetti, L., Ostor, A., & Sarkar, A. N. (2005). Singing pictures. 40 min. [Documentary]. Documentary Educational Resources. https://store.der.org/singing-pictures-p422.aspxGoogle Scholar
Gallese, V. (2017). Visions of the body. Embodied simulation and aesthetic experience. Aisthesis, 10(1), 4150. https://doi.org/10.13128/Aisthesis-20902Google Scholar
Gallese, V., & Guerra, M. (2019). The empathic screen: Cinema and Neuroscience (Anderson, F., Trans.). Oxford University Press. (Original work published 2015)Google Scholar
Gardner, R. (1963). Dead birds. 1 hr, 23 min. [Documentary]. Documentary Educational Resources. https://store.der.org/dead-birds-p858.aspxGoogle Scholar
Grimshaw, A., & Ravetz, A. (2009). Rethinking observational cinema. Journal of the Royal Anthropological Institute, 15(3), 538–56. https://doi.org/10.1111/j.1467-9655.2009.01573.xGoogle Scholar
Grodal, T. (2006). The PECMA flow: A general model of visual aesthetics. Film Studies, 8(1), 111. http://doi.org/10.7227/FS.8.3Google Scholar
Grodal, T. (2009). Embodied visions: Evolution, emotion, culture, and film. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780195371314.001.0001Google Scholar
Grodal, T., & Kramer, M. (2010). Empathy, film, and the brain. Recherches semiotiques/Semiotic Inquiry, 30(1–3), 1935. https://doi.org/10.7202/1025921arGoogle Scholar
Gruber, J. W. (1970). Ethnographic salvage and the shaping of anthropology. American Anthropologist, 72(6), 1289–99. https://doi.org/10.1525/aa.1970.72.6.02a00040CrossRefGoogle Scholar
Gubrium, A., & Harper, K. (2013). Participatory visual and digital methods. Left Coast Press.Google Scholar
Hasson, U., Ghazanfar, A. A, Balantucci, B., Garrod, S., & Keysers, C. (2012). Brain-to-brain coupling: A mechanism for creating and sharing a social worldTrends in Cognitive Sciences, 16(2), 113–20. https://doi.org/10.1016%2Fj.tics.2011.12.007Google Scholar
Hasson, U., Landesman, O., Knappmeyer, B., Vallines, I., Rubin, N., & Heeger, D. J. (2008). Neurocinematics: The neuroscience of film. Projections, 2(1), 126. https://doi.org/10.3167/proj.2008.020102Google Scholar
Heider, K. (1974). Dani houses. 35 min, 9 min extras. [Documentary]. Documentary Educational Resources. https://store.der.org/dani-films-p855.aspxGoogle Scholar
Heider, K. G. (1976). Ethnographic film. University of Texas Press.Google Scholar
Heider, K. G. (1997). Seeing anthropology: Cultural anthropology through film. Allyn and Bacon.Google Scholar
Honey, C. J., Thompson, C. R., Lerner, Y., & Hasson, U. (2012). Not lost in translation: Neural responses shared across languages. Journal of Neuroscience, 32, 15277–82. https://doi.org/10.1523/JNEUROSCI.1800-12.2012Google Scholar
Hoskins, J., & Whitney, L. (1991). Horses of life and death. 28 min. [Documentary]. Center for Visual Anthropology. https://store.der.org/horses-of-life-and-death-p787.aspxGoogle Scholar
Immordino-Yang, M. H. (2013). Studying the effects of culture by integrating neuroscientific with ethnographic approaches. Psychological Inquiry, 24(1), 42–6. https://doi.org/10.1080/1047840X.2013.770278Google Scholar
Kitayama, S., & Park, J. (2014). Error-related brain activity reveals self-centric motivation: Culture matters. Journal of Experimental Psychology: General, 143(1), 6270. https://doi.org/10.1037/a0031696Google Scholar
Kleinman, A. (1988). The illness narratives: Suffering, healing, and the human condition. Basic Books.Google Scholar
Kohrt, B. A., Worthman, C. M., Ressler, K. J., Mercer, K. B., Upadhaya, N., Koirala, S., Nepal, M. K., Sharma, V. D., & Binder, E. B. (2015). Cross-cultural gene-environment interactions in depression, post-traumatic stress disorder, and the cortisol awakening response: FKBP5 polymorphisms and childhood trauma in South Asia. International Review of Psychiatry, 27(3), 180–96. https://doi.org/10.3109/09540261.2015.1020052Google Scholar
Lemelson, R. (2015). Bitter honey. 1 hr, 21 min. [Documentary]. Documentary Educational Resources. https://store.der.org/bitter-honey-p198.aspxGoogle Scholar
Lemelson, R., & Tucker, A. (2015). Steps toward an integration of psychological and visual anthropology: Issues raised in the production of the film series Afflictions: Culture and mental illness in Indonesia. Ethos, 43(1), 639. https://doi.org/10.1111/etho.12070Google Scholar
Lemelson, R., & Tucker, A. (2017). Afflictions: Steps towards a visual psychological anthropology. Palgrave Macmillan. https://doi.org/10.1007/978-3-319-59984-7Google Scholar
Lomax, A., & Paulay, F. (1974–2008). Rhythms of the earth. 1 hr, 36 min. [Documentary]. Documentary Educational Resources. https://store.der.org/rhythms-of-earth-p478.aspxGoogle Scholar
Lutz, C. A. (1988). Unnatural emotions: Everyday sentiments on a Micronesian atoll & their challenge to Western theory. University of Chicago Press.Google Scholar
MacDougall, D. (1992). “Photo wallahs”: An encounter with photography. Visual Anthropology Review, 8(2), 96100. https://doi.org/10.1525/var.1992.8.2.96Google Scholar
Margulies, D. S., Ghosh, S. S., Goulas, A., Falkiewicz, M., Huntenburg, J. M., Langs, G., Bezgin, G., Eickhoff, S. B., Castellanos, F. X., Petrides, M., Jefferies, E., & Smallwood, J. (2016). Situating the default-mode network along a principal gradient of macroscale cortical organization. Proceedings of the National Academy of Sciences of the United States of America, 113(44), 12574–9. https://doi.org/10.1073/pnas.1608282113Google Scholar
Marion, J. S., & Crowder, J. W. (2013). Visual research: A concise introduction to thinking visually. Bloomsbury Academic.Google Scholar
Marshall, J. (1957). The hunters. 1 hr, 12 min. [Documentary]. Documentary Educational Resources. https://store.der.org/the-hunters-p798.aspxGoogle Scholar
Marshall, J., & Ritchie, C. (1951–2002). A Kalahari family. 6 hrs. [Documentary]. Kalfam Productions and Documentary Educational Resources. https://store.der.org/a-kalahari-family-p937.aspxGoogle Scholar
Mattingly, C., & Garro, L. (Eds.). (2000). Narrative and the cultural construction of illness and healing. University of California Press.Google Scholar
McCall, C., & Singer, T. (2015). Facing off with unfair others: Introducing proxemic imaging as an implicit measure of approach and avoidance during social interaction. PLoS ONE, 10(2), e0117532. https://doi.org/10.1371/journal.pone.0117532Google Scholar
Michaelis, A. (1955). Research films in biology, anthropology, psychology and medicine. New York Academic Press. https://doi.org/10.1016/B978-0-12-395693-4.X5001-4Google Scholar
Muybridge, E. (1979). Muybridge’s complete human and animal locomotion: All 781 plates from the 1887 “animal locomotion” (Vol. 3). Dover Publications.Google Scholar
Nguyen, M., Vanderwal, T., & Hasson, U. (2019). Shared understanding of narratives is correlated with shared neural responses. NeuroImage, 184, 161–70. https://doi.org/10.1016/j.neuroimage.2018.09.010Google Scholar
Ramstead, M. J. D., Veissière, S. P. L, & Kirmayer, L. J. (2016). Cultural affordances: Scaffolding local worlds through shared intentionality. Frontiers in Psychology, 7, 1090. https://doi.org/10.3389/fpsyg.2016.01090Google Scholar
Rilling, J. K., Li, T., Chen, X., Gautam, P., Haroon, E., & Thompson, R. R. (2017). Arginine vasopressin effects on subjective judgments and neural responses to same and other-sex faces in men and women. Frontiers in Endocrinology, 8, 200. https://doi.org/10.3389/fendo.2017.00200Google Scholar
Rilling, J. K., & Mascaro, J. S. (2017). The neurobiology of fatherhood. Current Opinion in Psychology, 15, 2632. https://doi.org/10.1016/j.copsyc.2017.02.013Google Scholar
Ruby, J. (2000). Picturing culture: Explorations of film and anthropology. University of Chicago Press.Google Scholar
Scott, J.-A. (2013). Problematizing a researcher’s performance of “insider status”: An autoethnography of “designer disabled” identity. Qualitative Inquiry, 19(2), 101–15. https://doi.org/10.1177/1077800412462990Google Scholar
Silveira, P. P., Gaudreau, H., Atkinson, L., Fleming, A. S., Sokolowksi, M. B., Steiner, M., Kennedy, J. L., Meaney, M. J., Levitan, R. D., & Dubé, L. (2016). Genetic differential susceptibility to socioeconomic status and childhood obesogenic behavior: Why targeted prevention may be the best societal investment. JAMA Pediatrics, 170(4), 359–64. https://doi.org/10.1001/jamapediatrics.2015.4253Google Scholar
Smith, H., & Reichline, N. (1974). Potato planters. 17 min. [Documentary]. Documentary Educational Resources. https://store.der.org/potato-planters-p524.aspxGoogle Scholar
Smith, D., Schlaepfer, P., Major, K., Dyble, M., Page, A. E., Thompson, J., Chaudhary, N., Salali, G. D., Mace, R., Astete, L., Ngales, M., Vinicius, L., & Migliano, A. B. (2017). Cooperation and the evolution of hunter-gatherer storytelling. Nature Communications, 8, 1853. https://doi.org/10.1038/s41467-017-02036-8Google Scholar
Suomi, S. J. (2004). How gene-environment interactions shape biobehavioral development: Lessons from studies with rhesus monkeys. Research in Human Development, 1(3), 205–22. https://doi.org/10.1207/s15427617rhd0103_5Google Scholar
