Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-x5mqb Total loading time: 0.874 Render date: 2021-12-08T01:56:42.939Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Section 3 - Trauma to Uncompromised Spine

Published online by Cambridge University Press:  28 March 2018

Zoran Rumboldt
Affiliation:
Medical University of South Carolina
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Clinical Imaging of Spinal Trauma
A Case-Based Approach
, pp. 35 - 92
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Lenchik, L, Rogers, LF, Delmas, PD, Genant, HK. Diagnosis of osteoporotic vertebral fractures: importance of recognition and description by radiologists. AJR Am J Roentgenol 2004;183:949958.CrossRefGoogle ScholarPubMed
Parizel, PM, van der Zijden, T, Gaudino, S, et al. Trauma of the spine and spinal cord: imaging strategies. Eur Spine J 2010;19(Suppl 1):817. doi:10.1007/s00586-009-1123-5.CrossRefGoogle ScholarPubMed
Alexandru, D, So, W. Evaluation and management of vertebral compression fractures. Perm J 2012;16:4651.CrossRefGoogle ScholarPubMed
Jun, DS, Shin, WJ, An, BK, Paik, JW, Park, MH. The relationship between the progression of kyphosis in stable thoracolumbar fractures and magnetic resonance imaging findings. Asian Splin J 2015;9:170177.CrossRefGoogle ScholarPubMed
Hutchins, TA, Wiggins, RH, Stein, JM, Shah, LM. Acute traumatic intraosseus fluid sign predisposes to dynamic fracture mobility. Emerg Radiol 2017;24:149155.CrossRefGoogle Scholar
Maserati, MB, Stephens, B, Zohny, Z, et al. Occipital condyle fractures: clinical decision rule and surgical management. J Neurosurg Spine 2009;11:388395.CrossRefGoogle ScholarPubMed
Hanson, JA, Deliganis, AV, Baxter, AB, et al. Radiologic and clinical spectrum of occipital condyle fractures: retrospective review of 107 consecutive fractures in 95 patients. AJR Am J Roentgenol 2002;178:12611268.CrossRefGoogle ScholarPubMed
Karam, YR, Traynelis, VC. Occipital condyle fractures. Neurosurgery 2010;66(3 Suppl):5659.CrossRefGoogle ScholarPubMed
Theodore, N, Aarabi, B, Dhall, SS, et al. Occipital condyle fractures. Neurosurgery 2013;72(2 Suppl):106113.CrossRefGoogle ScholarPubMed
Leone, A, Cerase, A, Colosimo, C, et al. Occipital condylar fractures: a review. Radiology 2000;216:635644.CrossRefGoogle ScholarPubMed
Mead, LB 2nd, Millhouse, PW, Krystal, J, Vaccaro, AR. C1 fractures: a review of diagnoses, management options, and outcomes. Curr Rev Musculoskelet Med 2016;9:255262.CrossRefGoogle ScholarPubMed
Babak, KS. Fractures of the C1 and C2 vertebrae. Seminars in Spine Surgery 2013;25:2335.Google Scholar
Seo, SJ, Kim, HR, Choi, EJ, et al. Unrecognized C1 lateral mass fracture without instability: the origin of posterior neck pain. Korean J Pain 2012;25:258261.CrossRefGoogle ScholarPubMed
Kaiser, DR, Ciarpaglini, R, Maestretti, G. An uncommon C1 fracture with longitudinal split of the transverse ligament. Eur Spine J 2012;21:S471S474.CrossRefGoogle ScholarPubMed
Bransford, R, Falicov, A, Nguyen, Q, et al. Unilateral C-1 lateral mass sagittal split fracture: an unstable Jefferson fracture variant. JNS 2009;10:466473.Google ScholarPubMed
Babak, KS. Fractures of the C1 and C2 vertebrae. Semin Spine Surg 2013;25:2335.Google Scholar
Pratt, H, Davies, E, King, L. Traumatic injuries of the C1/C2 complex: computed tomographic imaging appearances. Curr Probl Diagn Radiol 2008;37:2638.CrossRefGoogle ScholarPubMed
