Skip to main content Accessibility help
Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-21T00:05:37.633Z Has data issue: false hasContentIssue false

5 - Cascading effects of global oyster reef loss on the health of estuaries

Published online by Cambridge University Press:  05 June 2014

Brooke Maslo
Rutgers University, New Jersey
Brooke Maslo
Rutgers University, New Jersey
Julie L. Lockwood
Rutgers University, New Jersey
Get access


Estuarine health and biodiversity

Estuaries are transition ecotones where freshwater from the land drains into the sea. Classically defined as semi-enclosed coastal bodies of water with a connection to the open sea and within which seawater is measurably diluted with freshwater derived from land drainage (Pritchard, 1967), estuaries are characterized by a continuous exchange of tidal flows that create a marked salinity gradient from the limnetic zone (where the river enters the estuary) to the mouth of the estuary (Venice System, 1959). Estuarine habitat types include shallow open water, mudflats, fresh- and saltwater marshes, oyster reefs, seagrass beds, mangrove forests, and river deltas (Davis & Fitzgerald, 2004). Complex patterns of sedimentation, water circulation, geomorphology, and energetics make estuaries some of the most productive ecosystems in the world (Kennish, 2002).

Due to their tremendous habitat diversity, estuaries support a broad array of both resident and transient organisms, with taxonomic groups ranging from benthic meiofauna and macrophytes to wading birds and large cetaceans. This biodiversity, in turn, promotes proper estuarine functioning and the provisioning of ecosystem goods and services (Barbier et al., 2011). Healthy estuaries support the persistence of commercial fisheries, provide nursery habitats for many commercially and ecologically important species, and maintain water quality through filtration and detoxification mechanisms (Granek et al., 2010). Therefore, they are of high economic and ecological importance. However, the continued viability and health of estuarine systems rely heavily on multiple complex interactions between various trophic levels and abiotic factors, held in a delicate balance that maintains the integrity of the system.

Coastal Conservation , pp. 131 - 160
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Airoldi, L., Balata, D. & Beck, M. W. (2008). The gray zone: Relationships between habitat loss and marine diversity and their applications in conservation. Journal of Experimental Marine Biology and Ecology, 366, 8–15.CrossRefGoogle Scholar
ASMFC. (2007). The Importance of Habitat Created by Shellfish and Shell Beds Along the Atlantic Coast of the US. Prepared by Coen, L. D. and Grizzle, R., with contributions by Lowery, J. and Paynter, K. T.. Washington, DC: ASMFC.Google Scholar
Baird, D., Christian, R. R., Peterson, C. H. & Johnson, G. A. (2004). Consequences of hypoxia on estuarine ecosystem function: Energy diversion from consumers to microbes. Ecological Applications, 14, 805–822.CrossRefGoogle Scholar
Baker, P. (1995). Review of ecology and fishery of the Olympia oyster, Ostrea lurida with annotated bibliography. Journal of Shellfish Research, 14, 501–518.Google Scholar
Barbier, E. B., Hacker, S. D., Kennedy, C., et al. (2011). The value of estuarine and coastal ecosystem services. Ecological Monographs, 81, 169–193.CrossRefGoogle Scholar
Barnes, T. K., Volety, A. K., Chartier, K., Mazzotti, F. J. & Pearlstine, L. (2007). A habitat suitability index model for the eastern oyster (Crassostrea virginica), a tool for restoration of the Caloosahatchee Estuary, Florida. Journal of Shellfish Research, 26, 949–959.CrossRefGoogle Scholar
Bartol, I. & Mann, R. (1999). Small-scale patterns of recruitment on a constructed intertidal reef: The role of spatial refugia. In Luckenbach, M. W., Mann, R. & Wesson, J. A. (eds.), Oyster Reef Habitat Restoration: A Synopsis and Synthesis of Approaches. Gloucester Point, VA: Virginia Institute of Marine Science Press, pp. 159–170.Google Scholar
Bayne, B. L. & Hawkins, A. J. S. (1992). Ecological and physiological aspects of herbivory in benthic suspension-feeding molluscs. In John, D. M., Hawkins, S. J. & Price, J. H. (eds.), Plant–Animal Interactions in the Marine Benthos. Systematics Association Special Vol. 46. Oxford: Clarendon Press, pp. 265–288.Google Scholar
Beck, M. W., Heck, Jr., K. L., Able, K. W., et al. (2001). The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates. Bioscience, 51, 633–641.CrossRefGoogle Scholar
Beck, M. W., Brumbaugh, R. D., Airoldi, L., et al. (2009). Shellfish Reefs at Risk: A Global Analysis of Problems and Solutions. Arlington, VA: The Nature Conservancy.Google Scholar
Beck, M. W., Brumbaugh, R. D., Airoldi, L., et al. (2011). Oyster reefs at risk and recommendations for conservation, restoration, and management. Bioscience, 61, 107–116.CrossRefGoogle Scholar
