Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-cxxrm Total loading time: 0.315 Render date: 2021-12-02T14:11:11.747Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

8 - Optimization techniques in modern sampling theory

Published online by Cambridge University Press:  23 February 2011

Tomer Michaeli
Affiliation:
Technion – Israel Institute of Technology
Yonina C. Eldar
Affiliation:
Technion – Israel Institute of Technology
Daniel P. Palomar
Affiliation:
Hong Kong University of Science and Technology
Yonina C. Eldar
Affiliation:
Weizmann Institute of Science, Israel
Get access

Summary

Sampling theory has benefited from a surge of research in recent years, due in part to intense research in wavelet theory and the connections made between the two fields. In this chapter we present several extensions of the Shannon theorem, which treat a wide class of input signals, as well as nonideal-sampling and constrained-recovery procedures. This framework is based on an optimization viewpoint, which takes into account both the goodness of fit of the reconstructed signal to the given samples, as well as relevant prior knowledge on the original signal. Our exposition is based on a Hilbert-space interpretation of sampling techniques, and relies on the concepts of bases (frames) and projections. The reconstruction algorithms developed in this chapter lead to improvement over standard interpolation approaches in signal- and image-processing applications.

Introduction

Sampling theory treats the recovery of a continuous-time signal from a discrete set of measurements. This field attracted significant attention in the engineering community ever since the pioneering work of Shannon [1] (also attributed to Whitaker [2], Kotelnikov [3], and Nyquist [4]) on sampling bandlimited signals. Discrete-time signal processing (DSP) inherently relies on sampling a continuous-time signal to obtain a discrete-time representation. Therefore, with the rapid development of digital applications, the theory of sampling has gained importance.

Traditionally, sampling theories addressed the problem of perfectly reconstructing a given class of signals from their samples.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Send book to Kindle

To send this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Send book to Dropbox

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Dropbox.

Available formats
×

Send book to Google Drive

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Google Drive.

Available formats
×