Suzuki, W. A., Feliú-Mójer, M. I., Hasson, U., Yehuda, R., & Zarate, J. M. (2018). Dialogues: The science and power of storytelling. Journal of Neuroscience, 38(44), 9468–70. https://doi.org/10.1523/JNEUROSCI.1942-18.2018Google Scholar
Taylor, L. (1998). “Visual anthropology is dead, long live visual anthropology!American Anthropologist, 100(2), 534–7. https://doi.org/10.1525/aa.1998.100.2.534.Google Scholar
Vatansever, D., Menon, D. K., Manktelow, A. E., Sahakian, B. J., & Stamatakis, E. A. (2015). Default mode dynamics for global functional integration. Journal of Neuroscience, 35(46), 15254–62. https://doi.org/10.1523/JNEUROSCI.2135-15.2015Google Scholar
Vidaurre, D., Smith, S. M., & Woolrich, M. W. (2017). Brain network dynamics are hierarchically organized in time. Proceedings of the National Academy of Sciences of the United States of America, 114(48), 12827–32. https://doi.org/10.1073/pnas.1705120114Google Scholar
Wiessner, P. W. (2014). Embers of society: Firelight talk among the Ju/’hoansi Bushmen. Proceedings of the National Academy of Sciences of the United States of America, 111(39), 14027–35. https://doi.org/10.1073/pnas.1404212111Google Scholar
Willis, A. (2009). Da feast! 22 min. [Documentary]. Documentary Educational Resources. https://store.der.org/da-feast-p851.aspxGoogle Scholar
Woods, A., Hart, A., & Spandler, H. (2019). The recovery narrative: Politics and possibilities of a genre. Culture, Medicine, and Psychiatry, 1–27. https://doi.org/10.1007/s11013-019-09623-yGoogle Scholar
Worth, S., & Adair, J. (1972). Through Navajo eyes: An exploration in film communication and anthropology. Indiana University Press.Google Scholar
Yeshurun, Y., Swanson, S., Simony, E., Chen, J., Lazaridi, C., Honey, C. J., & Hasson, U. (2017). Same story, different story: The neural representation of interpretive frameworks. Psychological Science, 28(3), 307–19. https://doi.org/10.1177%2F0956797616682029Google Scholar
Young, K., & Saver, J. L. (2001). The neurology of narrative. SubStance, 30(94/95), 7284. https://doi.org/10.2307/3685505Google Scholar
Zadbood, A., Chen, J., Leong, Y. C., Norman, K. A, & Hasson, U. (2017). How we transmit memories to other brains: Constructing shared neural representations via communication. Cerebral Cortex, 27(10), 49885000. https://doi.org/10.1093/cercor/bhx202Google Scholar
Zak, P. J. (2013). How stories change the brain. Greater Good Magazine. https://greatergood.berkeley.edu/article/item/how_stories_change_brainGoogle Scholar
Zak, P. J. (2014). Why your brain loves good storytelling. Harvard Business Review. https://hbr.org/2014/10/why-your-brain-loves-good-storytellingGoogle Scholar

References

Allport, F. H. (1954). The structuring of events: Outline of a general theory with applications to psychology. Psychological Review, 61(5), 281303. https://doi.org/10.1037/h0062678Google Scholar
Amodio, D. M. (2014). The neuroscience of prejudice and stereotyping. Nature Reviews Neuroscience, 15(10), 670–82. https://doi.org/10.1038/nrn3800Google Scholar
Berridge, K. C. (2004). Motivation concepts in behavioral neuroscience. Physiology & Behavior, 81(2), 179209. https://doi.org/10.1016/j.physbeh.2004.02.004Google Scholar
Catalani, C., & Minkler, M. (2010). Photovoice: A review of the literature in health and public health. Health Education & Behavior, 37(3), 424–51. https://doi.org/10.1177/1090198109342084Google Scholar
Cikara, M., Bruneau, E., Van Bavel, J. J., & Saxe, R. (2014). Their pain gives us pleasure: How intergroup dynamics shape empathic failures and counter-empathic responses. Journal of Experimental Social Psychology, 55, 110–25. https://doi.org/10.1016/j.jesp.2014.06.007Google Scholar
Cikara, M., & Fiske, S. T. (2013). Their pain, our pleasure: Stereotype content and schadenfreude. Annals of the New York Academy of Sciences, 1299(1), 52–9. https://doi.org/10.1111/nyas.12179Google Scholar
Cikara, M., Jenkins, A. C., Dufour, N., & Saxe, R. (2014). Reduced self-referential neural response during intergroup competition predicts competitor harm. NeuroImage, 96, 3643. https://doi.org/10.1016/j.neuroimage.2014.03.080Google Scholar
Corrigan, P. W., Morris, S. B., Michaels, P. J., Rafacz, J. D., & Rüsch, N. (2012). Challenging the public stigma of mental illness: A meta-analysis of outcome studies. Psychiatric Services, 63(10), 963–73. https://doi.org/10.1176/appi.ps.201100529Google Scholar
de Figueiredo, J. M., & Griffith, J. L. (2016). Chronic pain, chronic demoralization, and the role of psychotherapy. Journal of Contemporary Psychotherapy, 46(3), 167–77. https://doi.org/10.1007/s10879-016-9331-xGoogle Scholar
De Silva, M. J., Rathod, S. D., Hanlon, C., Breuer, E., Chisholm, D., Fekadu, A., Jordans, M., Kigozi, F., Petersen, I., Shidhaye, R., Medhin, G., Ssebunnya, J., Prince, M., Thornicroft, G., Tomlinson, M., Lund, C., & Patel, V. (2015). Evaluation of district mental healthcare plans: The PRIME consortium methodology. British Journal of Psychiatry, 208(s56), s63s70. https://doi.org/10.1192/bjp.bp.114.153858Google Scholar
Decety, J. (Ed.). (2012). Empathy: From bench to bedside. MIT Press.Google Scholar
Dow, J. (1986). Universal aspects of symbolic healing – A theoretical synthesis. American Anthropologist, 88(1), 5669. https://doi.org/10.1525/aa.1986.88.1.02a00040Google Scholar
Hanlon, C., Fekadu, A., Jordans, M., Kigozi, F., Petersen, I., Shidhaye, R., Honikman, S., Lund, C., Prince, M., Raja, S., Thornicraft, G., Tomlinson, M., & Patel, V. (2015). District mental healthcare plans for five low- and middle-income countries: Commonalities, variations and evidence gaps. British Journal of Psychiatry, 208(s56), s47s54. https://doi.org/10.1192/bjp.bp.114.153767Google Scholar
Hanlon, C., Luitel, N. P., Kathree, T., Murhar, V., Shrivasta, S., Medhin, G., Ssebunnya, J., Fekadu, A., Shidhaye, R., Petersen, I., Jordans, M., Kigozi, F., Thornicroft, G., Patel, V., Tomlinson, M., Lund, C., Breuer, E., De Silva, M., & Prince, M. (2014). Challenges and opportunities for implementing integrated mental health care: A district level situation analysis from five low- and middle-income countries. PLoS ONE, 9(2), e88437. https://doi.org/10.1371/journal.pone.0088437Google Scholar
Heim, E., Kohrt, B. A., Koschorke, M., Milenova, M., & Thornicroft, G. (2018). Reducing mental health related stigma in primary health care settings in low- and middle-income countries: A systematic review. Epidemiology and Psychiatric Sciences, 4, 110. https://doi.org/10.1017/S2045796018000458Google Scholar
Henderson, C., Noblett, J., Parke, H., Clement, S., Caffrey, A., Gale-Grant, O., Schulze, B., Druss, B., & Thornicroft, G. (2014). Mental health-related stigma in health care and mental health-care settings. Lancet Psychiatry, 1(6), 467–82. https://doi.org/10.1016/S2215-0366(14)00023-6Google Scholar
Jordans, M. J. D., Luitel, N. P., Pokhrel, P., & Patel, V. (2016). Development and pilot testing of a mental healthcare plan in Nepal. British Journal of Psychiatry, 208(s56), s21s28. https://doi.org/10.1192/bjp.bp.114.153718Google Scholar
Kirmayer, L. J. (2004). The cultural diversity of healing: Meaning, metaphor and mechanism. British Medical Bulletin, 69, 3348. https://doi.org/10.1093/bmb/ldh006Google Scholar
Kirmayer, L. J. (2015). Empathy and alterity in psychiatry. In Kirmayer, L. J., Lemelson, R., & Cummings, C. A. (Eds.), Re-visioning psychiatry: Cultural phenomenology, critical neuroscience and global mental health (pp. 141–67). Cambridge University Press. https://doi.org/10.1017/CBO9781139424745.009Google Scholar
Kohrt, B. A., Jordans, M. J. D., Turner, E. L., Sikkema, K. J., Luitel, N. P., Rai, S., Singla, D. R., Lamichhane, J., Lund, C., & Patel, V. (2018). Reducing stigma among healthcare providers to improve mental health services (RESHAPE): Protocol for a pilot cluster randomized controlled trial of a stigma reduction intervention for training primary healthcare workers in Nepal. Pilot and Feasibility Studies, 4(1), 36. https://doi.org/10.1186/s40814-018-0234-3Google Scholar
Kohrt, B. A., Turner, E. L., Rai, S., Bhardwaj, A, Sikkema, K. J., Adelekun, A., Dhakal, M., Luitel, N. P., Lund, C., Patel, V., & Jordans, M. J. D. (2020). Reducing mental illness stigma in healthcare settings: Proof of concept for a social contact intervention to address what matters most for primary care providers. Social Science & Medicine, 250, 112852. https://doi.org/10.1016/j.socscimed.2020.112852Google Scholar
Lund, C., Tomlinson, M., De Silva, M., Fekadu, A., Shidhaye, R., Jordans, M., Petersen, I., Bhana, A., Kigozi, F., Prince, M., Thornicroft, G., Hanlon, C., Kakuma, R., McDaid, D., Saxena, S., Chisholm, D., Raja, S., Kippen-Wood, S., Honikman, S., … Patel, V. (2012). PRIME: A programme to reduce the treatment gap for mental disorders in five low- and middle-income countries. PLoS Medicine, 9(12), e1001359. https://doi.org/10.1371/journal.pmed.1001359Google Scholar
Lund, C., Tomlinson, M., & Patel, V. (2016). Integration of mental health into primary care in low- and middle-income countries: The PRIME mental healthcare plans. British Journal of Psychiatry, 208(s56), s1s3. https://doi.org/10.1192/bjp.bp.114.153668Google Scholar