Berrigan, M., Candies, T., Cirino, J., et al. (1991). The Oyster Fishery of the Gulf of Mexico, United States: A Regional Management Plan. No. 24. Ocean Springs, MS: Gulf States Marine Fisheries Commission.Google Scholar
Bishop, M. J. & Peterson, C. H. (2005). Constraints to Crassostrea ariakensis aquaculture: Season and method of culture strongly influence success of grow-out. Journal of Shellfish Research, 24, 497–502.Google Scholar
Breitburg, D. L. (1999). Are three-dimensional structures, and healthy oyster population the keys to an ecologically interesting, and important fish community? In Luckenbach, M. W., Mann, R. & Wesson, J. A. (eds.), Oyster Reef Habitat Restoration: A Synopsis and Synthesis of Approaches. Gloucester Point, VA: Virginia Institute of Marine Science Press, pp. 239–250.Google Scholar
Breitburg, D. L., Palmer, M. A. & Loher, T. (1995). Larval distributions and the spatial patterns of settlement of an oyster reef fish – Responses to flow and structure. Marine Ecology Progress Series, 125, 45–60.CrossRefGoogle Scholar
Breitburg, D. L., Coen, L. D., Luckenbach, M. W., et al. (2000). Oyster reef restoration: Convergence of harvest and conservation strategies. Journal of Shellfish Research, 19, 371–377.Google Scholar
Brumbaugh, R. D. & Coen, L. D. (2009). Contemporary approaches for small-scale oyster reef restoration to address substrate versus recruitment limitation: A review and comments relevant for the Olympia oyster, Ostrea lurida Carpenter 1864. Journal of Shellfish Research, 28, 147–161.CrossRefGoogle Scholar
Buhle, E. R. & Ruesink, J. L. (2009). Impacts of invasive oyster drills on Olympia oyster (Ostrea lurida Carpenter 1864) recovery in Willapa Bay, Washington, United States. Journal of Shellfish Research, 28, 87–96.CrossRefGoogle Scholar
Burreson, E. M., Stokes, N. A. & Friedman, C. S. (2000). Increased virulence of an introduced pathogen: Haplosporidium nelson (MSX) in the eastern oyster Crassostrea virginica. Journal of Aquatic Animal Health, 12, 1–8.2.0.CO;2>CrossRefGoogle Scholar
Bushek, D., Richardson, D., Bobo, M. Y. & Coen, L. D. (2004). Quarantine of oyster shell cultch reduces the abundance of Perkinsus marinus. Journal of Shellfish Research, 23, 369–373.Google Scholar
Calabrese, A. & Davis, H. C. (1966). The pH tolerance of embryos of Mercenaria mercenaria and Crassostrea virginica. Biological Bulletin, 131, 427–436.CrossRefGoogle Scholar
Carlsson, J., Carnegie, R. B., Cordes, J. F., et al. (2008). Evaluating recruitment contribution of a selectively bred aquaculture line of the oyster, Crassostrea virginica to be used in restoration efforts. Journal of Shellfish Research, 27, 1117–1124.CrossRefGoogle Scholar
Carnegie, R. B. & Burreson, E. M. (2011). Declining impact of an introduced pathogen: Haplosporidium nelsoni in the oyster Crassostrea virginica in Chesapeake Bay. Marine Ecology Progress Series, 432, 1–15.CrossRefGoogle Scholar
Cerco, C. F. & Noel, M. R. (2007). Can oyster restoration reverse cultural eutrophication in Chesapeake Bay?Estuaries and Coasts, 30, 331–343.CrossRefGoogle Scholar
Coen, L. D. & Luckenbach, M. W. (2000). Developing success criteria for evaluating oyster reef restoration: Ecological function or resource exploitation?Ecological Engineering, 15, 323–343.CrossRefGoogle Scholar
Coen, L. D., Luckenbach, M. W. & Breitburg, D. L. (1999). The role of oyster reefs as essential fish habitat: A review of current knowledge and some new perspectives. American Fisheries Society Symposium, 22, 438–454.Google Scholar
Coen, L. D., Brumbaugh, R. D., Bushek, D., et al. (2007). Ecosystem services related to oyster restoration. Marine Ecology Progress Series, 341, 303–307.CrossRefGoogle Scholar
Cranfield, H. J., Michael, K. P. & Doonan, I. J. (1999). Changes in the distribution of epifaunal reefs and oysters during 130 years of dredging for oysters in Foveaux Strait, southern New Zealand. Aquatic Conservation: Marine and Freshwater Ecosystems, 9, 461–483.3.0.CO;2-Z>CrossRefGoogle Scholar
Cranfield, H. J., Rowden, A. A., Smith, D. P., Gordon, K. P. & Michael, K. P. (2004). Macrofaunal assemblages of benthic habitat of different complexity and the proposition of a model of biogenic reef habitat regeneration in Foveaux Strait, New Zealand. Journal of Sea Research, 52, 109–125.CrossRefGoogle Scholar
Cressman, K. A., Posey, M. H., Mallin, M. A., Leonard, L. A. & Alphin, T. D. (2003). Effects of oyster reefs on water quality in a tidal creek estuary. Journal of Shellfish Research, 22, 753–762.Google Scholar
Dame, R. F., Zingmark, R. G. & Haskin, E. (1984). Oyster reefs as processors of estuarine material. Journal of Experimental Marine Biology and Ecology, 83, 239–247.CrossRefGoogle Scholar