Mead, LB 2nd, Millhouse, PW, Krystal, J, Vaccaro, AR. C1 fractures: a review of diagnoses, management options, and outcomes. Curr Rev Musculoskelet Med 2016;9:255262.CrossRefGoogle ScholarPubMed
Sasaka, KK, Decker, GT, El-Khoury, GY. Horizontal fracture of the anterior arch of the atlas associated with a congenital cleft of the anterior arch. Emer Radiol 2006;12:130132.CrossRefGoogle ScholarPubMed
Mohit, AA, Schuster, JA, Mirza, SK, et al. “Plough” fracture: shear fracture of the anterior arch of the atlas. AJR 2003;181:770.CrossRefGoogle ScholarPubMed
O’Brien, WT, Shen, P, Lee, P. The dens: normal development, developmental variants and anomalies, and traumatic injuries. J Clin Imag Sci 2015;5:38. doi:10.4103/2156-7514.159565.CrossRefGoogle ScholarPubMed
Mortelmans, LJ, Desruelles, D, Sabbe, MB, Geusens, EA. Axis or Harris ring in odontoid fractures, old fashioned but not obsolete. Eur J Emerg Med 2009;16:214216. doi: 10.1097/MEJ.0b013e32831040d8.CrossRefGoogle Scholar
Keller, S, Bieck, K, Karul, M, et al. Lateralized odontoid in plain film radiography: sign of fractures? A comparison study with MDCT. RoFo 2015;187:801807. doi: 10.1055/s-0035-1553237.Google ScholarPubMed
Aydin, K, Cokluk, C. The segments and the inferior boundaries of the odontoid process of C2 based on the magnetic resonance imaging study. Turk Neurosurg 2008;18:2329.Google ScholarPubMed
Guan, J, Bisson, EF. Treatment of odontoid fractures in the aging population. Neurosurg Clin N Am 2017;28:115123. doi: 10.1016/j.nec.2016.07.001.CrossRefGoogle ScholarPubMed
Daffner, SD, Daffner, RH. Computed tomography diagnosis of facet dislocations: the “hamburger bun” and “reverse hamburger bun” signs. J Emerg Med 2002;23:387394.CrossRefGoogle ScholarPubMed
Palmieri, F, Cassar-Pullicino, VN, Dell’Atti, C, et al. Uncovertebral joint injury in cervical facet dislocation: the headphones sign. Eur Radiol 2006;16:13121315.CrossRefGoogle ScholarPubMed
Wilson, JR, Vaccaro, A, Harrop, JS, et al. The impact of facet dislocation on clinical outcomes after cervical spinal cord injury: results of a multicenter North American prospective cohort study. Spine (Phila Pa 1976) 2013;38:97103. doi: 10.1097/BRS.0b013e31826e2b91.CrossRefGoogle ScholarPubMed
De Jong, RJ, Vreeling, AW, Van Susante, JL. Unilateral facet dislocation: always reduce? Acta Orthop Belg 2012;78:808810.Google ScholarPubMed
Blecher, R, Geftler, A, Anekstein, Y, Mirovsky, Y. Isolated unilateral facet dislocation of the lumbosacral junction. J Bone Joint Surg Br 2010;92:14561459. doi: 10.1302/0301-620X.92B10.24718.CrossRefGoogle ScholarPubMed
Robles, LA. Isolated cervical depressed laminar fracture in a child. Case report and review of the literature. J Neurosurg 2006;105(6 Suppl):496498.Google Scholar
Hähnle, UR, Nainkin, L. Traumatic invagination of the fourth and fifth cervical laminae with acute hemiparesis. J Bone Joint Surg Br 2000;82:11481150.CrossRefGoogle ScholarPubMed
Makan, P. Neurologic compromise after an isolated laminar fracture of the cervical spine. Spine (Phila Pa 1976) 1999;24:11441146.CrossRefGoogle ScholarPubMed
Matar, LD, Helms, CA, Richardson, WJ. “Spinolaminar breach”: an important sign in cervical spinous process fractures. Skeletal Radiol 2000;29:7580.CrossRefGoogle ScholarPubMed
Skiak, E, Karakasli, A, Harb, A, et al. The effect of laminae lesion on thoraco-lumbar fracture reduction. Orthop Traumatol Surg Res 2015;101:489494. doi: 10.1016/j.otsr.2015.02.011.CrossRefGoogle ScholarPubMed