Makan, A., Fekadu, A., Murhar, V., Luitel, N., Kathree, T., Ssebunya, J., & Lund, C. (2015). Stakeholder analysis of the Programme for Improving Mental health carE (PRIME): Baseline findings. International Journal of Mental Health Systems, 9, 27. https://doi.org/10.1186/s13033-015-0020-zGoogle Scholar
Mattan, B. D., Wei, K. Y., Cloutier, J., & Kubota, J. T. 2018. The social neuroscience of race-based and status-based prejudice. Current Opinion in Psychology, 24, 2734. https://doi.org/10.1016/j.copsyc.2018.04.010Google Scholar
Mendenhall, E., De Silva, M. J., Hanlon, C., Petersen, I., Shidhaye, R., Jordans, M., Luitel, N., Ssebunnya, J., Fekadu, A., Patel, V., Tomlinson, M., & Lund, C. (2014). Acceptability and feasibility of using non-specialist health workers to deliver mental health care: Stakeholder perceptions from the PRIME district sites in Ethiopia, India, Nepal, South Africa, and Uganda. Social Science & Medicine, 118, 3342. https://doi.org/10.1016/j.socscimed.2014.07.057Google Scholar
Montag, C., Dziobek, I., Richter, I. S., Neuhaus, K., Lehmann, A., Sylla, R., Heekeren, H. R., Heinz, A., & Gallinat, J. (2011). Different aspects of theory of mind in paranoid schizophrenia: Evidence from a video-based assessment. Psychiatry Research, 186(2–3), 203209. https://doi.org/10.1016/j.psychres.2010.09.006Google Scholar
Pescosolido, B. A., & Manago, B. (2017). Getting underneath the power of “contact”: Revisiting the fundamental lever of stigma as a social network phenomenon. In Major, B., Dovidio, J. F., & Link, B. G. (Eds.), The Oxford handbook of stigma, discrimination, and health (pp. 397411). Oxford University Press. https://doi.org/10.1093/oxfordhb/9780190243470.013.16Google Scholar
Pettigrew, T. F., Tropp, L. R., Wagner, U., & Christ, O. (2011). Recent advances in intergroup contact theory. International Journal of Intercultural Relations, 35(3), 271–80. https://doi.org/10.1016/j.ijintrel.2011.03.001Google Scholar
Rai, S., Gurung, D., Kaiser, B. N., Sikkema, K. J., Dhakal, M., Bhardwaj, A., Tergesen, C., & Kohrt, B. A. (2018). A service user co-facilitated intervention to reduce mental illness stigma among primary healthcare workers: Utilizing perspectives of family members and caregivers. Families, Systems, & Health, 36(2), 198209. https://doi.org/10.1037/fsh0000338Google Scholar
Thornicroft, G., Chatterji, S., Evans-Lacko, S., Gruber, M., Sampson, N., Aguilar-Gaxiola, S., Al-Hamzawi, A., Alonso, J., Andrade, L., Borges, G., Bruffaerts, R., Bunting, B., Caldas de Almeida, J. M., Florescu, S., de Girolamo, G., Gureje, O., Haro, J. M., He, Y., Hinkov, H., … Kessler, R. C. (2017). Undertreatment of people with major depressive disorder in 21 countries. British Journal of Psychiatry, 210(2), 119–24. https://doi.org/10.1192/bjp.bp.116.188078Google Scholar
Thornicroft, G., Mehta, N., Clement, S., Evans-Lacko, S., Doherty, M., Rose, D., Koschorke, M., Shidhaye, R., O’Reilly, C., & Henderson, C. (2015). Evidence for effective interventions to reduce mental-health-related stigma and discrimination. Lancet, 387(10023), 1123–32. https://doi.org/10.1016/S0140-6736(15)00298-6Google Scholar
Tiihonen, J., Lönnqvist, J., Wahlbeck, K., Klaukka, T., Niskanen, L., Tanskanen, A., & Haukka, J. (2009). 11-year follow-up of mortality in patients with schizophrenia: A population-based cohort study (FIN11 study). Lancet, 374(9690), 620–7. https://doi.org/10.1016/S0140-6736(09)60742-XCrossRefGoogle ScholarPubMed
Turner, V. W. (1967). The forest of symbols: Aspects of Ndembu ritual. Cornell University Press.Google Scholar
Upadhaya, N., Luitel, N. P., Koirala, S., Adhikari, R. P., Gurung, D., Shrestha, P., Tol, W. A., Kohrt, B. A., & Jordans, M. J. D. (2014). The role of mental health and psychosocial support nongovernmental organizations: Reflections from post-conflict Nepal. Intervention: International Journal of Mental Health, Psychosocial Work & Counselling in Areas of Armed Conflict, 12(Supplement 1), 113–28. https://doi.org/10.1097/WTF.0000000000000064Google Scholar
Wang, C., & Burris, M. A. (1997). Photovoice: Concept, methodology, and use for participatory needs assessment. Health Education & Behavior, 24(3), 369–87. https://doi.org/10.1177/109019819702400309Google Scholar
World Health Organization. (2010). mhGAP Intervention Guide for mental, neurological and substance-use disorders in non-specialized health settings: Mental health Gap Action Programme (mhGAP). www.who.int/mental_health/publications/mhGAP_intervention_guide/en/Google Scholar
Yang, L. H., Kleinman, A., Link, B. G., Phelan, J. C., Lee, S., & Good, B. (2007). Culture and stigma: Adding moral experience to stigma theory. Social Science & Medicine, 64(7), 1524–35. https://doi.org/10.1016/j.socscimed.2006.11.013Google Scholar

References

Akdeniz, C., Tost, H., & Meyer-Lindenberg, A. (2014). The neurobiology of social environmental risk for schizophrenia: An evolving research field. Social Psychiatry and Psychiatric Epidemiology, 49(4), 507–17. https://doi.org/10.1007/s00127-014-0858-4Google Scholar
Anglin, D. M., Greenspoon, M., Lighty, Q., & Ellman, L. M. (2016). Race-based rejection sensitivity partially accounts for the relationship between racial discrimination and distressing attenuated positive psychotic symptoms. Early Intervention in Psychiatry, 10(5), 411–18. https://doi.org/10.1111/eip.12184Google Scholar
Bettencourt, L. M. A. (2013). The origins of scaling in cities. Science, 340(6139), 1438–41. https://doi.org/10.1126/science.1235823Google Scholar
Bourque, F., van der Ven, E., Fusar-Poli, P., & Malla, A. (2012). Immigration, social environment and onset of psychotic disorders. Current Pharmaceutical Design, 18(4), 518–26. https://doi.org/10.2174/138161212799316028Google Scholar
Calabrese, F., Smoreda, Z., Blondel, V. D., & Ratti, C. (2011). Interplay between Telecommunications and face-to-face interactions: A study using mobile phone data. PLoS ONE, 6(7), e20814. https://doi.org/10.1371/journal.pone.0020814Google Scholar
Cantor-Graae, E. (2007). The contribution of social factors to the development of schizophrenia: A review of recent findings. Canadian Journal of Psychiatry, 52(2), 277–86. https://doi.org/10.1177/070674370705200502Google Scholar
Castillejos, M. C., Martin-Pérez, C., & Moreno-Küstner, B. (2018). A systematic review and meta-analysis of the incidence of psychotic disorders: The distribution of rates and the influence of gender, urbanicity, immigration and socio-economic level. Psychological Medicine, 48(13), 2101–15. https://doi.org/10.1017/S0033291718000235Google Scholar
Chong, H. Y., Teoh, S. L., Wu, D. B., Kotirum, S., Chiou, C. F., & Chaiyakunapruk, N. (2016). Global economic burden of schizophrenia: A systematic review. Neuropsychiatric Disease and Treatment, 12, 357–73. https://doi.org/10.2147/NDT.S96649.Google Scholar
Cloutier, M., Aigbogun, M. S., Guerin, A., Nitulescu, R., Ramanakumar, A. V., Kamat, S. A., DeLucia, M., Duffy, R., Legacy, S. N., Henderson, C., Francois, C., & Wu, E. (2016). The economic burden of schizophrenia in the United States in 2013. Journal of Clinical Psychiatry, 77(6), 764–71. https:// doi.org/10.4088/JCP.15m10278.Google Scholar
Collip, D., Myin-Germeys, I., & Van Os, J. (2008). Does the concept of “sensitization” provide a plausible mechanism for the putative link between the environment and schizophrenia? Schizophrenia Bulletin, 34(2), 220–5. https://doi.org/10.1093/schbul/sbm163Google Scholar
Degnan, A., Berry, K., Sweet, D., Abel, K., Crossley, N., & Edge, D. (2018). Social networks and symptomatic and functional outcomes in schizophrenia: A systematic review and meta-analysis. Social Psychiatry and Psychiatric Epidemiology, 53(9), 873–88. https://doi.org/10.1007/s00127-018-1552-8Google Scholar
DeVylder, J. E., Kelleher, I., Lalane, M., Oh, H., Link, B. G., & Koyanagi, A. (2018). Association of urbanicity with psychosis in low- and middle-income countries. JAMA Psychiatry, 75(7), 678–86. https://doi.org/10.1001/jamapsychiatry.2018.0577Google Scholar
Faris, R. E. L., & Dunham, H. W. (1939). Mental disorders in urban areas: An ecological study of schizophrenia and other psychoses. University of Chicago Press.Google Scholar
Haarmans, M., Vass, V., & Bentall, R. P. (2016). Voices’ use of gender, race and other social categories to undermine female voice-hearers: Implications for incorporating intersectionality within CBT for psychosis. Psychosis, 8(3), 203–13. https://doi.org/10.1080/17522439.2015.1131323Google Scholar
Hammels, C., Pishva, E., De Vry, J., van den Hove, D. L. A., Prickaerts, J., van Winkel, R., Selten, J.-P., Lesch, K.-P., Daskalakis, N. P., Steinbusch, H. W. M., van Os, J., Kenis, G., & Rutten, B. P. F. (2015). Defeat stress in rodents: From behavior to molecules. Neuroscience & Biobehavioral Reviews, 59, 111–40. https://doi.org/10.1016/j.neubiorev.2015.10.006Google Scholar
Hollis, F., & Kabbaj, M. (2014). Social defeat as an animal model for depression. ILAR J, 55(2), 221–32. https://doi.org/10.1093/ilar/ilu002Google Scholar
Howes, O. D., & Kapur, S. (2009). The dopamine hypothesis of schizophrenia: Version III – The final common pathway. Schizophrenia Bulletin, 35(3), 549–62. https://doi.org/10.1093/schbul/sbp006Google Scholar