Dame, R. F., Wolaver, T. G. & Libes, S. M. (1985). The summer uptake and release of nitrogen by an intertidal oyster reef. Netherlands Journal of Sea Research, 19, 265–268.CrossRefGoogle Scholar
Dame, R. F., Spurrier, J. D. & Wolaver, T. G. (1989). Carbon, nitrogen and phosphorus processing by an oyster reef. Marine Ecology Progress Series, 54, 249–256.CrossRefGoogle Scholar
Dauer, D. M., Ranasinghe, J. A. & Weisberg, S. B. (2000). Relationship between benthic community condition, water quality, sediment quality, nutrient loads, and land use patterns in Chesapeake Bay. Estuaries, 23, 80–96.CrossRefGoogle Scholar
Davis, R. A. & Fitzgerald, D. M. (2004). Beaches and Coasts. Malden, MA: Blackwell Science.Google Scholar
Deegan, L. A., Johnson, D. S., Warren, R. S., et al. (2012). Coastal eutrophication as a driver of salt marsh loss. Nature, 490, 388–392.CrossRefGoogle ScholarPubMed
Dekshenieks, M. M., Hoffman, E. E., Klink, J. M. & Powell, E. N. (1996). Modeling the vertical distribution of oyster larvae in response to environmental conditions. Marine Ecology Progress Series, 136, 97–110.CrossRefGoogle Scholar
Dugas, R. J., Joyce, E. A. & Berrigan, M. A. (1997). History and status of the oyster, Crassostrea virginica, and other molluscan fisheries of the Gulf of Mexico. In MacKenzie, Jr. C. L., Burrell, Jr. V. G., Rosenfield, A. & Hobart, W. L. (eds.), The History, Present Condition, and Future of the Molluscan Fisheries of North and Central America and Europe. NOAA Technical Report. NMFS 127, pp. 187–210.Google Scholar
Dumbauld, B. R., Visser, E. P., Armstrong, D. A., et al. (2000). Use of oyster shell to create habitat for juvenile Dungeness crab in Washington coastal estuaries: Status and prospects. Journal of Shellfish Research, 19, 379–386.Google Scholar
Eggleston, D. B. (1999). Application of landscape principles to oyster reef habitat restoration. In Luckenbach, M. W., Mann, R. & Wesson, J. A. (eds.), Oyster Reef Habitat Restoration: A Synopsis and Synthesis of Approaches. Gloucester Point, VA: Virginia Institute of Marine Science Press, pp. 213–227.Google Scholar
EOBRT, Eastern Oyster Biological Review Team. (2007). Status Review of the Eastern Oyster (Crassostrea virginica). Report to the National Marine Fisheries Service, Northeast Regional Office. 16 February 2007. NOAA Technical Memo. NMFS F/SPO-88.
Everett, R. A., Ruiz, G. M. & Carlton, J. T. (1995). Effect of oyster mariculture on submerged aquatic vegetation: An experimental test in a Pacific Northwest estuary. Marine Ecology Progress Series, 125, 205–217.CrossRefGoogle Scholar
Faasse, M. & Ligthart, M. (2007). The America oyster drill, Urosalpinx cinerea (Say, 1822), introduced to The Netherlands – Increased risks after ban on TBT. Aquatic Invasions, 2, 402–406.CrossRefGoogle Scholar
French McCay, D. P., Peterson, C. H., DeAlteris, J. T. & Catena, J. (2003). Restoration that targets function as opposed to structure: Replacing lost bivalve production and filtration. Marine Ecology Progress Series, 264, 197–212.CrossRefGoogle Scholar
Fuchs, H. L., Hunter, E. J., Schmitt, E. L. & Guazzo, R. A. (2013). Active downward propulsion by oyster larvae in turbulence. Journal of Experimental Marine Biology, 216, 1458–1469.CrossRefGoogle ScholarPubMed
Galtsoff, P. S. (1964). The American oyster Crassostrea virginica Gmelin. Fishery Bulletin, 64, 1–480.Google Scholar
Geraldi, N. R., Powers, S. P., Heck, K. L. & Cebrian, J. (2009). Can habitat restoration be redundant? Response of mobile fishes and crustaceans to oyster reef restoration in marsh tidal creeks. Marine Ecology Progress Series, 389, 171–180.CrossRefGoogle Scholar
Glancy, T. P., Frazer, T. K., Cichra, C. E. & Lindberg, W. J. (2003). Comparative patterns of occupancy by decapod crustaceans in seagrass, oyster, and marsh-edge habitats in a northeast Gulf of Mexico estuary. Estuaries, 26, 1291–1301.CrossRefGoogle Scholar
Grabowski, J. H. & Peterson, C. H. (2007). Restoring oyster reefs to recover ecosystem services. In Cuddington, K., Byers, J. E., Wilson, W. G. & Hastings, A. (eds.), Ecosystem Engineers: Plants to Protists. London: Elsvier, pp. 281–298.CrossRefGoogle Scholar
Grabowski, J. H. & Powers, S. P. (2004). Habitat complexity mitigates trophic transfer on oyster reefs. Marine Ecology Progress Series, 277, 291–295.CrossRefGoogle Scholar
Grabowski, J. H., Hughes, A. R., Kimbro, D. L. & Dolan, M. L. (2005). How habitat setting influences restored oyster reef communities. Ecology, 86, 1926–1935.CrossRefGoogle Scholar
Grabowski, J. H., Brumbaugh, R. D., Conrad, R. F., et al. (2012). Economic valuation of ecosystem services provided by oyster reefs. Bioscience, 62, 900–909.CrossRefGoogle Scholar
Granek, E. F., Polasky, S., Kappel, C. V., et al. (2010). Ecosystem services as a common language for coastal ecosystem-based management. Conservation Biology, 24, 207–216.CrossRefGoogle ScholarPubMed