Patten, RM, Gunberg, SR, Brandenburger, DK. Frequency and importance of transverse process fractures in the lumbar vertebrae at helical abdominal CT in patients with trauma. Radiology 2000;215:831834.CrossRefGoogle ScholarPubMed
Boulter, JH, Lovasik, BP, Baum, GR, et al. Implications of isolated transverse process fractures: is spine service consultation necessary? World Neurosurg 2016;95:285291. doi: 10.1016/j.wneu.2016.08.027.CrossRefGoogle ScholarPubMed
Nagasawa, DT, Bui, TT, Lagman, C, et al. Isolated transverse process fractures: a systematic analysis. World Neurosurg 2017;100:336341. doi: 10.1016/j.wneu.2017.01.032.CrossRefGoogle ScholarPubMed
Lombardo, G, Petrone, P, Prabhakaran, K, Marini, CP. Isolated transverse process fractures: insignificant injury or marker of complex injury pattern? Eur J Trauma Emerg Surg Dec 2, 2016 [Epub ahead of print]
Carr, RB, Fink, KR, Gross, JA. Imaging of trauma: part 1, pseudotrauma of the spine – osseous variants that may simulate injury. AJR Am J Roentgenol 2012;199:12001206. doi: 10.2214/AJR.12.9083.CrossRefGoogle ScholarPubMed
Lee, S, Park, MS, Kim, YC, Kim, TH. Osteoporotic thoracolumbar junctional fracture accompanied by spinous process fracture without posterior ligament injury: its clinical and radiologic significances. Eur Spine J 2016;25:34783485.CrossRefGoogle ScholarPubMed
Han, SR, Sohn, MJ. Twelve contiguous spinous process fracture of cervico-thoracic spine. Korean J Spine 2014;11:212213.CrossRefGoogle ScholarPubMed
Fayyazi, AH, Segal, L. Surgical excision of symptomatic lumbar spinous process pseudoarthrosis. J Spinal Disord Tech 2004;17:439441.CrossRefGoogle ScholarPubMed
Provenzale, J. MR imaging of spinal trauma. Emerg Radiol 2007;13:289297.CrossRefGoogle ScholarPubMed
Qaiyum, M, Tyrrell, PN, McCall, IW, Cassar-Pullicino, VN. MRI detection of unsuspected vertebral injury in acute spinal trauma: incidence and significance. Skeletal Radiol 2001;30:299304.CrossRefGoogle ScholarPubMed
Green, RA, Saifuddin, A. Whole spine MRI in the assessment of acute vertebral body trauma. Skeletal Radiol 2004;33:129135.Google ScholarPubMed
Brinckman, MA, Chau, C, Ross, JS. Marrow edema variability in acute spine fractures. Spine J 2015;15:454460. doi: 10.1016/j.spinee.2014.09.032.CrossRefGoogle ScholarPubMed
Nakatsu, M, Hatabu, H, Itoh, H, et al. Comparison of short inversion time inversion recovery (STIR) and fat-saturated (chemsat) techniques for background fat intensity suppression in cervical and thoracic MR imaging. J Magn Reson Imaging 2000;11:5660.3.0.CO;2-D>CrossRefGoogle ScholarPubMed
Ryken, TC, Aarabi, B, Dhall, SS, et al. Management of isolated fractures of the atlas in adults. Neurosurgery 2013;72(2 Suppl):151158. doi: 10.1227/NEU.0b013e318276ee55.CrossRefGoogle ScholarPubMed
Kakarla, UK, Chang, SW, Theodore, N, Sonntag, VK. Atlas fractures. Neurosurgery 2010;66(3 Suppl):6067. doi: 10.1227/01.NEU.0000366108.02499.8F.CrossRefGoogle ScholarPubMed
Haus, BM, Harris, MB. Case report: nonoperative treatment of an unstable Jefferson fracture using a cervical collar. Clin Orthop Relat Res 2008;466:12571261.CrossRefGoogle ScholarPubMed
Shatsky, J, Bellabarba, C, Nguyen, Q, Bransford, RJ. A retrospective review of C1 ring fractures – does the transverse atlantal ligament (TAL) really matter? Spine J 2016;16:372379.CrossRefGoogle ScholarPubMed
Rajasekaran, S. Thoracolumbar burst fractures without neurological deficit: the role for conservative treatment. Eur Spine J 2010;19(Suppl 1):4047. doi: 10.1007/s00586-009-1122-6.CrossRefGoogle ScholarPubMed