Kawachi, I., & Berkman, L. F. (2001). Social ties and mental health. Journal of Urban Health, 78(3), 458–67. https://doi.org/10.1093/jurban/78.3.458Google Scholar
Kirkbride, J. B., Jones, P. B., Ullrich, S., & Coid, J. W. (2014). Social deprivation, inequality, and the neighborhood-level incidence of psychotic syndromes in East London. Schizophrenia Bulletin, 40(1), 169–80. https://doi.org/10.1093/schbul/sbs151Google Scholar
Kirkbride, J. B., Morgan, C., Fearon, P., Dazzan, P., Murray, R. M., & Jones, P. B. (2007). Neighbourhood-level effects on psychoses: Re-examining the role of context. Psychological Medicine, 37(10), 1413–25. https://doi.org/10.1017/S0033291707000499Google Scholar
Krabbendam, L., & van Os, J. (2005). Schizophrenia and urbanicity: A major environmental influence – conditional on genetic risk. Schizophrenia Bulletin, 31(4), 795–9. https://doi.org/10.1093/schbul/sbi060Google Scholar
Lazer, D., Pentland, A., Adamic, L., Aral, S., Barabási, A.-L., Brewer, D., Brewer, D., Christakis, N., Contractor, N., Fowler, J., Gutmann, M., Jebara, T., King, G., Macy, M., Roy, D., & Van Alstyne, M. (2009). Computational social science. Science, 323(5915), 721–3. https://doi.org/10.1126/science.1167742Google Scholar
Lederbogen, F., Kirsch, P., Haddad, L., Streit, F., Tost, H., Schuch, P., Wüst, S., Pruessner, J. C., Rietschel, M., Deuschle, M., & Meyer-Lindenberg, A. (2011). City living and urban upbringing affect neural social stress processing in humans. Nature, 474(7352), 498501. https://doi.org/10.1038/nature10190Google Scholar
Li, D., Law, S., & Andermann, L. (2012). Association between degrees of social defeat and themes of delusion in patients with schizophrenia from immigrant and ethnic minority backgrounds. Transcultural Psychiatry, 49(5), 735–49. https://doi.org/10.1177/1363461512464625Google Scholar
Luhrmann, T. M. (2007). Social defeat and the culture of chronicity: Or, why schizophrenia does so well over there and so badly here. Culture, Medicine and Psychiatry, 31(2), 135–72. https://doi.org/10.1007/s11013-007-9049-zGoogle Scholar
Maraj, A., Veru, F., Morrison, L., Joober, R., Malla, A, Iyer, S., & Shah, J. (2018). Disengagement in immigrant groups receiving services for a first episode of psychosis. Schizophrenia Research, 193, 399405. https://doi.org/10.1016/j.schres.2017.07.054Google Scholar
Marwaha, S., Johnson, S., Bebbington, P., Stafford, M., Angermeyer, M. C., Brugha, T., Azorin, J.-M., Kilian, R., Hansen, K., & Toumi, M. (2007). Rates and correlates of employment in people with schizophrenia in the UK, France and Germany. British Journal of Psychiatry, 191(1), 30–7. https://doi.org/10.1192/bjp.bp.105.020982Google Scholar
Miritello, G., Lara, R., Cebrian, M., & Moro, E. (2013). Limited communication capacity unveils strategies for human interaction. Scientific Reports, 3, 1950. https://doi.org/10.1038/srep01950Google Scholar
Misiak, B., Krefft, M., Bielawski, T., Moustafa, A. A., Sąsiadek, M. M., & Frydecka, D. (2017). Toward a unified theory of childhood trauma and psychosis: A comprehensive review of epidemiological, clinical, neuropsychological and biological findings. Neuroscience & Biobehavioral Reviews, 75, 393406. https://doi.org/10.1016/j.neubiorev.2017.02.015Google Scholar
Morgan, C., Kirkbride, J., Hutchinson, G., Craig, T., Morgan, K., Dazzan, P., Boydell, J., Doody, G. A., Jones, P. B., Murray, R. M., Leff, J., & Fearon, P. (2008). Cumulative social disadvantage, ethnicity and first-episode psychosis: A case-control study. Psychological Medicine, 38(12), 1701–15. https://doi.org/10.1017/S0033291708004534Google Scholar
Pedersen, C. B., & Mortensen, P. B. (2001). Evidence of a dose-response relationship between urbanicity during upbringing and schizophrenia risk. Archives of General Psychiatry, 58(11), 1039–46. https://doi.org/10.1001/archpsyc.58.11.1039Google Scholar
Priebe, S., Chevalier, A., Hamborg, T., Golden, E., King, M., & Pistrang, N. (2019). Effectiveness of a volunteer befriending programme for patients with schizophrenia: Randomised controlled trial. British Journal of Psychiatry. Advance online publication. https://doi.org/10.1192/bjp.2019.42Google Scholar
Saramäki, J., Leicht, E. A., López, E., Roberts, S. G. B., Reed-Tsochas, F., & Dunbar, R. I. M. (2014). Persistence of social signatures in human communication. Proceedings of the National Academy of Sciences of the United States of America, 111(3), 942–7. https://doi.org/10.1073/pnas.1308540110Google Scholar
Sariaslan, A., Fazel, S., D’Onofrio, B. M., Långström, N., Larsson, H., Bergen, S. E., Kuja-Halkola, R., & Lichtenstein, P. (2016). Schizophrenia and subsequent neighborhood deprivation: Revisiting the social drift hypothesis using population, twin and molecular genetic data. Translational Psychiatry, 6, e796. https://doi.org/10.1038/tp.2016.62Google Scholar
Schläpfer, M., Bettencourt, L. M. A., Grauwin, S., Raschke, M., Claxton, R., Smoreda, Z., West, G. B., & Ratti, C. (2014). The scaling of human interactions with city size. Journal of the Royal Society Interface, 11(98), 20130789. https://doi.org/10.1098/rsif.2013.0789Google Scholar
Selten, J.-P., & Cantor-Graae, E. (2005). Social defeat: Risk factor for schizophrenia? British Journal of Psychiatry, 187(2), 101–2. https://doi.org/10.1192/bjp.187.2.101CrossRefGoogle ScholarPubMed
Selten, J.-P., & Cantor-Graae, E. (2007). Hypothesis: Social defeat is a risk factor for schizophrenia? British Journal of Psychiatry, (S51), s9–s12. https://doi.org/10.1192/bjp.191.51.s9Google Scholar
Selten, J.-P., van der Ven, E., Rutten, B. P. F., & Cantor-Graae, E. (2013). The social defeat hypothesis of schizophrenia: An update. Schizophrenia Bulletin, 39(6), 1180–6. https://doi.org/10.1093%2Fschbul%2Fsbt134Google Scholar
Selten, J.-P., van Os, J., & Cantor-Graae, E. (2016). The social defeat hypothesis of schizophrenia: Issues of measurement and reverse causality. World Psychiatry, 15(3), 294–5. https://doi.org/10.1002/wps.20369Google Scholar
Statistics Canada. (2014–2018). Employment and unemployment rate, annual, population centres and rural areas. Table 14-10-0106-01. [Data file]. www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=1410010601Google Scholar
Toyoda, A. (2017). Social defeat models in animal science: What we have learned from rodent models. Animal Science Journal, 88(7), 944–52. https://doi.org/10.1111/asj.12809Google Scholar
Vassos, E., Pedersen, C. B., Murray, R. M., Collier, D. A., & Lewis, C. M. (2012). Meta-analysis of the association of urbanicity with schizophrenia. Schizophrenia Bulletin, 38(6), 1118–23. https://doi.org/10.1093/schbul/sbs096Google Scholar

References

Aiken, M., & Kirwan, G. (2012). Prognoses for diagnoses: Medical search online and “cyberchondria”. BMC Proceedings, 6(Suppl. 4), P30. https://doi.org/10.1186/1753-6561-6-S4-P30Google Scholar
Anderson, B. (1983). Imagined communities: Reflections on the origin and spread of nationalism. Verso.Google Scholar
Assefi, S. L., & Garry, M. (2003). Absolut® memory distortions: Alcohol placebos influence the misinformation effect. Psychological Science, 14(1), 7780. https://doi.org/10.1111/1467-9280.01422Google Scholar
Atran, S., & Norenzayan, A. (2004). Religion’s evolutionary landscape: Counterintuition, commitment, compassion, communion. Behavioral and Brain Sciences, 27(6), 713–30. https://doi.org/10.1017/S0140525X04000172Google Scholar
Bourdieu, P. (1977). Outline of a theory of practice (Nice, R., Trans.). Cambridge University Press. https://doi.org/10.1017/CBO9780511812507Google Scholar
Boyd, d. (2011). Social network sites as networked publics: Affordances, dynamics, and implications. In Papacharissi, Z. (Ed.), A networked self: Identity, community, and culture on social network sites (pp. 3958). Routledge.Google Scholar
Bozoglan, B., Demirer, V., & Sahin, I. (2014). Problematic Internet use: Functions of use, cognitive absorption, and depression. Computers in Human Behavior, 37, 117–23. https://doi.org/10.1016/j.chb.2014.04.042Google Scholar
Brugger, P., Lenggenhager, B., & Giummarra, M. J. (2013). Xenomelia: A social neuroscience view of altered bodily self-consciousness. Frontiers in Psychology, 4, 204. https://doi.org/10.3389/fpsyg.2013.00204Google Scholar
Bruineberg, J., & Rietveld, E. (2014). Self-organization, free energy minimization, and optimal grip on a field of affordances. Frontiers in Human Neuroscience, 8, 599. https://doi.org/10.3389/fnhum.2014.00599Google Scholar
Charland, L. C. (2004). A madness for identity: Psychiatric labels, consumer autonomy, and the perils of the Internet. Philosophy, Psychiatry, & Psychology, 11(4), 335–49. https://doi.org/10.1353/ppp.2005.0006Google Scholar
Chemero, A. (2003). An outline of a theory of affordances. Ecological Psychology, 15(2), 181–95. https://doi.org/10.1207/S15326969ECO1502_5Google Scholar
Chemero, A. (2009). Radical embodied cognitive science. MIT Press.Google Scholar
Clark, A. (2003). Natural-born cyborgs: Minds, technologies, and the future of human intelligence. Oxford University Press.Google Scholar
Clark, A., & Chalmers, D. (1998). The extended mind. Analysis, 58(1), 719. https://doi.org/10.1093/analys/58.1.7Google Scholar