Grizzle, R. E., Adams, J. R. & Walters, L. J. (2002). Historical changes in intertidal oyster (Crassostrea virginica) reefs in a Florida lagoon potentially related to boating activities. Journal of Shellfish Research, 21, 749–756.Google Scholar
Grizzle, R. E., Greene, J. K., Luckenbach, M. W. & Coen, L. D. (2006). A new in situ method for measuring seston uptake by suspension-feeding bivalve molluscs. Journal of Shellfish Research, 25, 643–649.CrossRefGoogle Scholar
Grizzle, R. E., Greene, J. K. & Coen, L. D. (2008). Seston removal by natural and constructed intertidal eastern oyster (Crassostrea virginica) reefs: A comparison with previous laboratory studies, and the value of in situ methods. Estuaries and Coasts, 31, 1208–1220.CrossRefGoogle Scholar
Guo, X., Hedgecock, D., Hershberger, W. K., Cooper, K. & Allen, Jr., S. K. (1998). Genetic determinants of protandric sex in the Pacific oyster, Crassostrea gigas Thunberg. Evolution, 52, 394–402.CrossRefGoogle ScholarPubMed
Harding, J. M. & Mann, R. (2001a). Diet and habitat use by bluefish, Pomotomus saltatrix, in a Chesapeake Bay estuary. Environmental Biology of Fishes, 60, 401–409.CrossRefGoogle Scholar
Harding, J. M. & Mann, R. (2001b). Oyster reefs as fish habitat: Opportunistic use of restored reefs by transient fishes. Journal of Shellfish Research, 20, 951–959.Google Scholar
Harding, J. M. & Mann, R. (2003). Influence of habitat on diet and distribution of striped bass (Morone saxatilis) in a temperate estuary. Bulletin of Marine Science, 72, 841–851.Google Scholar
Harding, J. M. & Mann, R. (2010). Observations of distribution, size, and sex ratio of mature blue crabs, Callinectes sapidus, from a Chesapeake Bay tributary in relation to oyster habitat and environmental factors. Bulletin of Marine Science, 86, 75–91.Google Scholar
Hargis, W. J. & Haven, D. S. (1999). Chesapeake oyster reefs, their importance, destruction, and guidelines for restoring them. In Luckenbach, M. W., Mann, R. & Wesson, J. A. (eds.), Oyster Reef Habitat Restoration: A Synopsis and Synthesis of Approaches. Gloucester Point, VA: Virginia Institute of Marine Science Press, pp. 329–358.Google Scholar
Hayes, P. F. & Menzel, R. W. (1981). The reproductive cycle of early setting Crassostrea virginica (Gmelin) in the northern Gulf of Mexico, and its implications for population recruitment. Biological Bulletin, 160, 80–88.CrossRefGoogle Scholar
Heck, Jr., K. L., Hays, G. & Orth, R. J. (2003). Critical evaluation of the nursery role hypothesis for seagrass meadows. Marine Ecology Progress Series, 253, 123–136.CrossRefGoogle Scholar
Henderson, J. & O’Neill, L. J. (2003). Economic Values Associated with Construction of Oyster Reefs by the Corps of Engineers, EMRRP Technical Notes Collection (ERDC TN-EMRRP-ER-01). Vicksburg, MS: US Army Engineer Research and Development Center.Google Scholar
Hofmann, E. E., Powell, E. N., Klinck, J. M. & Wilson, E. A. (1992). Modeling oyster populations. 3. Critical feeding periods, growth, and reproduction. Journal of Shellfish Research, 11, 399–416.Google Scholar
Hosack, G. R., Dumbauld, B. R., Ruesink, J. L. & Armstrong, D. A. (2006). Habitat associations of estuarine species: Comparisons of intertidal mudflat, seagrass (Zostera marina), and oyster (Crassostrea gigas) habitats. Estuaries and Coasts, 29, 1150–1160.CrossRefGoogle Scholar
Irlandi, E. A. & Crawford, M. K. (1997). Habitat linkages: The effect of intertidal saltmarshes and adjacent subtidal habitats on abundance, movement, and growth of an estuarine fish. Oecologia, 110, 222–230.CrossRefGoogle ScholarPubMed
Jackson, J. B. C., Kirby, M. X., Berger, W. H., et al. (2001). Historical overfishing and the recent collapse of coastal ecosystems. Science, 293, 629–638.CrossRefGoogle ScholarPubMed
Kennedy, R. J. & Roberts, D. (1999). A survey of the current status of the flat oyster Ostrea edulis in Stragford Lough, Northern Ireland, with a view to the restoration of its oyster beds. Biology and Environment: Proceedings of the Royal Irish Academy, 99B, 79–88.Google Scholar
Kennedy, V. S. & Sanford, L. P. (1999). Characteristics of relatively unexploited beds of the eastern oyster, Crassostrea virginica, and early restoration programs. In Luckenbach, M. W., Mann, R. & Wesson, J. A. (eds.), Oyster Reef Habitat Restoration: A Synopsis and Synthesis of Approaches. Gloucester Point, VA: Virginia Institute of Marine Science Press, pp. 25–46.Google Scholar
Kennedy, V. S., Breitburg, D. L., Christman, M. C., et al. (2011). Lessons learned from efforts to restore oyster populations in Maryland and Virginia, 1990–2007. Journal of Shellfish Research, 30, 719–731.CrossRefGoogle Scholar
Kennish, M. J. (2002). Environmental threats and environmental future of estuaries. Environmental Conservation, 29, 78–107.CrossRefGoogle Scholar
