Published online by Cambridge University Press: 25 May 2018
Abstract
This chapter describes work of Erdőss, Klarner, and Rado on semigroups of integer affine maps and on sets of integers they generate. It gives the history of problems they studied, some solutions, and new unsolved problems that arose from them.
Introduction
This chapter describes the history of an Erdőss problem on iteration of integer affine functions, gives its solution, and tours some related work. An integer affine function of one variable is a function of the form f (x) = mx + b for integers m, b. The Erdőss problem concerns the structure of integer orbits of a particular finitely generated semigroup of integer affine functions, with the semigroup operation being composition of maps.
In the early 1970s David Klarner and Richard Rado studied integer orbits of semigroups of such affine functions in an arbitrary number of variables, motivated by the work of Crampin and Hilton on self-orthogonal Latin squares described in the text that follows. In response to a question they posed about a particular example, Paul Erdőss proved a theorem on the size of an orbit for certain semigroups of univariate functions, upper bounding the number of integers below a given cutoff T occurring in such orbits, cf. [37, Theorem 8]. Erdős's interest in this orbit problem led him to offer a reward for a particular semigroup iteration problem. This problem was solved by Crampin and Hilton in 1972, but their solution was never published. We supply a reconstructed solution here.
We also present a history of selected later developments, including work of Mike Fredman, Don Knuth, David Klarner, and Don Coppersmith. Their work addresses the structure of particular affine integer semigroups, and sufficient conditions for an integer affine semigroup to be freely generated. The latter topic led Klarner to pose in 1982 several easy-to-state problems in the spirit of Erdős's prize problem, given at the end of the chapter, which remain unsolved.
To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.