Colombetti, G. (2013). Psychopathology and the enactive mind. In Fulford, K. W. M., Davies, M., Gipps, R. G. T., Graham, G., Sadler, J. Z., Stanghellini, G., & Thornton, T. (Eds.), The Oxford handbook of philosophy and psychiatry (pp. 10831102). Oxford University Press.Google Scholar
Constant, A., Ramstead, M. J., Veissière, S. P., & Friston, K. (2019). Regimes of expectations: An active inference model of social conformity and human decision making. Frontiers in Psychology, 10, 679. https://doi.org/10.3389/fpsyg.2019.00679Google Scholar
Davis, J. (2012). Prosuming identity: The production and consumption of transableism on transabled.org. American Behavioral Scientist, 56(4), 596617. https://doi.org/10.1177/0002764211429361Google Scholar
Dunbar, R. I. M. (1992). Neocortex size as a constraint on group size in primates. Journal of Human Evolution, 22(6), 469–93. https://doi.org/10.1016/0047-2484(92)90081-JGoogle Scholar
Ferrara, E., & Yang, Z. (2015). Measuring emotional contagion in social media. PLoS ONE, 10(11), e0142390. https://doi.org/10.1371/journal.pone.0142390Google Scholar
Fischer, R., & Xygalatas, D. (2014). Extreme rituals as social technologies. Journal of Cognition and Culture, 14(5), 345–55. https://doi.org/10.1163/15685373-12342130Google Scholar
Fowler, J. H., & Christakis, N. A. (2008). Dynamic spread of happiness in a large social network: Longitudinal analysis over 20 years in the Framingham Heart Study. The BMJ, 337, a2338. https://doi.org/10.1136/bmj.a2338Google Scholar
Fuchs, T., & De Jaegher, H. (2009). Enactive intersubjectivity: Participatory sense-making and mutual incorporation. Phenomenology and the Cognitive Sciences, 8(4), 465–86. https://doi.org/10.1007/s11097-009-9136-4Google Scholar
Gervais, W. M., & Norenzayan, A. (2012). Like a camera in the sky? Thinking about God increases public self-awareness and socially desirable responding. Journal of Experimental Social Psychology, 48(1), 298302. https://doi.org/10.1016/j.jesp.2011.09.006https://doi.org/10.1016/j.jesp.2011.09.006Google Scholar
Grieve, G. (2010). Virtually embodying the field: Silent online Buddhist meditation, immersion, and the Cardean ethnographic method. Online: Heidelberg Journal of Religions on the Internet, 4(1), 3562. https://doi.org/10.11588/rel.2010.1.9384.Google Scholar
Henrich, J. (2016). The secret of our success: How culture is driving human evolution, domesticating our species, and making us smarter. Princeton University Press.Google Scholar
Hrdy, S. B. (2011). Mothers and others: The evolution of mutual understanding. Harvard University Press.Google Scholar
Hutto, D. D., Kirchhoff, M. D., & Myin, E. (2014). Extensive enactivism: Why keep it all in? Frontiers in Human Neuroscience, 8, 706. https://doi.org/10.3389/fnhum.2014.00706Google Scholar
Ingold, T. (2001). From the transmission of representations to the education of attention. In Whitehouse, H. (Ed.), The debated mind: Evolutionary psychology versus ethnography (pp. 113–53). Berg Publishers.Google Scholar
Isler, J. J. (2016). Tulpamancy: Transcending the assumption of singularity in the human mind. Paper presented at the meeting of GRACLS, “The extra-human,” The University of Texas at Austin, TX, United States of America.Google Scholar
Karakas, F. (2009). Welcome to World 2.0: The new digital ecosystem. Journal of Business Strategy, 30(4), 2330. https://doi.org/10.1108/02756660910972622Google Scholar
Kirmayer, L. J., Robbins, J. M., & Paris, J. (1994). Somatoform disorders: Personality and the social matrix of somatic distress. Journal of Abnormal Psychology, 103(1), 125–36. https://doi.org/10.1037/0021-843X.103.1.125Google Scholar
Kramer, A. D. I., Guillory, J. E., & Hancock, J. T. (2014). Experimental evidence of massive-scale emotional contagion through social networks. Proceedings of the National Academy of Sciences of the United States of America, 111(24), 8788–90. https://doi.org/10.1073/pnas.1320040111Google Scholar
Laycock, J. P. (2012). “We are spirits of another sort”: Ontological rebellion and religious dimensions of the otherkin community. Nova Religio, 15(3), 6590. https://doi.org/10.1525/nr.2012.15.3.65Google Scholar
Lemogne, C., Consoli, S. M., Limosin, F., & Bonfils, P. (2015). Treating empty nose syndrome as a somatic symptom disorder. General Hospital Psychiatry, 37(3), 273.e910273.e10. https://doi.org/10.1016/j.genhosppsych.2015.02.005Google Scholar
Mauss, M. (1973). Techniques of the body. Economy and Society, 2(1), 7088. https://doi.org/10.1080/03085147300000003Google Scholar
McGeoch, P. D., Brang, D., Song, T., Lee, R. R., Huang, M., & Ramachandran, V. S. (2011). Xenomelia: A new right parietal lobe syndrome. Journal of Neurology, Neurosurgery & Psychiatry, 82(12), 1314–19. https://doi.org/10.1136/jnnp-2011-300224Google Scholar
Medoff, Z. M., & Colloca, L. (2015). Placebo analgesia: Understanding the mechanisms. Pain Management, 5(2), 8996. https://doi.org/10.2217/pmt.15.3Google Scholar
Milgram, S. (1963). Behavioral study of obedience. Journal of Abnormal and Social Psychology, 67(4), 371–8. https://doi.org/10.1037/h0040525Google Scholar
Mueller, A. S., & Abrutyn, S. (2015). Suicidal disclosures among friends: Using social network data to understand suicide contagion. Journal of Health and Social Behavior, 56(1), 131–48. https://doi.org/10.1177/0022146514568793Google Scholar
O’Callaghan, S. (2015). Navigating the ‘other’ world: Cyberspace, popular culture and the realm of the otherkin. Culture and Religion, 16(3), 253–68. https://doi.org/10.1080/14755610.2015.1083454Google Scholar
O’Reilly, T. (2007). What is Web 2.0: Design patterns and business models for the next generation of software. Communications & Strategies, 65, 1737. https://mpra.ub.uni-muenchen.de/4580/1/MPRA_paper_4580.pdfGoogle Scholar
Parker, S., Garry, M., Einstein, G. O., & McDaniel, M. A. (2011). A sham drug improves a demanding prospective memory task. Memory, 19(6), 606–12. https://doi.org/10.1080/09658211.2011.592500Google Scholar
Payne, S. C. (2009). Empty nose syndrome: What are we really talking about? Otolaryngologic Clinics of North America, 42(2), 331–7. https://doi.org/10.1016/j.otc.2009.02.002Google Scholar
Ramstead, M. J. D., Veissière, S. P. L., & Kirmayer, L. J. (2016). Cultural affordances: Scaffolding local worlds through shared intentionality and regimes of attention. Frontiers in Psychology, 7, 1090. https://doi.org/10.3389/fpsyg.2016.01090Google Scholar
Raz, A., Raikhel, E., & Anbar, R. D. (2008). Placebos in medicine: Knowledge, beliefs, and patterns of use. McGill Journal of Medicine, 11(2), 206–11. www.ncbi.nlm.nih.gov/pmc/articles/PMC2582662/Google Scholar
Rietveld, E., & Kiverstein, J. (2014). A rich landscape of affordances. Ecological Psychology, 26(4), 325–52. https://doi.org/10.1080/10407413.2014.958035Google Scholar
Saafan, M. E., Hegazy, H. M., & Albirmawy, O. A. (2016). Empty nose syndrome: Etiopathogenesis and management. The Egyptian Journal of Otolaryngology, 32(3), 119–29. https://doi.org/10.4103/1012-5574.186540Google Scholar
Sperber, D. (1996). Explaining culture: A naturalistic approach. Blackwell Publishers.Google Scholar
Starcevic, V., & Aboujaoude, E. (2015). Cyberchondria, cyberbullying, cybersuicide, cybersex: “New” psychopathologies for the 21st century? World Psychiatry, 14(1), 97100. https://doi.org/10.1002/wps.20195Google Scholar
Thompson, E. (2007). Mind in life: Biology, phenomenology, and the sciences of mind. Belknap Press.Google Scholar
Tomasello, M. (2009). Why we cooperate. MIT Press.Google Scholar
Tomasello, M., & Rakoczy, H. (2003). What makes human cognition unique? From individual to shared to collective intentionality. Mind & Language, 18(2), 121–47. https://doi.org/10.1111/1468-0017.00217Google Scholar
Varela, F. J., Thompson, E., & Rosch, E. (1991). The embodied mind: Cognitive science and human experience. MIT Press.Google Scholar
Veissière, S. (2016). Varieties of Tulpa experiences: The hypnotic nature of human sociality, personhood, and interphenomenality. In Raz, A. & Lifshitz, M. (Eds.), Hypnosis and meditation: Towards an integrative science of conscious planes (pp. 5576). Oxford University Press.Google Scholar
Veissière, S., & Gibbs-Bravo, L. (2016). Juicing: Language, ritual, and placebo sociality in a community of extreme eaters. In Cargill, K. (Ed.), Food cults: How fads, dogma, and doctrine influence diet (pp. 6386). Rowman & Littlefield.Google Scholar
Veissière, S. P. L., & Stendel, M. (2018). Hypernatural monitoring: A social rehearsal account of smartphone addiction. Frontiers in Psychology, 9, 141. https://doi.org/10.3389/fpsyg.2018.00141Google Scholar
Veissière, S. P., Constant, A., Ramstead, M. J., Friston, K. J., & Kirmayer, L. J. (2020). Thinking through other minds: A variational approach to cognition and culture. Behavioral and Brain Sciences, 43, e90, 1–75. https://doi.org/10.1017/S0140525X19001213Google Scholar
Whitehouse, H. (2001). Transmissive frequency, ritual, and exegesis. Journal of Cognition and Culture, 1(2), 167–81. https://doi.org/10.1163/156853701316931399Google Scholar