Kirby, M. X. (2004). Fishing down the coast: Historical expansion and collapse of oyster fisheries along continental margins. Proceedings of the National Academy of Sciences of the United States of America, 101, 13096–13099.CrossRefGoogle ScholarPubMed
Kirby, M. X. & Miller, H. M. (2005). Response of a benthic suspension feeder (Crassostrea virginica Gmelin) to three centuries of anthropogenic eutrophication in Chesapeake Bay. Estuarine, Coastal and Shelf Science, 62, 679–689.CrossRefGoogle Scholar
Klinck, J. M., Hofmann, E. E., Powell, E. N. & Dekshenieks, M. M. (2002). Impact of channelization on oyster production: A hydrodynamic-oyster population model for Galveston Bay, Texas. Environmental Modeling and Assessment, 7, 273–289.CrossRefGoogle Scholar
Korringa, P. (1952). Recent advances in oyster biology. Quarterly Review of Biology, 27, 266–308.CrossRefGoogle ScholarPubMed
Lenihan, H. S. (1999). Physical–biological coupling on oyster reefs: How habitat structure influences individual performance. Ecological Monographs, 69, 251–275.Google Scholar
Lenihan, H. S. & Peterson, C. H. (1998). How habitat degradation through fishery disturbance enhances impacts of hypoxia on oyster reefs. Ecological Applications, 8, 128–140.CrossRefGoogle Scholar
Lenihan, H. S. & Peterson, C. H. (2004). Conserving oyster reef habitat by switching from dredging and tonging to diver-harvesting. Fishery Bulletin, 102, 298–305.Google Scholar
Lenihan, H. S., Peterson, C. H. & Allen, J. M. (1995). Does flow also have a direct effect on growth of active suspension feeders? An experimental test with oysters. Limnology and Oceangraphy, 41, 1359–1366.CrossRefGoogle Scholar
Lenihan, H. S., Peterson, C. H., Byers, J. E., et al. (2001). Cascading of habitat degradation: Oyster reefs invaded by refugee fishes escaping stress. Ecological Applications, 11, 764–782.CrossRefGoogle Scholar
Lipton, D. (2004). The value of improved water quality to Chesapeake Bay boaters. Marine Resource Economics, 19, 265–270.CrossRefGoogle Scholar
Lotze, H. K., Lenihan, H. S., Bourque, B. J., et al. (2006). Depletion, degradation, and recovery potential of estuaries and coastal seas. Science, 312, 1806–1809.CrossRefGoogle ScholarPubMed
Luckenbach, M. W., Coen, L. D., Ross, Jr., P. G. & Stephen, J. A. (2005). Oyster reef habitat restoration: Relationships between oyster abundance and community development based on two studies in Virginia and South Carolina. Journal of Coastal Research, 40, 64–78.Google Scholar
Mackenzie, C. L. (2007). Causes underlying the historical decline in eastern oyster (Crassostrea virginica Gmelin, 1791) landings. Journal of Shellfish Research, 26, 927–938.CrossRefGoogle Scholar
Mann, R. (2000). Restoring the oyster reef communities in the Chesapeake Bay: A commentary. Journal of Shellfish Research, 19, 335–339.Google Scholar
Mann, R. & Powell, E. N. (2007). Why oyster restoration goals in the Chesapeake Bay are not and probably cannot be achieved. Journal of Shellfish Research, 26, 905–917.CrossRefGoogle Scholar
Marenghi, F. P. & Ozbay, G. (2010). Floating oyster, Crassostrea virginica Gmelin 1791, aquaculture as habitat for fishes and macroinvertebrates in Delaware inland bays: The comparative value of oyster clusters and loose shell. Journal of Shellfish Research, 29, 889–904.CrossRefGoogle Scholar
Markert, A., Wehrmann, A. & Kroncke, I. (2010). Recently established Crassostrea-reefs versus native Mytilus-beds: Differences in ecosystem engineering affects the macrofaunal communities (Wadden Sea of Lower Saxony, southern German Bight). Biological Invasions, 12, 15–32.CrossRefGoogle Scholar
Meyer, D. L. & Townsend, E. C. (2000). Faunal utilization of created intertidal eastern oyster (Crassostrea virginica) reefs in the southeastern United States. Estuaries, 23, 34–45.CrossRefGoogle Scholar
Meyer, D. L., Townsend, E. C & Thayer, G. W. (1997). Stabilization and erosion control of oyster cultch for intertidal marsh. Restoration Ecology, 5, 93–99.CrossRefGoogle Scholar
Micheli, F. & Peterson, C. H. (1999). Estuarine vegetated habitats as corridors for predator movements. Conservation Biology, 13, 869–881.CrossRefGoogle Scholar
Miller, A. W., Reynolds, A. C., Sobrino, A. & Riedel, G. F. (2009). Shellfish face uncertain future in high CO2 world: Influence of acidification on oyster larvae calcification and growth in estuaries. PLoS ONE, 4, e5661.CrossRefGoogle ScholarPubMed
Narváez, D. A., Klinck, J. M., Powell, E. N. et al. (2012). Circulation and behavior controls on dispersal of eastern oyster (Crassostrea virginica) larvae in Delaware Bay. Journal of Marine Research, 70, 411–440.CrossRefGoogle Scholar
Nell, J. (2007). Diseases of Sydney Rock Oysters. Profitable and Sustainable Primary Industries, Primefact 589. NSW Department of Primary Industries. .
