Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-4k54s Total loading time: 0.341 Render date: 2021-12-05T00:04:53.738Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

5 - Probabilistic analysis of semidefinite relaxation detectors for multiple-input, multiple-output systems

Published online by Cambridge University Press:  23 February 2011

Anthony Man-Cho So
Affiliation:
Chinese University of Hong Kong
Yinyu Ye
Affiliation:
Stanford University
Daniel P. Palomar
Affiliation:
Hong Kong University of Science and Technology
Yonina C. Eldar
Affiliation:
Weizmann Institute of Science, Israel
Get access

Summary

Due to their computational efficiency and strong empirical performance, semidefinite relaxation (SDR)-based algorithms have gained much attention in multiple-input, multiple-output (MIMO) detection. However, the theoretical performance of those algorithms, especially when applied to constellations other than the binary phase-shift keying (BPSK) constellation, is still not very well-understood. In this chapter we describe a recently-developed approach for analyzing the approximation guarantees of various SDR-based algorithms in the low signal-to-noise ratio (SNR) region. Using such an approach, we show that in the case of M-ary phase-shift keying (MPSK) and quadrature amplitude modulation (QAM) constellations, various SDR-based algorithms will return solutions with near-optimal log-likelihood values with high probability. The results described in this chapter can be viewed as average-case analyses of certain SDP relaxations, where the input distribution is motivated by physical considerations. More importantly, they give some theoretical justification for using SDR-based algorithms for MIMO detection in the low SNR region.

Introduction

Semidefinite programming (SDP) has now become an important algorithm design tool for a wide variety of optimization problems. From a practical standpoint, SDP-based algorithms have proven to be effective in dealing with various fundamental engineering problems, such as control system design [1, 2], structural design [3], signal detection [4, 5], and network localization [6–8]. From a theoretical standpoint, SDP is playing an important role in advancing the theory of algorithms.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
2
Cited by

Send book to Kindle

To send this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Send book to Dropbox

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Dropbox.

Available formats
×

Send book to Google Drive

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Google Drive.

Available formats
×