Whitehouse, H. (2004). Modes of religiosity: A cognitive theory of religious transmission. Rowman Altamira.Google Scholar
Xygalatas, D., Mitkidis, P., Fischer, R., Reddish, P., Skewes, J., Geertz, A.W., Roepstorff, A., & Bulbulia, J. (2013). Extreme rituals promote prosociality. Psychological Science, 24(8), 1602–5. https://doi.org/10.1177/0956797612472910Google Scholar

References

Antze, P. (2010). On the pragmatics of empathy in the neurodiversity movement. In Lambek, M. (Ed.), Ordinary ethics: Anthropology, language, and action (pp. 310–27). Fordham University Press. www.jstor.org/stable/j.ctt13x07p9.20Google Scholar
Bagatell, N. (2007). Orchestrating voices: Autism, identity and the power of discourse. Disability & Society, 22(4), 413–26. https://doi.org/10.1080/09687590701337967Google Scholar
Bagatell, N. (2010). From cure to community: Transforming notions of autism. Ethos, 38(1), 3355. https://doi.org/10.1111/j.1548-1352.2009.01080.xGoogle Scholar
Baggs, M. (2016, November 1). Reviving the concept of cousins [Blog post]. https://ballastexistenz.wordpress.com/2016/11/01/cousins/Google Scholar
Barnes, R. E., & McCabe, H. (2012). Should we welcome a cure for autism? A survey of the arguments. Medicine Health Care and Philosophy, 15(3), 255–69. https://doi.org/10.1007/s11019-011-9339-7Google Scholar
Belek, B. (2018). Autism and the proficiency of social ineptitude: Probing the rules of “appropriate” behavior. Ethos, 46(2), 161–79. https://doi.org/10.1111/etho.12202Google Scholar
Bertilsdotter-Rosqvist, H. (2012). Normal for an Asperger: Notions of the meanings of diagnoses among adults with Asperger syndrome. Journal of Intellectual and Developmental Disabilities, 50(2), 120–8. https://doi.org/10.1352/1934-9556-50.2.120Google Scholar
Brown, P., Zavestoski, S., McCormick, S., Mayer, B., Morello-Frosch, R., & Altman, R. G. (2004). Embodied health movements: New approaches to social movements in health. Sociology of Health & Illness, 26(1), 5080. https://doi.org/10.1111/j.1467-9566.2004.00378.xGoogle Scholar
Cascio, M. A. (2012). Neurodiversity: Autism pride among mothers of children with autism spectrum disorders. Intellectual and Developmental Disabilities, 50(3), 273–83. https://doi.org/10.1352/1934-9556-50.3.273Google Scholar
Cascio, M. A. (2015). Biopolitics and subjectivity: The case of autism spectrum conditions in Italy [Doctoral dissertation]. Case Western Reserve University. https://etd.ohiolink.edu/pg_10?::NO:10:P10_ETD_SUBID:102221Google Scholar
Cascio, M. A., Andrada, B. C., & Bezerra, B. (2018). Psychiatric reform and autism services in Italy and Brazil. In Fein, E. & Rios, C. (Eds.), Autism in translation: An intercultural conversation on autism spectrum conditions (pp. 5387). Springer International Publishing. https://doi.org/10.1007/978-3-319-93293-4_3Google Scholar
Chamak, B. (2008). Autism and social movements: French parents’ associations and international autistic individuals’ organisations. Sociology of Health and Illness, 30(1), 7696. https://doi.org/10.1111/j.1467-9566.2007.01053.xGoogle Scholar
Chamak, B. (2009). Autisme et militantisme: De la maladie à la différence. Quaderni, 68, 6170. https://doi.org/10.4000/quaderni.268Google Scholar
Chamak, B. (2010). Autisme, handicap et mouvements sociaux. ALTER-European Journal of Disability Research/Revue Européenne de Recherche sur le Handicap, 4(2), 103–15. https://doi.org/10.1016/j.alter.2010.02.001Google Scholar
Chamak, B., & Bonniau, B. (2013). Autism and social movements in France: A comparative perspective. In Davidson, J. & Orsini, M. (Eds.), Worlds of autism: Across the spectrum of neurological difference (pp. 239–57). University of Minnesota Press. https://doi.org/10.5749/minnesota/9780816688883.003.0011Google Scholar
Chamak, B., & Bonniau, B. (2014). Neurodiversité: Une autre façon de penser. In Chamak, B. & Moutaud, B. (Eds.), Neurosciences et société: Enjeux des savoirs et pratiques sur le cerveau (pp. 211–30). Armand Colin.Google Scholar
Cola, M. (2012). Ragionevolmente differenti: Una riflessione antropologica su sindrome di Asperger e disturbo dello spettro autistico. I libri di Emil.Google Scholar
Cola, M., & Crocetti, D. (2011). Negotiating normality: Experiences from three Italian patient support groups. Kroeber Anthropological Society Papers, 99(1), 214–36. https://kas.berkeley.edu/documents/Issue_99-100/15-Negotiating.pdfGoogle Scholar
Coombe, R. J. (1990). Barren ground: Re-conceiving honour and shame in the field of Mediterranean ethnography. Anthropologica, 32(2), 221–38. www.jstor.org/stable/25605579Google Scholar
Davidson, J., & Henderson, V. L. (2010). ‘Coming out’ on the spectrum: Autism, identity and disclosure. Social & Cultural Geography, 11(2), 155–70. https://doi.org/10.1080/14649360903525240Google Scholar
Fein, E. (2011). Innocent machines: Asperger’s syndrome and the neurostructural self. In Pickersgill, M. & Van Keulen, I. (Eds.), Sociological reflections on the neurosciences (pp. 2749). Emerald Group Publishing. https://doi.org/10.1108/S1057-6290(2011)0000013006Google Scholar
Fenton, A., & Krahn, T. (2007). Autism, neurodiversity, and equality beyond the ‘normal’. Journal of Ethics in Mental Health, 2(2), 16. https://jemh.ca/issues/v2n2/documents/JEMH_V2N2_Theme_Article2_Neurodiversity_Autism.pdfGoogle Scholar
Fricker, M. (2007). Epistemic injustice: Power & the ethics of knowing. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780198237907.001.0001Google Scholar
Graby, S. (2015). Neurodiversity: Bridging the gap between the disabled people’s movement and the mental health system survivors’ movement? In Spandler, H., Anderson, J., & Sapey, B. (Eds.), Madness, distress and the politics of disablement (pp. 231–44). Bristol University Press. https://doi.org/10.2307/j.ctt1t898sg.21Google Scholar
Grace, I. (2013). NeuroQueer. http://neuroqueer.blogspot.comGoogle Scholar
Hacking, I. (1995). The looping effects of human kinds. In Sperber, D., Premack, D., & Premack, A. J. (Eds.), Symposia of the Fyssen Foundation. Causal cognition: A multidisciplinary debate (pp. 351–94). Clarendon Press. https://doi.org/10.1093/acprof:oso/9780198524021.003.0012Google Scholar
Hacking, I. (2006). Making up people. London Review of Books, 28(16), 23–6. www.lrb.co.uk/v28/n16/ian-hacking/making-up-peopleGoogle Scholar
Hacking, I. (2009a). Autistic autobiography. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1522), 1467–73. https://doi.org/10.1098/rstb.2008.0329Google Scholar
Hacking, I. (2009b). How we have been learning to talk about autism: A role for stories. Metaphilosophy, 40(3–4), 499516. https://doi.org/10.1111/j.1467-9973.2009.01607.xGoogle Scholar
Hacking, I. (2009c). Humans, aliens, & autism. Daedalus, 138(3), 4459. https://doi.org/10.1162/daed.2009.138.3.44Google Scholar
Hacking, I. (2010). Autism fiction: A mirror of an internet decade? University of Toronto Quarterly, 79(2), 632–55. https://doi.org/10.3138/utq.79.2.632Google Scholar
Hart, B. (2014). Autism parents & neurodiversity: Radical translation, joint embodiment and the prosthetic environment. BioSocieties, 9(3), 284303. https://doi.org/10.1057/biosoc.2014.20Google Scholar
Hens, K., Robeyns, I., & Schaubroeck, K. (2019). The ethics of autism. Philosophy Compass, 14(1), e12559. https://doi.org/10.1111/phc3.12559Google Scholar
Hughes, B. (2009). Disability activisms: Social model stalwarts and biological citizens. Disability & Society, 24(6), 677–88. https://doi.org/10.1080/09687590903160118Google Scholar
Jongsma, K., Spaeth, E., & Schicktanz, S. (2017). Epistemic injustice in dementia and autism patient organizations: An empirical analysis. AJOB Empirical Bioethics, 8(4), 221–33. https://doi.org/10.1080/23294515.2017.1402833Google Scholar
Kapp, S. K., Gillespie-Lynch, K., Sherman, L. E., & Hutman, T. (2013). Deficit, difference, or both? Autism and neurodiversity. Developmental Psychology, 49(1), 5971. https://doi.org/10.1037/a0028353Google Scholar
Kras, J. F. (2010). The “ransom notes” affair: When the neurodiversity movement came of age. Disability Studies Quarterly, 30(1). www.dsq-sds.org/article/view/1065/1254Google Scholar
Lock, M., & Kaufert, P. (2001). Menopause, local biologies, and cultures of aging. American Journal of Human Biology, 13(4), 494504. https://doi.org/10.1002/ajhb.1081Google Scholar
Orsini, M. (2009). Contesting the autistic subject: Biological citizenship and the autism/autistic movement. In Murray, S. J. & Holmes, D. (Eds.), Critical interventions in the ethics of healthcare: Challenging the principle of autonomy in bioethics (pp. 115–30). Ashgate Publishing Company.Google Scholar
Orsini, M., & Davidson, J. (2013). Critical autism studies: Notes on an emerging field. In Davidson, J. & Orsini, M. (Eds.), Worlds of autism: Across the spectrum of neurological difference (pp. 128). University of Minnesota Press. https://doi.org/10.5749/minnesota/9780816688883.003.0001Google Scholar
Ortega, F. (2009). The cerebral subject and the challenge of neurodiversity. BioSocieties, 4(4), 425–45. https://doi.org/10.1017/S1745855209990287Google Scholar
Pellicano, E., Dinsmore, A., & Charman, T. (2014). What should autism research focus upon? Community views and priorities from the United Kingdom. Autism, 18(7), 756–70. https://doi.org/10.1177/1362361314529627Google Scholar