Nelson, K. A., Leonard, L. A., Posey, M. H., Aplin, T. D. & Mallin, M. A. (2004). Using transplanted oyster (Crassosstrea virginica) beds to improve water quality in small tidal creeks: A pilot study. Journal of Experimental Marine Biology and Ecology, 298, 347–368.CrossRefGoogle Scholar
Nestlerode, J. A., Luckenbach, M. W. & O’Brien, F. X. (2007). Settlement and survival of the oyster Crassostrea virginica on created oyster reef habitats in Chesapeake Bay. Restoration Ecology, 15, 273–283.CrossRefGoogle Scholar
Newell, R. I. E. (1988). Ecological changes in Chesapeake Bay: Are they the result of overharvesting the American oyster, Crassostrea virginica? In Lynch, M. P. & Krome, E. C. (eds.), Understanding the Estuary: Advances in Chesapeake Bay Research. Solomons, MD: Chesapeake Research Consortium, pp. 536–546.Google Scholar
Newell, R. I. E. (2004). Ecosystem influences of natural and cultivated populations of suspension-feeding bivalve mollusks: A review. Journal of Shellfish Research, 23, 51–61.Google Scholar
Newell, R. I. E. & Koch, E. W. (2004). Modeling seagrass density and distribution in response to changes in turbidity stemming from bivalve filtration and seagrass sediment stabilization. Estuaries, 27, 793–806.CrossRefGoogle Scholar
Newell, R. I. E. & Langdon, C. J. (1996). Mechanisms and physiology of larval and adult feeding. In Kennedy, V. S., Newell, R. I. E. & Eble, A. F. (eds.), The Eastern Oyster Crassostrea virginica. College Park, MD: Maryland Sea Grant College, University of Maryland, pp. 185–229.Google Scholar
Newell, R. I. E., Cornwell, J. C. & Owens, M. S. (2002). Influence of simulated bivalve biodeposition and microphytobenthos on sediment nitrogen dynamics: A laboratory study. Limnology and Oceanography, 47, 1367–1379.CrossRefGoogle Scholar
Newell, R. I. E., Fisher, T. R., Holyoke, R. R. & Cornwall, J. C. (2005a). Influence of eastern oysters on nitrogen and phosphorus regeneration in Chesapeake Bay, USA. In Dame, R. F. & Olenin, S. (eds.), The Comparative Roles of Suspension Feeders in Ecosystems. Dordrecht: Springer, pp. 93–120.CrossRefGoogle Scholar
Newell, R. I. E., Kennedy, V. S., Manuel, J. L. & Merritt, D. (2005b). Behavioral Responses of Crassostrea ariakensis and Crassostrea virginica Larvae to Environmental Change Under Spatially Realistic Conditions. Final report to Maryland Department of Natural Resources, Annapolis, MD.Google Scholar
North, E. W., King, D. M., Xu, J., et al. (2010). Linking optimization and ecological models in a decision support tool for oyster restoration and management. Ecological Applications, 20, 810–866.CrossRefGoogle Scholar
NRC, National Research Council. (2004). Nonnative Oysters in the Chesapeake Bay. Washington, DC: National Academies Press.Google Scholar
Ogburn, D. M., White, I. & McPhee, D. P. (2007). The disappearance of oyster reefs from eastern Australian estuaries – Impact of colonial settlement or mudworm invasion?Coastal Management, 35, 271–287.CrossRefGoogle Scholar
Paerl, H. W., Pinckney, J. L., Fear, J. M. & Peierls, B. L. (1998). Ecosystem responses to internal and watershed organic matter loading: Consequences for hypoxia in the eutrophying Neuse River Estuary, North Carolina, USA. Marine Ecology Progress Series, 166, 17–25.CrossRefGoogle Scholar
Peterson, C. H. & Lipcius, R. N. (2003). Conceptual progress towards predicting quantitative ecosystem benefits of ecological restorations. Marine Ecology Progress Series, 264, 297–307.CrossRefGoogle Scholar
Peterson, C. H., Grabowski, J. H. & Powers, S. P. (2003). Estimated enhancement of fish production resulting from restoring oyster reef habitat: Quantitative valuation. Marine Ecology Progress Series, 264, 249–264.CrossRefGoogle Scholar
Piazza, B. P., Banks, P. D. & La Peyre, M. K. (2005). The potential for created oyster shell reefs as a sustainable shoreline protection strategy in Louisiana. Restoration Ecology, 13, 499–506.CrossRefGoogle Scholar
Piehler, M. E. & Smyth, A. R. (2011). Habitat-specific distinctions in estuarine denitrification affect both ecosystem function and services. Ecosphere, 2, art. 12, .CrossRefGoogle Scholar
Plutchak, R., Major, K., Cebrian, J., et al. (2010). Impacts of oyster reef restoration on primary productivity and nutrient dynamics in tidal creeks of the north central Gulf of Mexico. Estuaries and Coasts, 33, 1355–1364.CrossRefGoogle Scholar
Pollack, J. B., Cleveland, A., Palmer, T. A., Reisinger, A. S. & Montagna, P. A. (2012). A restoration suitability index model for the eastern oyster (Crassostrea virginica) in the Mission-Aransas Estuary, TX, USA. PLoS ONE, 7, e40839.CrossRefGoogle Scholar
Powell, E. N. & Klinck, J. M. (2007). Is oyster shell a sustainable resource?Journal of Shellfish Research, 26, 181–194.CrossRefGoogle Scholar