Heary, RF, Kumar, S. Decision-making in burst fractures of the thoracolumbar and lumbar spine. Indian J Orthop 2007;41:268276. doi: 10.4103/0019-5413.36986.CrossRefGoogle ScholarPubMed
Alpantaki, K, Bano, A, Pasku, D, et al. Thoracolumbar burst fractures: a systematic review of management. Orthopedics 2010;33:422429. doi: 10.3928/01477447-20100429-24.CrossRefGoogle ScholarPubMed
Munera, F, Rivas, LA, Nunez, DB Jr, Quencer, RM. Imaging evaluation of adult spinal injuries: emphasis on multidetector CT in cervical spine trauma. Radiology 2012;263:645660.CrossRefGoogle ScholarPubMed
Grauer, JN, Shafi, B, Hilbrand, AS, et al. Proposal of a modified, treatment-oriented classification of odontoid fractures. Spine 2005;5;123129.CrossRefGoogle ScholarPubMed
Rizk, E, Kelleher, JP, Zalatimo, O, et al. Nonoperative management of odontoid fractures: a review of 59 cases. Clin Neurol Neurosurg 2013;115:16531656.CrossRefGoogle ScholarPubMed
Vaccaro, AR, Kepler, CK, Kopjar, B, et al. Functional and quality-of-life outcomes in geriatric patients with type-II dens fracture. J Bone Joint Surg Am 2013;95:729735.CrossRefGoogle ScholarPubMed
Levine, AM, Edwards, CC. The management of traumatic spondylolisthesis of the axis. J Bone Joint Surg Am 1985;67:217226.CrossRefGoogle ScholarPubMed
Effendi, B, Roy, D, Cornish, B, et al. Fractures of the ring of the axis. A classification based on the analysis of 131 cases. J Bone Joint Surg Br 1981;63-B:319327.CrossRefGoogle Scholar
Menon, KV, Taif, S. Detailed description of anatomy of the fracture line in hangman’s injury: a retrospective observational study on motor vehicle accident victims. Br J Radiol 2016;89:20150847. doi: 10.1259/bjr.20150847.CrossRefGoogle ScholarPubMed
Schleicher, P, Scholz, M, Pingel, A, Kandziora, F. Traumatic spondylolisthesis of the axis vertebra in adults. Global Spine J 2015;5:346358. doi: 10.1055/s-0035-1550343.CrossRefGoogle ScholarPubMed
Parizel, PM, van der Zijden, T, Gaudino, S, et al. Trauma of the spine and spinal cord: imaging strategies. Eur Spine J 2010;19 Suppl 1:S8S17. doi: 10.1007/s00586-009-1123-5.CrossRefGoogle ScholarPubMed
Ivancic, PC, Pearson, AM, Tominaga, Y, et al. Mechanism of cervical spinal cord injury during bilateral facet dislocation. Spine (Phila Pa 1976) 2007;32:24672473.CrossRefGoogle ScholarPubMed
Zeonos, GA, Agarwal, N, Monaco, EA 3rd, et al. Traumatic L4-5 bilateral locked facet joints. Eur Spine J 2016;25 Suppl 1:129133.CrossRefGoogle Scholar
Srivastava, A, Soh, RC, Ee, GW, Tan, SB, Tow, BP. Management of the neglected and healed bilateral cervical facet dislocation. Eur Spine J 2014;23:16121616.CrossRefGoogle ScholarPubMed
Bernstein, MP, Mirvis, SE, Shanmuganathan, K. Chance-type fractures of the thoracolumbar spine: imaging analysis in 53 patients. AJR Am J Roentgenol 2006;187:859868.CrossRefGoogle ScholarPubMed
Groves, CJ, Cassar-Pullicino, VN, Tins, BJ, et al. Chance-type flexion-distraction injuries in the thoracolumbar spine: MR imaging characteristics. Radiology 2005;236:601608.CrossRefGoogle ScholarPubMed
Suttor, S, Gray, R, Bridge, C, Cree, A. Operative treatment of chance injuries in the paediatric population. Eur Spine J 2013;22:510514. doi: 10.1007/s00586-012-2582-7.CrossRefGoogle ScholarPubMed
Andras, LM, Skaggs, KF, Badkoobehi, H, et al. Chance fractures in the pediatric population are often misdiagnosed. J Pediatr Orthop 2016 Dec 23. doi: 10.1097/BPO.0000000000000925. [Epub ahead of print]CrossRef
Kim, KS, Chen, HH, Russell, EJ, Rogers, LF. Flexion teardrop fracture of the cervical spine: radiographic characteristics. AJR Am J Roentgenol 1989;152:319326.CrossRefGoogle ScholarPubMed
Kim, HJ, Lee, KY, Kim, WC. Treatment outcome of cervical tear drop fracture. Asian Spine J 2009;3:7379. doi: 10.4184/asj.2009.3.2.73.CrossRefGoogle ScholarPubMed
Fisher, CG, Dvorak, MF, Leith, J, Wing, PC. Comparison of outcomes for unstable lower cervical flexion teardrop fractures managed with halo thoracic vest versus anterior corpectomy and plating. Spine (Phila Pa 1976) 2002;27:160166.CrossRefGoogle ScholarPubMed
Toh, E, Nomura, T, Watanabe, M, Mochida, J. Surgical treatment for injuries of the middle and lower cervical spine. Int Orthop 2006;30:5458.CrossRefGoogle ScholarPubMed
Rao, SK, Wasyliw, C, Nunez, DB Jr. Spectrum of imaging findings in hyperextension injuries of the neck. Radiographics 2005;25 :12391254.CrossRefGoogle Scholar
Utz, M, Khan, S, O’Connor, D, Meyers, S. MDCT and MRI evaluation of cervical spine trauma. Insights Imaging 2014;5:6775. doi: 10.1007/s13244-013-0304-2.CrossRefGoogle ScholarPubMed
Kim, HJ, Lee, KY, Kim, WC. Treatment outcome of cervical tear drop fracture. Asian Spine J 2009;3:7379. doi: 10.4184/asj.2009.3.2.73.CrossRefGoogle ScholarPubMed
Watanabe, M, Sakai, D, Yamamoto, Y, Sato, M, Mochida, J. Clinical features of the extension teardrop fracture of the axis: review of 13 cases. J Neurosurg Spine 2011;14:710714.CrossRefGoogle ScholarPubMed
Hu, Y, Kepler, CK, Albert, TJ, et al. Conservative and operative treatment in extension teardrop fractures of the axis. Clin Spine Surg 2016;29:E49E54.Google ScholarPubMed
Aarabi, B, Simard, JM, Kufera, JA, et al. Intramedullary lesion expansion on magnetic resonance imaging in patients with motor complete cervical spinal cord injury. J Neurosurg Spine 2012;17:243252.CrossRefGoogle ScholarPubMed
Bozzo, A, Marcoux, J, Radhakrishna, M, et al. The role of magnetic resonance imaging in the management of acute spinal cord injury. J Neurotrauma 2011;28:14011411.CrossRefGoogle ScholarPubMed
Ellingson, BM, Salamon, N, Holly, LT. Imaging techniques in spinal cord injury. World Neurosurg 2014;82:13511358.CrossRefGoogle ScholarPubMed
Kaiser, ML, Whealon, MD, Barrios, C, et al. The current role of magnetic resonance imaging for diagnosing cervical spine injury in blunt trauma patients with negative computed tomography scan. Am Surg 2012;78:11561160.Google ScholarPubMed
Wilson, JR, Grossman, RG, Frankowski, RF, et al. A clinical prediction model for long-term functional outcome after traumatic spinal cord injury based on acute clinical and imaging factors. J Neurotrauma 2012;29:22632271.CrossRefGoogle ScholarPubMed
Yoshikawa, T, Hayashi, N, Yamamoto, S, et al. Brachial plexus injury: clinical manifestations, conventional imaging findings and the latest imaging techniques. Radiographics 2006;26 suppl 1:S133S143.CrossRefGoogle ScholarPubMed
Tse, R, Nixon, JN, Iyer, RS, Kuhlman-Wood, KA, Ishak, GE. The diagnostic value of CT myelography, MR myelography, and both in neonatal brachial plexus palsy. AJNR Am J Neuroradiol 2014;35:14251432.CrossRefGoogle ScholarPubMed
Somashekar, D, Yang, LJ, Ibrahim, M, Parmar, HA. High-resolution MRI evaluation of neonatal brachial plexus palsy: a promising alternative to traditional CT myelography. AJNR Am J Neuroradiol 2014;35:12091213.CrossRefGoogle ScholarPubMed
Ijiri, K, Hida, K, Yano, S, Komiya, S, Iwasaki, Y. Traumatic spinal-cord herniation associated with pseudomeningocele after lower-thoracic nerve-root avulsion. Spinal Cord 2009;47:829831.CrossRefGoogle ScholarPubMed
Silbermann-Hoffman, O, Teboul, F. Post-traumatic brachial plexus MRI in practice. Diagn Interv Imaging 2013;94:925943.CrossRefGoogle ScholarPubMed
Kim, TJ, Koh, EJ, Cho, KT. Spinal subarachnoid hemorrhage migrated from traumatic intracranial subarachnoid hemorrhage. Korean J Neurotrauma 2016;12:159162.CrossRefGoogle ScholarPubMed
Moore, JM, Jithoo, R, Hwang, P. Idiopathic spinal subarachnoid hemorrhage: a case report and review of the literature. Global Spine J 2015;5:e59e64. doi: 10.1055/s-0035-1546416.CrossRefGoogle ScholarPubMed
Ishizaka, S, Hayashi, K, Otsuka, M, et al. Syringomyelia and arachnoid cysts associated with spinal arachnoiditis following subarachnoid hemorrhage. Neurol Med Chir (Tokyo) 2012;52:686690.CrossRefGoogle ScholarPubMed
Crossley, RA, Raza, A, Adams, WM. The lumbar sedimentation sign: spinal MRI findings in patients with subarachnoid haemorrhage with no demonstrable intracranial aneurysm. Br J Radiol 2011;84:279281. doi: 10.1259/bjr/68122723.CrossRefGoogle ScholarPubMed
Braun, P, Kazmi, K, Nogués-Meléndez, P, Mas-Estellés, F, Aparici-Robles, F. MRI findings in spinal subdural and epidural hematoma. Eur J Radiol 2007;64:119125.CrossRefGoogle Scholar
Kreppel, D, Antoniadis, G, Seeling, W. Spinal hematoma: a literature survey with meta-analysis of 613 patients. Neurosurg Rev 2003;26:149.CrossRefGoogle ScholarPubMed
Küker, W, Thiex, R, Friese, S, et al. Spinal subdural and epidural haematomas: diagnostic and therapeutic aspects in acute and subacute cases. Acta Neurochir (Wien) 2000;142:777785.Google ScholarPubMed
Post, MJ, Becerra, JL, Madsen, PW, Puckett, W, Quencer, RM, Bunge, RP, Sklar, EM. Acute spinal subdural hematoma: MR and CT findings with pathologic correlates. AJNR Am J Neuroradiol 1994;15:18951905.Google ScholarPubMed
Abla, AA, Oh, MY. Spinal chronic subdural hematoma. Neurosurg Clin N Am 2000;11:465.Google ScholarPubMed
Chang, FC, Lirng, JF, Luo, CB, et al. Evaluation of clinical and MR findings for the prognosis of spinal epidural haematomas. Clin Radiol 2005;60:762770.CrossRefGoogle Scholar
Boukobza, M, Haddar, D, Boissonet, M, Merland, JJ. Spinal subdural haematoma: a study of three cases. Clin Radiol 2001;56:475480.CrossRefGoogle ScholarPubMed
Kou, J, Fischgrund, J, Biddinger, A, Herkowitz, H. Risk factors for spinal epidural hematoma after spinal surgery. Spine (Phila Pa 1976) 2002;27:16701673.CrossRefGoogle ScholarPubMed
Fukui, MB, Swarnkar, AS, Williams, RL. Acute spontaneous spinal epidural hematomas. AJNR Am J Neuroradiol 1999;20:13651372.Google ScholarPubMed
Fardon, DF, Milette, PC. Combined Task Forces of the North American Spine Society, American Society of Spine Radiology, and American Society of Neuroradiology. Nomenclature and classification of lumbar disc pathology. Recommendations of the Combined task Forces of the North American Spine Society, American Society of Spine Radiology, and American Society of Neuroradiology. Spine (Phila Pa 1976) 2001;26:E93E113.CrossRefGoogle ScholarPubMed
Maiman, DJ, Barolat, G, Larson, SJ. Management of bilateral locked facets of the cervical spine. Neurosurgery 1986;18:542547.CrossRefGoogle ScholarPubMed
Williams, AL, Haughton, VM, Daniels, DL, Grogan, JP. Differential CT diagnosis of extruded nucleus pulposus. Radiology 1983;148:141148.CrossRefGoogle ScholarPubMed
Lurie, JD, Tosteson, AN, Tosteson, TD, et al. Reliability of magnetic resonance imaging readings for lumbar disc herniation in the Spine Patient Outcomes Research Trial (SPORT). Spine 2008;33:991998.CrossRefGoogle Scholar
Chang, HK, Huang, WC, Wu, JC, et al. Cervical arthroplasty for traumatic disc herniation: an age- and sex-matched comparison with anterior cervical discectomy and fusion. BMC Musculoskelet Disord 2015;16:228.CrossRefGoogle ScholarPubMed
Biffl, WL, Moore, EE, Elliott, JP, et al. The devastating potential of blunt vertebral arterial injury injuries. Ann Surg 2000;231:672681.CrossRefGoogle ScholarPubMed
Burlew, CC, Biffl, WL, Moore, EE, et al. Blunt cerebrovascular injuries: redefining screening criteria in the era of noninvasive diagnosis. J Trauma Acute Care Surg 2012;72:330335.CrossRefGoogle ScholarPubMed
Harrigan, MR, Hadley, MN, Dhall, SS, et al. Management of vertebral artery injuries following non-penetrating cervical trauma. In: Guidelines for the management of acute cervical spine and spinal cord injuries. Neurosurgery 2013;72(Suppl 2):234243.CrossRefGoogle Scholar
Provenzale, JM, Sarikaya, B. Comparison of test performance characteristics of MRI, MR angiography, and CT angiography in the diagnosis of carotid and vertebral artery dissection: a review of the medical literature. AJR Am J Roentgenol 2009;193:11671174.CrossRefGoogle Scholar
Dundamadappa, SK, Cauley, KA. MR imaging of acute cervical spinal ligamentous and soft tissue trauma. Emerg Radiol 2012;19:277286.CrossRefGoogle ScholarPubMed
Benedetti, P, Fahr, LM, Kuhns, LR, et al. MR imaging findings in spinal ligamentous injury. AJR 2000;175:661665.CrossRefGoogle ScholarPubMed
Molière, S, Zaragori-Benedetti, C, Ehlinger, M, et al. Evaluation of paraspinal fat pad as an indicator of posterior ligamentous complex injury in cervical spine trauma. Radiology 2017;282:790797.CrossRefGoogle ScholarPubMed
Gabriel, AC, Angel, JP, Juan, JG, et al. Diagnostic accuracy of ultrasound for detecting posterior ligamentous complex injuries of the thoracic and lumbar spine: a systematic review and meta-analysis. J Craniovertebr Junction Spine 2013;4:2531.CrossRefGoogle ScholarPubMed
Pizones, J, Sánchez-Mariscal, F, Zúñiga, L, Álvarez, P, Izquiredo, E. Prospective analysis of magnetic resonance imaging accuracy in diagnosing traumatic injuries of the posterior ligamentous complex of thoracolumbar spine. Spine (Phila Pa 1976) 2013;38:745751.CrossRefGoogle ScholarPubMed
Martinez-Perez, R, Munarriz, PM, Paredes, I, Cotrina, J, Lagares, A. Cervical spinal cord injury without computed tomography evidence of trauma (SCIWOCTET) in adults: MRI prognostic factors. World Neurosurg 2017;99:192199.CrossRefGoogle Scholar
Rosenfeld, JV, Bell, RS, Armonda, R. Current concepts in penetrating and blast injury to the central nervous system. World J Surg 2015;39:13521362. doi: 10.1007/s00268-014-2874-7.CrossRefGoogle ScholarPubMed
Brywczynski, JJ, Barrett, TW, Lyon, JA, Cotton, BA. Management of penetrating neck injury in the emergency department: a structured literature review. Emerg Med J 2008;25:711715. doi: 10.1136/emj.2008.058792.CrossRefGoogle ScholarPubMed
Moyed, S, Shanmuganathan, K, Mirvis, SE, et al. MR imaging of penetrating spinal trauma. AJR Am J Roentgenol 1999;173:13871391.CrossRefGoogle ScholarPubMed

Send book to Kindle

To send this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Send book to Dropbox

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Dropbox.

Available formats
×

Send book to Google Drive

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Google Drive.

Available formats
×