Perry, A. (2012). Autism beyond pediatrics: Why bioethicists ought to rethink consent in light of chronicity and genetic identity. Bioethics, 26(5), 236–41. https://doi.org/10.1111/j.1467-8519.2011.01952.xGoogle Scholar
Raz, A., Jongsma, K. R., Rimon-Zarfaty, N., Späth, E., Bar-Nadav, B., Vaintropov, E., & Schicktanz, S. (2018). Representing autism: Challenges of collective representation in German and Israeli associations for and of autistic people. Social Science & Medicine, 200, 6572. https://doi.org/10.1016/j.socscimed.2018.01.024Google Scholar
Rios, C., & Andrada, B. C. (2015). The changing face of autism in Brazil. Culture, Medicine and Psychiatry, 39(2), 213–34. https://doi.org/10.1007/s11013-015-9448-5Google Scholar
Rodogno, R., Krause-Jensen, K., & Ashcroft, R. E. (2016). ‘Autism and the good life’: A new approach to the study of well-being. Journal of Medical Ethics, 42(6), 401–8. https://doi.org/10.1136/medethics-2016-103595Google Scholar
Rose, N. (2003). Neurochemical selves. Society, 41(1), 4659. https://doi.org/10.1007/BF02688204Google Scholar
Silberman, S. (2016). NeuroTribes: The legacy of autism and the future of neurodiversity: Penguin Publishing Group.Google Scholar
Silverman, C. (2011). Understanding autism: Parents, doctors, and the history of a disorder. Princeton University Press.Google Scholar
Sparrow, M. (2016, October 26). ABA [Blog post]. http://unstrangemind.com/aba/Google Scholar
Tan, C. D. (2018). “I’m a normal autistic person, not an abnormal neurotypical”: Autism spectrum disorder diagnosis as biographical illumination. Social Science & Medicine, 197, 161–7. https://doi.org/10.1016/j.socscimed.2017.12.008Google Scholar
van den Bosch, K. E., Krzeminska, A., Song, E. Y., van Hal, L. B. E., Waltz, M. M., Ebben, H., & Schippers, A. P. (2018). Nothing about us, without us: A case study of a consumer-run organization by and for people on the autism spectrum in the Netherlands. Journal of Management & Organization, 1–17. https://doi.org/10.1017/jmo.2018.54Google Scholar
Vidal, F. (2009). Brainhood, anthropological figure of modernity. History of the Human Sciences, 22(1), 536. https://doi.org/10.1177%2F0952695108099133Google Scholar
Vidal, F., & Ortega, F. (2017). Being brains: Making the cerebral subject. Fordham University Press. https://doi.org/10.2307/j.ctt1xhr6bnGoogle Scholar
Walker, N. (2015, May 4). Neuroqueer: An introduction [Blog post]. http://neuroqueer.blogspot.com/2015/05/neuroqueer-introduction-by-nick-walker.htmlGoogle Scholar
Waltz, M. (2003, July). Metaphors of autism, and autism as metaphor: An exploration of representation [Paper presentation]. Inter-Disciplinary.net Second Global Conference – Making Sense of: Health, Illness and Disease, Mansfield College, Oxford, England.Google Scholar
Waltz, M., van den Bosch, K., Ebben, H., van Hal, L., & Schippers, A. (2015). Autism self-advocacy in the Netherlands: Past, present and future. Disability & Society, 30(8), 1174–91. https://doi.org/10.1080/09687599.2015.1090954Google Scholar
Yergeau, M. (2018). Authoring autism: On rhetoric and neurological queerness. Duke University Press.Google Scholar

References

Ali, S. S., Lifshitz, M., & Raz, A. (2014). Empirical neuroenchantment: From reading minds to thinking critically. Frontiers in Human Neuroscience, 8, 357. https://doi.org/10.3389/fnhum.2014.00357Google Scholar
Alivisatos, A. P., Chun, M., Church, G. M., Greenspan, R. J., Roukes, M. L., & Yuste, R. (2012). The brain activity map project and the challenge of functional connectomicsNeuron74(6), 970–74. https://doi.org/10.1016/j.neuron.2012.06.006Google Scholar
Allwood, C. M. (2018). The nature and challenges of Indigenous psychologies. Cambridge University Press.Google Scholar
Andersen, H. (2016). Collaboration, interdisciplinarity, and the epistemology of contemporary science. Studies in History and Philosophy of Science Part A, 56, 110.Google Scholar
Badcock, P. B., Friston, K. J., Ramstead, M. J. D., Ploeger, A., & Hohwy, J. (2019). The hierarchically mechanistic mind: An evolutionary systems theory of the human brain, cognition, and behavior. Cognitive, Affective, & Behavioral Neuroscience. Advance online publication. https://doi.org/10.3758/s13415-019-00721-3Google Scholar
Barry, A., & Born, G. (Eds.). (2013). Interdisciplinarity: Reconfigurations of the social and natural sciences. Routledge.Google Scholar
Bateson, M. C. (1972). Our own metaphor: A personal account of a conference on the effects of conscious purpose on human adaptation. Knopf.Google Scholar
Bechtel, W. (2012). Mental mechanisms: Philosophical perspectives on cognitive neuroscience. Psychology Press. https://doi.org/10.4324/9780203810095Google Scholar
Bennett, M., & Hacker, P. (2003). Philosophical foundations of neuroscience. Blackwell.Google Scholar
Bhaskar, R., Danermark, B., & Price, L. (2018). Interdisciplinarity and wellbeing: A critical realist general theory of interdisciplinarity. Routledge. https://doi.org/10.4324/9781315177298Google Scholar
Boone, W., & Piccinini, G. (2016). The cognitive neuroscience revolution. Synthese, 193(5), 1509–34. https://doi.org/10.1007/s11229-015-0783-4Google Scholar
Bromham, L., Dinnage, R., & Hua, X. (2016). Interdisciplinary research has consistently lower funding success. Nature, 534(7609), 684. https://doi.org/10.1038/nature18315Google Scholar
Byrne, D. S., & Callaghan, G. (2013). Complexity theory and the social sciences: The state of the art. Routledge.Google Scholar
Cacioppo, J. T., Berntson, G. G., Sheridan, J. F., & McClintock, M. K. (2000). Multilevel integrative analyses of human behavior: Social neuroscience and the complementing nature of social and biological approachesPsychological Bulletin126(6), 829–43. https://doi.org/10.1037/0033-2909.126.6.829Google Scholar
Capra, F., & Luisi, P. L. (2014). The systems view of life: A unifying vision. Cambridge University Press.Google Scholar
Choudhury, S., McKinney, K. A., & Kirmayer, L. J. (2015). “Learning how to deal with feelings differently”: Psychotropic medications as vehicles of socialization in adolescence. Social Science & Medicine, 143, 311–19.Google Scholar
Choudhury, S., & Slaby, J. (Eds.). (2011). Critical neuroscience: A handbook of the social and cultural contexts of neuroscience. Wiley Blackwell.Google Scholar
Coen, E. (2012). Cells to civilizations: The principles of change that shape life. Princeton University Press.Google Scholar
Collins, H. (2017). Gravity’s kiss: The detection of gravitational waves. MIT Press.Google Scholar
Collins, H., & Evans, R. (2017). Why democracies need science. John Wiley & Sons.Google Scholar
Cooper, R. P., & Peebles, D. (2015). Beyond single-level accounts: The role of cognitive architectures in cognitive scientific explanation. Topics in Cognitive Science, 7(2), 243–58. https://doi.org/10.1111/tops.12132Google Scholar
Crary, J. (2013). 24/7: Late capitalism and the ends of sleep. Verso Books.Google Scholar
Craver, C. F. (2009). Explaining the brain: Mechanisms and the mosaic unity of neuroscience. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199299317.003.0007Google Scholar
Dawson, M. R. (2013). Mind, body, world: Foundations of cognitive science. Athabasca University Press.Google Scholar
De Jaegher, H., Di Paolo, E., & Adolphs, R. (2016). What does the interactive brain hypothesis mean for social neuroscience? A dialoguePhilosophical Transactions of the Royal Society B: Biological Sciences371(1693), 20150379. https://doi.org/10.1098/rstb.2015.0379Google Scholar
Dennett, D. (2007). Heterophenomenology reconsidered. Phenomenology and the Cognitive Sciences, 6, 247–70.Google Scholar
De Vos, J., & Pluth, E. (2015). Neuroscience and critique: Exploring the limits of the neurological turn. Routledge.Google Scholar
Di Paolo, E. A., Cuffari, E. C., & De Jaegher, H. (2018). Linguistic bodies: The continuity between life and language. MIT Press. https://doi.org/10.7551/mitpress/11244.001.0001Google Scholar
Dunbar, R. I. (2016). Do online social media cut through the constraints that limit the size of offline social networks? Royal Society Open Science3(1), 150292. https://doi.org/10.1098/rsos.150292Google Scholar
Dunn, E. C., Soare, T. W., Zhu, Y., Simpkin, A. J., Suderman, M. J., Klengel, T., Smith, A. D. A. C., Ressler, K. J., & Relton, C. L. (2019). Sensitive periods for the effect of child adversity on DNA methylation: Results from a prospective, longitudinal study. Biological Psychiatry, 85, 838–49. https://doi.org/10.1016/j.biopsych.2018.12.023Google Scholar
Efstathiou, S., & Mirmalek, Z. (2014). Interdisciplinarity in action. In Cartwright, N. & Montuschi, E. (Eds.), Philosophy of social science: A new introduction (pp. 233–48). Oxford University Press.Google Scholar
Eronen, M. I. (2015). Levels of organization: A deflationary accountBiology & Philosophy30(1), 3958. https://doi.org/10.1007/s10539-014-9461-zGoogle Scholar
Feldman, D. (2019). Chaos and dynamical systems. Princeton University Press. https://doi.org/10.1515/9780691189390Google Scholar