Powell, E. N., Klinck, J. M., Guo, X., et al. (2012). Can oysters Crassostrea virginica develop resistance to Dermo Disease in the field: The impediment posed by climate change. Journal of Marine Research, 70, 309–355.CrossRefGoogle Scholar
Powers, S. P., Peterson, C. H., Grabowski, J. H. & Lenihan, H. S. (2009). Success of constructed oyster reefs in no-harvest sanctuaries: Implications for restoration. Marine Ecology Progress Series, 389, 159–170.CrossRefGoogle Scholar
Pritchard, D. W. (1967). What is an estuary: Physical standpoint. In Lauff, G. H. (ed.), Estuaries. Washington, DC: American Association for the Advancement of Science, Publication 83, pp. 3–5.Google Scholar
Quan, W., Zhu, J., Ni, Y., Shi, L. & Chen, Y. (2009). Faunal utilization of constructed intertidal oyster (Crassostrea rivularis) reef in the Yangtze River Estuary, China. Ecological Engineering, 35, 1466–1475.CrossRefGoogle Scholar
Quan, W., Humphries, A., Shen, X. & Chen, Y. (2012). Oyster and associated benthic macrofaunal development on a created intertidal oyster (Crassostrea ariakensis) reef in the Yangtze River Estuary, China. Journal of Shellfish Research, 31, 599–610.CrossRefGoogle Scholar
Richardson, C. A., Seed, R., Alroumaihim, E. M. H. & McDonald, L. (1993). Distribution, shell growth and predation of the New Zealand oyster, Tiostrea (=Ostrea) lutaria Hutton, in the Menai Strait, North Wales. Journal of Shellfish Research, 12, 207–214.Google Scholar
Rodney, W. S. & Paynter, K. T. (2006). Comparisons of macrofaunal asemblages on restored and non-restored oyster reefs in mesohaline regions of Chesapeake Bay in Maryland. Journal of Experimental Marine Biology and Ecology, 335, 39–51.CrossRefGoogle Scholar
Rossi-Snook, K., Ozbay, G. & Marenghi, F. (2010). Oyster (Crassostrea virginica) gardening program for restoration in Delaware’s inland bays, USA. Aquaculture International, 18, 61–67.CrossRefGoogle Scholar
Rothschild, B. J., Ault, J. S., Goulletquer, P. & Heral, M. (1994). Decline of the Chesapeake Bay oyster population: A century of habitat destruction and overfishing. Marine Ecology Progress Series, 111, 29–39.CrossRefGoogle Scholar
Ruesink, J. L., Lenihan, H. S., Trimble, A. C., et al. (2005). Introduction of non-native oysters: Ecosystem effects and restoration implications. Annual Review of Ecology, Evolution and Systematics, 36, 643–689.CrossRefGoogle Scholar
Schulte, D. M., Burke, R. P. & Lipcius, R. N. (2009). Unprecedented restoration of a native oyster metapopulation. Science, 325, 1124–1128.CrossRefGoogle ScholarPubMed
Seaman, W. (2007). Artificial habitats and the restoration of degraded marine ecosystems and fisheries. Hydrobiologia, 580, 143–155.CrossRefGoogle Scholar
Shervette, V. R. & Gelwick, F. (2008). Seasonal and spatial variations in fish and macroinvertebrate communities of oyster and adjacent habitats in a Mississippi estuary. Estuaries and Coasts, 31, 584–596.CrossRefGoogle Scholar
Shumway, S. E. (1996). Natural environmental factors. In Kennedy, V. S., Newell, R. I. E. & Eble, A. F. (eds.), The Eastern Oyster Crassostrea virginica. College Park, MD: Maryland Sea Grant College, University of Maryland, pp. 467–513.Google Scholar
Smith, G. F., Bruce, D. G., Roach, E. B., et al. (2005). Assessment of recent habitat conditions of eastern oyster Crassostrea virginica bars in mesohaline Chesapeake Bay. North American Journal of Fisheries Management, 25, 1569–1590.CrossRefGoogle Scholar
Smith, K. A., North, E. W., Shi, F., et al. (2009). Modeling the effects of oyster reefs and breakwaters on seagrass growth. Estuaries and Coasts, 32, 748–757.CrossRefGoogle Scholar
Society for Ecological Restoration International, SER. (2004). SER International Primer on Ecological Restoration. SERI Science and Policy Working Group. Washington, DC: SER.Google Scholar
Soniat, T. M. & Burton, G. M. (2005). A comparison of the effectiveness of sandstone and limestone as cultch for oysters, Crassostrea virginica. Journal of Shellfish Research, 24, 483–485.Google Scholar
Soniat, T. M., Broadhurst, R. C. & Haywood, III, E. L. (1991). Alternatives to clamshell as cultch oysters, and the use of gypsum for the production of cultchless oysters. Journal of Shellfish Research, 10, 405–410.Google Scholar
Starke, A., Levinton, J. S. & Doall, M. (2011). Restoration of Crassostrea virginica (Gmelin) to the Hudson River, USA: A spatiotemporal modeling approach. Journal of Shellfish Research, 30, 671–684.CrossRefGoogle Scholar
Stokes, S., Wunderink, S., Lowe, M. & Gereffi, G. (2012). Restoring Gulf Oyster Reefs: Opportunities for Innovation. Durham, NC: Duke Center on Globalization, Governance, and Competitiveness, Duke University. .
