Skip to main content Accessibility help
×
Home
Hostname: page-component-768ffcd9cc-8zwnf Total loading time: 0.498 Render date: 2022-12-05T22:36:53.909Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

14 - On groups which act freely and properly on finite dimensional homotopy spheres

Published online by Cambridge University Press:  06 July 2010

Michael Atkinson
Affiliation:
University of St Andrews, Scotland
Nick Gilbert
Affiliation:
Heriot-Watt University, Edinburgh
James Howie
Affiliation:
Heriot-Watt University, Edinburgh
Steve Linton
Affiliation:
University of St Andrews, Scotland
Edmund Robertson
Affiliation:
University of St Andrews, Scotland
Get access

Summary

INTRODUCTION

In C. T. C. Wall conjectured that if a countable group G of finite virtual cohomological dimension, vcd G < ∞, has periodic Farrell cohomology then G acts freely and properly on ℝn × Sm for some n and m. Obviously, if a group G acts freely and properly on some ℝn × Sm then G is countable since ℝn × Sm is a separable metric space. The Farrell cohomology generalizes the Tate cohomology theory for finite groups to the class of groups G with vcd G < ∞ (see for instance Chapter X of). Wall's conjecture was proved by Johnson in some cases and Connolly and Prassidis in general.

In Prassidis showed that there are groups of infinite vcd which act freely and properly on some ℝn × Sm. In particular, it follows from results of Prassidis and Talelli that if a countable group G has periodic cohomology after 1-step then G acts freely and properly on some ℝn × Sm.

A group G is said to have periodic cohomology after κ-steps if there is a positive integer q such that the functors Hi(G;) and Hi+q(G;) are naturally equivalent for all i > κ (cf.).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
13
Cited by

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×