Fitzgerald, D., & Callard, F. (2015). Social science and neuroscience beyond interdisciplinarity: Experimental entanglementsTheory, Culture & Society32(1), 332. https://doi.org/10.1177%2F0263276414537319Google Scholar
Frodeman, R., Klein, J. T., & Pacheco, R. C. S. (Eds.). (2017). The Oxford handbook of interdisciplinarity (2nd ed.). Oxford University Press. https://doi.org/10.1093/oxfordhb/9780198733522.001.0001Google Scholar
Fuchs, T. (2017). Ecology of the brain: The phenomenology and biology of the embodied mind. Oxford University Press. https://doi.org/10.1093/med/9780199646883.001.0001Google Scholar
Gao, P., & Ganguli, S. (2015). On simplicity and complexity in the brave new world of large-scale neuroscienceCurrent Opinion in Neurobiology32, 148–55. https://doi.org/10.1016/j.conb.2015.04.003Google Scholar
Haack, S. (2005). The unity of truth and the plurality of truthsPrincipia: An International Journal of Epistemology9(1–2), 87109.Google Scholar
Hacking, I. (1996). The looping effects of human kinds. In Sperber, D., Premack, D., & Premack, A. J. (Eds.), Symposia of the Fyssen Foundation. Causal cognition: A multidisciplinary debate (pp. 351–94). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780198524021.003.0012Google Scholar
Hacking, I. (1999). The social construction of what? Harvard University Press.Google Scholar
Hacking, I. (2002). Historical ontology. Harvard University Press. https://doi.org/10.1007/978-94-017-0475-5_13Google Scholar
Hanson, J. L., Chung, M. K., Avants, B. B., Shirtcliff, E. A., Gee, J. C., Davidson, R. J., & Pollak, S. D. (2010). Early stress is associated with alterations in the orbitofrontal cortex: a tensor-based morphometry investigation of brain structure and behavioral risk. Journal of Neuroscience, 30(22), 74667472.Google Scholar
Kauffman, S. A. (2019). A world beyond physics: The emergence and evolution of life. Oxford University Press.Google Scholar
Kellert, S. H. (1993). In the wake of chaos: Unpredictable order in dynamical systems. University of Chicago Press. https://doi.org/10.7208/chicago/9780226429823.001.0001Google Scholar
Kirmayer, L. J. (2015). Re-visioning psychiatry: Toward an ecology of mind in health and illness. In Kirmayer, L. J., Lemelson, R., & Cummings, C. A. (Eds.). Re-visioning psychiatry: Cultural phenomenology, critical neuroscience, and global mental health (pp. 622–60). Cambridge University Press. https://doi.org/10.1017/CBO9781139424745Google Scholar
Kirmayer, L. J. (2019). Toward an ecosocial psychiatry. World Social Psychiatry, 1(1), 3032.Google Scholar
Kirmayer, L. J., Adeponle, A., & Dzokoto, V. A. A. (2018). Varieties of global psychology: Cultural diversity and constructions of the self. In S. Fernando and R. Moodley (eds.) Global psychologies (pp. 21–37). Palgrave Macmillan.Google Scholar
Kirmayer, L. J., & Gómez-Carrillo, A. (2019). Agency, embodiment and enactment in psychosomatic theory and practice. Medical Humanities, 45(2), 169182.Google Scholar
Kirmayer, L. J., Lemelson, R., & Barad, M. (2007). Epilogue: Trauma and the vicissitudes of interdisciplinary integration. In L. J. Kirmayer, R. Lemelson, & M. Barad (Eds.), Understanding trauma: Integrating biological, clinical, and cultural perspectives (pp. 475–89). Cambridge University Press.Google Scholar
Kirmayer, L. J., & Ramstead, M. J. D. (2017). Embodiment and enactment in cultural psychiatry. In Durt, C., Fuchs, T., & Tewes, C. (Eds.), Embodiment, enaction, and culture: Investigating the constitution of the shared world (pp. 397422). MIT Press.Google Scholar
Kotchoubey, B., Tretter, F., Braun, H. A., Buchheim, T., Draguhn, A., Fuchs, T., Hasler, F., Hastedt, H., Hinterberger, T., Northoff, G., Rentschler, I., Schleim, S., Sellmaier, S., van Elst, L. T., & Tschacher, W. (2016). Methodological problems on the way to integrative human neuroscienceFrontiers in Integrative Neuroscience10, 41. https://doi.org/10.3389/fnint.2016.00041Google Scholar
Krakauer, D. C. (Ed.). (2019). Worlds hidden in plain sight: The evolving idea of complexity at the Santa Fe Institute, 1984–2019. SFI Press.Google Scholar
Krieger, M. H. (2012). Doing physics: How physicists take hold of the world. Indiana University Press.Google Scholar
Labonté, B., Farah, A., & Turecki, G. (2015). Early-life adversity and epigenetic changes: Implications for understanding suicide. In Kirmayer, L. J., Lemelson, R., & Cummings, C. A. (Eds.). Re-visioning psychiatry: Cultural phenomenology, critical neuroscience, and global mental health (pp. 206–35). Cambridge University Press. https://doi.org/10.1017/CBO9781139424745.012Google Scholar
Laliberté, V., Ramstead, M. J. D., Langlois-Therien, T., Choudhury, S., & Kirmayer, L. J. (2019). How can the social sciences contribute to the neurosciences? Challenges and opportunities in the era of big data [Manuscript in preparation]. Department of Psychiatry, McGill University.Google Scholar
Larsen, R. R., & Hastings, J. (2018). From affective science to psychiatric disorder: Ontology as a semantic bridge. Frontiers in Psychiatry, 9. https://doi.org/10.3389/fpsyt.2018.00487Google Scholar
Lowe, C. J., Reichelt, A. C., & Hall, P. A. (2019). The prefrontal cortex and obesity: A health neuroscience perspective. Trends in Cognitive Sciences, 23(4), 349–61. https://doi.org/10.1016/j.tics.2019.01.005Google Scholar
Mercier, H., & Sperber, D. (2017). The enigma of reason. Harvard University Press.Google Scholar
Mitchell, S. D. (2009). Unsimple truths: Science, complexity, and policy. University of Chicago Press. https://doi.org/10.7208/chicago/9780226532653.001.0001Google Scholar
Nisbett, R. E., & Wilson, T. D. (1977). Telling more than we can know: Verbal reports on mental processes. Psychological Review, 84(3), 231. https://doi.org/10.1037/0033-295X.84.3.231Google Scholar
Noble, D. (2016). Dance to the tune of life: Biological relativity. Cambridge University Press. https://doi.org/10.1017/9781316771488Google Scholar
Núñez, R., Allen, M., Gao, R., Rigoli, C. M., Relaford-Doyle, J., & Semenuks, A. (2019). What happened to cognitive science? Nature Human Behaviour3(8), 782–91.Google Scholar
O’Malley, M. A., Brigandt, I., Love, A. C., Crawford, J. W., Gilbert, J. A., Knight, R., Mitchell, S. D., & Rohwer, F. (2014). Multilevel research strategies and biological systemsPhilosophy of Science81(5), 811–28. https://doi.org/10.1086/677889Google Scholar
Page, S. E. (2010). Diversity and complexity. Princeton University Press. https://doi.org/10.1515/9781400835140Google Scholar
Paus, T. (2013). Population neuroscience. Springer Science & Business Media. https://doi.org/10.1007/978-3-642-36450-1Google Scholar
Prigogine, I., & Stengers, I. (1997). The end of certainty. Simon & Schuster.Google Scholar
Pykett, J. (2015). Brain culture: Shaping policy through neuroscience. Policy Press. https://doi.org/10.2307/j.ctt1t89jbmGoogle Scholar
Raichle, M. E. (2009). A brief history of human brain mappingTrends in Neurosciences32(2), 118–26.Google Scholar
Ramstead, M. J., Veissière, S. P., & Kirmayer, L. J. (2016). Cultural affordances: Scaffolding local worlds through shared intentionality and regimes of attention. Frontiers in Psychology, 7, 1090. https://doi.org/10.3389/fpsyg.2016.01090Google Scholar
Robinson, M. D. (2019). The market in mind: How financialization is shaping neuroscience, translational medicine, and innovation in biotechnology. MIT Press. https://doi.org/10.7551/mitpress/11726.001.0001Google Scholar
Rose, N., & Abi-Rached, J. M. (2013). Neuro: The new brain sciences and the management of the mind. Princeton University Press. https://doi.org/10.1515/9781400846337Google Scholar
Schwitzgebel, E. (2011). Perplexities of consciousness. MIT Press. https://doi.org/10.7551/mitpress/8243.001.0001Google Scholar
Searle, J. R. (2011). Wittgenstein and the BackgroundAmerican Philosophical Quarterly48(2), 119–28.Google Scholar
Siskin, C. (2016). System: The shaping of modern knowledge. MIT Press.Google Scholar
Smith, B., & Ceusters, W. (2010). Ontological realism: A methodology for coordinated evolution of scientific ontologiesApplied Ontology5(3–4), 139–88. https://doi.org/10.3233/AO-2010-0079Google Scholar
Sporns, O. (2013). The human connectome: Origins and challenges. NeuroImage, 80, 5361. https://doi.org/10.1016/j.neuroimage.2013.03.023Google Scholar
Thurner, S., Hanel, R., & Klimek, P. (2018). Introduction to the theory of complex systems. Oxford University Press. https://doi.org/10.1093/oso/9780198821939.001.0001Google Scholar
Turner, S. (2017). Knowledge formations: An analytic framework. In Frodeman, R., Klein, J. T., & Pacheco, R. C. S. (Eds.), The Oxford handbook of interdisciplinarity (2nd ed.). Oxford University Press. https://doi.org/10.1093/oxfordhb/9780198733522.001.0001Google Scholar
United Nations, Population Division of the Department of Economic and Social Affairs. (2018). 2018 Revision of world urbanization prospects. https://population.un.org/wup/Google Scholar
Veissière, S. P., Constant, A., Ramstead, M. J., Friston, K. J., & Kirmayer, L. J. (2020). Thinking through other minds: A variational approach to cognition and culture. Behavioral and Brain Sciences, 43, e90, 1–75. https://doi.org/10.1017/S0140525X19001213