Home
Hostname: page-component-99c86f546-7c2ld Total loading time: 0.308 Render date: 2021-11-30T04:25:07.691Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

# 6 - Semidefinite programming, matrix decomposition, and radar code design

Published online by Cambridge University Press:  23 February 2011

By
Edited by

## Summary

In this chapter, we study specific rank-1 decomposition techniques for Hermitian positive semidefinite matrices. Based on the semidefinite programming relaxation method and the decomposition techniques, we identify several classes of quadratically constrained quadratic programming problems that are polynomially solvable. Typically, such problems do not have too many constraints. As an example, we demonstrate how to apply the new techniques to solve an optimal code design problem arising from radar signal processing.

Introduction and notation

Semidefinite programming (SDP) is a relatively new subject of research in optimization. Its success has caused major excitement in the field. One is referred to Boyd and Vandenberghe [11] for an excellent introduction to SDP and its applications. In this chapter, we shall elaborate on a special application of SDP for solving quadratically constrained quadratic programming (QCQP) problems. The techniques we shall introduce are related to how a positive semidefinite matrix can be decomposed into a sum of rank-1 positive semidefinite matrices, in a specific way that helps to solve nonconvex quadratic optimization with quadratic constraints. The advantage of the method is that the convexity of the original quadratic optimization problem becomes irrelevant; only the number of constraints is important for the method to be effective. We further present a study on how this method helps to solve a radar code design problem. Through this investigation, we aim to make a case that solving nonconvex quadratic optimization by SDP is a viable approach.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

## Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

### Purchase

Buy print or eBook[Opens in a new window]
4
Cited by

# Send book to Kindle

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

# Send book to Dropbox

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Dropbox.

Available formats
×

# Send book to Google Drive

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Google Drive.

Available formats
×