Summerhayes, S. A., Bishop, M. J., Leigh, A. & Kelaher, B. P. (2009). Effects of oyster death and shell disarticulation on associated communities. Journal of Experimental Marine Biology and Ecology, 379, 60–67.CrossRefGoogle Scholar
Tallman, J. C. & Forrester, G. E. (2007). Oyster grow-out cages function as artificial reefs for temperate fishes. Transactions of the American Fisheries Society, 136, 790–799.CrossRefGoogle Scholar
Tamburri, M. N., Zimmer-Faust, R. K. & Tamplin, M. L. (1992). Natural sources and properties of chemical inducers mediating settlement of oyster larvae: A re-examination. Biological BulletinI, 183, 327–338.CrossRefGoogle ScholarPubMed
Taylor, J. & Bushek, D. (2008). Intertidal oyster reefs can persist and function in a temperate North American Atlantic estuary. Marine Ecology Progress Series, 361, 301–306.CrossRefGoogle Scholar
Thompson, R. J., Newell, R. I. E., Kennedy, V. S. & Mann, R. (1996). Reproductive processes and early development. In Kennedy, V. S., Newell, R. I. E. & Eble, A. F. (eds.), The Eastern Oyster Crassostrea virginica. College Park, MD: Maryland Sea Grant College, University of Maryland, pp. 335–370.Google Scholar
Tolley, S. G. & Volety, A. K. (2005). The role of oysters in habitat use of oyster reefs by resident fishes and decapod crustaceans. Journal of Shellfish Research, 24, 1007–1012.Google Scholar
Valero, A. L. & Caballero, Y. Q. (2003). A Practitioner’s Guide for the Culture of Marine Bivalves in the Colombian Caribbean Sea: Pearly Oysters, Oysters, and Scallops. Serie de Documentos Generales, no. 10. Invemar Cargraphics.Google Scholar
Venice System. (1959). Symposium on the classification of brackish waters, Venice, April 8–14, 1958. Archivio di Oceanografia e Limnologia, 11(Suppl.), 1–248.Google Scholar
Virvilis, C. & Angelidis, P. (2006). Presence of the parasite Marteilia sp. in the flat oyster (Ostrea edulis L.) in Greece. Aquaculture, 259, 1–5.CrossRefGoogle Scholar
Volety, A. K., Barnes, T., Pearlstine, L. & Mazzoti, F. (2005). Habitat suitability index model for the American oyster, Crassostrea virginica: Implications for restoration and enhancement of oysters in SW Florida estuaries. 8th International Conference on Shellfish Restoration. Brest, France.Google Scholar
Wall, C. C., Peterson, B. J. & Gobler, C. J. (2008). Facilitation of seagrass Zostera marina productivity by suspension-feeding bivalves. Marine Ecology Progress Series, 357, 165–174.CrossRefGoogle Scholar
Wall, L. M. (2004). Recruitment and restoration of the oyster Crassostrea virginica in areas with intense boating activity in Mosquito Lagoon, Florida. Master’s thesis, University of South Central Florida, Orlando, FL.
Wall, L. M., Walters, L. J., Grizzle, R. E. & Sacks, P. E. (2005). Recreational boating activity on the recruitment and survival of the oyster Crassostrea virginica on intertidal reefs in Mosquito Lagoon, Florida. Journal of Shellfish Research, 24, 965–973.Google Scholar
Wang, Z., Haidvogel, D., Bushek, D., et al. (2012). Circulation and water properties and their relationship to the oyster disease, MSX, in Delaware Bay. Journal of Marine Research, 70, 279–308.CrossRefGoogle Scholar
Waycott, M., Duarte, C. M., Carruthers, T. J. B, et al. (2009). Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 106, 12377–12381.CrossRefGoogle ScholarPubMed
Whitman, E. R. & Reidenbach, M. A. (2012). Benthic flow environments affect recruitment of Crassostrea virginica larvae to an intertidal oyster reef. Marine Ecology Progress Series, 463, 177–191.CrossRefGoogle Scholar
Wilberg, M. J., Livings, M. E., Barkman, J. S., Morris, B. T. & Robinson, J. M. (2011). Overfishing, disease, habitat loss, and potential extirpation of oysters in upper Chesapeake Bay. Marine Ecology Progress Series, 436, 131–144.CrossRefGoogle Scholar
Wintermyer, M. L. & Cooper, J. M. (2003). Dioxin/furan and polychlorinated biphenyl concentrations in eastern oyster (Crassostrea virginica, Gmelin) tissues and the effects on egg fertilization and development. Journal of Shellfish Research, 22, 737–746.Google Scholar
Worm, B., Barbier, E. B., Beaumont, N., et al. (2006). Impacts of biodiversity loss on ocean ecosystem services. Science, 314, 787–790.CrossRefGoogle ScholarPubMed
Zimmer-Faust, R. K. & Tamburri, M. (1994). Chemical identity and ecological implications of a waterborne, larval settlement cue. Limnology and Oceanography, 39, 1075–1087.CrossRefGoogle Scholar
Zu Ermgasson, P. S. E., Spalding, M. D., Grizzle, R. E. & Brumbaugh, R. D. (2013). Quantifying the loss of a marine ecosystem service: Filtration by the eastern oyster in US estuaries. Estuaries and Coasts, 36, 36–43.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats