Skip to main content Accessibility help
×
Home
Hostname: page-component-7ccbd9845f-2c279 Total loading time: 0.766 Render date: 2023-01-31T18:29:21.346Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

3 - Leaching and Solution Chemistry

Published online by Cambridge University Press:  30 August 2017

Markus Gräfe
Affiliation:
Emirates Global Aluminium (EGA)
Craig Klauber
Affiliation:
Curtin University of Technology, Perth
Angus J. McFarlane
Affiliation:
Commonwealth Scientific and Industrial Research Organisation, Canberra
David J. Robinson
Affiliation:
Commonwealth Scientific and Industrial Research Organisation, Canberra
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agatzini-Leonardou, S. & Zafiratos, I. G. 2004. Beneficiation of a Greek serpentinic nickeliferous ore Part II: Sulphuric acid heap and agitation leaching. Hydrometallurgy, 74 (3–4), 267275.CrossRefGoogle Scholar
Aldushin, K., Jordan, G. & Schmahl, W. W. 2006. Basal plane reactivity of phyllosilicates studied in situ by hydrothermal atomic force microscopy (HAFM). Geochimica et Cosmochimica Acta, 70 (17), 43804391.CrossRefGoogle Scholar
Alexander, G. B., Heston, W. M. & Iler, R. K. 1954. The solubility of amorphous silica in water. The Journal of Physical Chemistry, 58 (6), 453455.CrossRefGoogle Scholar
Arvidson, R. S. & Lüttge, A. 2010. Mineral dissolution kinetics as a function of distance from equilibrium: New experimental results. Chemical Geology, 269 (1–2), 7988.CrossRefGoogle Scholar
Aytas, S., Yurtlu, M. & Donat, R. 2009. Adsorption characteristic of U(VI) ion onto thermally activated bentonite. Journal of Hazardous Materials, 172 (2–3), 667674.CrossRefGoogle ScholarPubMed
Bartlett, R. W. 1997. Metal extraction from ores by heap leaching. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 28 (4), 529545.CrossRefGoogle Scholar
Baum, W. 1999. The use of a mineralogical data base for production forecasting and troubleshooting in copper leach operations. In: Young, S. K., Dreisinger, D. B., Hackl, R. P. & Dixon, D. G. (eds) Copper 99: Cobre 99 International Conference. Phoenix, AZ: The Minerals, Metals and Materials Society, 393408.Google Scholar
Beig, M. S. & Lüttge, A. 2006. Albite dissolution kinetics as a function of distance from equilibrium: Implications for natural feldspar weathering. Geochimica et Cosmochimica Acta, 70 (6), 14021420.CrossRefGoogle Scholar
Bickmore, B. R., Bosbach, D., HochellaJr., M. F., Charlet, L. & Rufe, E. 2001. In situ atomic force microscopy study of hectorite and nontronite dissolution: Implications for phyllosilicate edge surface structures and dissolution mechanisms. American Mineralogist, 86, 411423.CrossRefGoogle Scholar
Bouffard, S. C. & West-Sells, P. G. 2009. Hydrodynamic behavior of heap leach piles: Influence of testing scale and material properties. Hydrometallurgy, 98 (1–2), 136142.CrossRefGoogle Scholar
Büyükakinci, E. & Topkaya, Y. A. 2009. Extraction of nickel from lateritic ores at atmospheric pressure with agitation leaching. Hydrometallurgy, 97 (1–2), 3338.CrossRefGoogle Scholar
Canterford, J. H. & Sparrow, G. J. 1984. Adsorption of uranium from carbonate media. Minerals and Metallurgical Processing, 1 (3), 241246.Google Scholar
Cardile, C. M., Willing, M. J. & Hughes, C. A. 1994. Conversion of kaolin to DSP in the Bayer process. Sixth AusIMM Extractive Metallurgy Conference July 3–6, 1994. Brisbane, QLD: Australasian Institute of Mining and Metallurgy, 321324.Google Scholar
Carroll, S. A. & Walther, J. V. 1990. Kaolinite dissolution at 25°, 60°, and 80°C. American Journal of Sciences, 290 (7), 797810.Google Scholar
Carroll-Webb, S. A. & Walther, J. V. 1988. A surface complex reaction model for the pH-dependence of corundum and kaolinite dissolution rates. Geochimica et Cosmochimica Acta, 52 (11), 26092623.CrossRefGoogle Scholar
Casey, W. H. 1991. On the relative dissolution rates of some oxide and orthosilicate minerals. Journal of Colloid and Interface Science, 146 (2), 586589.CrossRefGoogle Scholar
Catalano, J. G. & BrownJr, G. E. 2005. Uranyl adsorption onto montmorillonite: Evaluation of binding sites and carbonate complexation. Geochimica et Cosmochimica Acta, 69 (12), 29953005.CrossRefGoogle Scholar
Chen, T. T., Dutrizac, J. E. & White, C. W. 2000. Serpentine ore microtextures occurring in the Magnola magnesium process. Journal of the Minerals, Metals & Materials Society, 52 (4), 2022.CrossRefGoogle Scholar
Chen, Y., Feng, Q., Liu, K., Chen, Y. & Zhang, G. 2006. Study on the structure of Bayer liquor with spectroscopy and MD simulation. Chemical Physics Letters, 422 (4–6), 406411.CrossRefGoogle Scholar
Choi, Y., Baron, J. Y., Wang, Q., Langhans, J. & Kondos, P. 2013. Thiosulfate processing: From lab curiosity to commercial application. In: Lorenzen, L. (ed.) World Gold 2013, 26–29 September 2013. Brisbane, QLD: The Australasian Institute of Mining and Metallurgy, 4550.Google Scholar
Cornell, R. M. & Schwertmann, U. 2003. Dissolution. The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses. 2nd ed. Weinheim: Wiley-VCH.CrossRefGoogle Scholar
Cousineau, P. G. & Fulford, G. D. 1987. Aspects of the desilication of Bayer liquors. In: Zabreznik, R. (ed.) 116th Annual Meeting of Light Metals. Denver, CO: TMS, 1117.Google Scholar
Cresswell, P. J. 1984. Factors affecting desilication of Bayer process liquors. In: Barton, A. C. T. (ed.) Chemeca 84: The 12th Australian Chemical Engineering Conference; Winning in the Competitive World 1984. Melbourne, VIC: Institution of Engineers Australia, 285292.Google Scholar
Crundwell, F. K., Moats, M. S., Ramachandran, V., Robinson, T. G. & Davenport, W. G. 2011. High-temperature sulfuric acid leaching of laterite ores. Extractive Metallurgy of Nickel, Cobalt and Platinum Group Metals. Oxford: Elsevier.Google Scholar
Dai, X., Breuer, P., Hewitt, D. & Bergamin, A. 2013. Thiosulfate process for treating gold concentrates. In: Lorenzen, L. (ed.) World Gold Conference 2013, 26–29 September 2013. Brisbane, QLD: The Australasian Institute of Mining and Metallurgy, 6169.Google Scholar
Dalvi, A. D., Bacon, W. G. & Osborne, R. C. 2004. The past and the future of nickel laterites. PDAC 2004 International Convention, Trade Show and Investors Exchange, 7–10 March 2004. Canada. PDAC.
Das, G. K. & de Lange, J. A. B. 2011. Reductive atmospheric acid leaching of West Australian smectitic nickel laterite in the presence of sulphur dioxide and copper(II). Hydrometallurgy, 105 (3–4), 264269.CrossRefGoogle Scholar
Dhawan, N., Safarzadeh, M. S., Miller, J. D., Moats, M. S. & Rajamani, R. K. 2013. Crushed ore agglomeration and its control for heap leach operations. Minerals Engineering, 41, 5370.CrossRefGoogle Scholar
Du Preez, J. G. H., Morris, D. C., Van Vuuren, C. P. J., Hendriks, P. & Oertell, M. 1981. The chemistry of uranium: Part XXVIII. The development of a combined gold and uranium leach of randfontein ore. Hydrometallurgy, 6 (3–4), 203218.CrossRefGoogle Scholar
Eremin, N. I., Tkacheva, L. V. & Makarenkov, V. N. 1978. Investigation of the kinetics of the decomposition of kaolinite in alkaline and aluminate solutions. Soviet Non-ferrous Metals Research, 6, 197199.Google Scholar
Forsmo, S. P. E., Samskog, P. O. & Bjorkman, B. M. T. 2008. A study on plasticity and compression strength in wet iron ore green pellets related to real process variations in raw material fineness. Powder Technology, 181 (3), 321330.CrossRefGoogle Scholar
Gasparini, C. 1989. Gold. In: Gold and Other Precious Metals: The Lure and the Trap. Toronto, ON: Space Eagle Publishing Co.Google Scholar
Gjelsvik, N. & Torgersen, J. H. 1983. Method of acid leaching of silicates. US Patent 4367215.
Gönen, N., Körpe, E., Yıldırım, M. E. & Selengil, U. 2007. Leaching and CIL processes in gold recovery from refractory ore with thiourea solutions. Minerals Engineering, 20 (6), 559565.CrossRefGoogle Scholar
Gruber, C., Harpaz, L., Zhu, C., Bullen, T. D. & Ganor, J. 2013. A new approach for measuring dissolution rates of silicate minerals by using silicon isotopes. Geochimica et Cosmochimica Acta, 104, 261280.CrossRefGoogle Scholar
Guzman, L., Segarra, M., Chimenos, J. M., Fernandez, M. A. & Espiell, F. 1999. Gold cyanidation using hydrogen peroxide. Hydrometallurgy, 52 (1), 2135.CrossRefGoogle Scholar
Guzman, A., Scheffel, R. & Flaherty, S. 2008. The fundamentals of physical characterisation of ore for heap leach. In: Young, C. A., Taylor, P. R., Anderson, C. G. & Choi, Y. (eds) Hydrometallurgy 2008: Proceedings of the Sixth International Symposium. Littleton, CO: Society for Mining, Metallurgy and Exploration, 937954.Google Scholar
Helle, S., Jerez, O., Kelm, U., Pincheira, M. & Varela, B. 2010. The influence of rock characteristics on acid leach extraction and re-extraction of Cu-oxide and sulfide minerals. Minerals Engineering, 23 (1), 4550.CrossRefGoogle Scholar
Hering, J. G. & Stumm, W. 1990. Oxidative and reductive dissolution of minerals. Reviews in Mineralogy, 23 (1), 427465.Google Scholar
Herkenhoff, E. C. & Dean, J. G. 1987. Heap leaching: Agglomerate or deslime? A critique of current wisdom and the case for splitting fines to a mini-agitator leach. Engineering and Mining Journal, 188 (6), 3239.Google Scholar
Hong, H., Fu, Z. & Min, X. 2001. The adsorption of [Au(HS)2] on kaolinite surfaces: Quantum chemistry calculations. The Canadian Mineralogist, 39 (6), 15911596.Google Scholar
Iglesias, N. & Carranza, F. 1994. Refractory gold-bearing ores: A review of treatment methods and recent advances in biotechnological techniques. Hydrometallurgy, 34 (3), 383395.CrossRefGoogle Scholar
Iler, R. K. 1979. The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica. New York: Wiley & Sons.Google Scholar
Johnston, C. T., Sposito, G. & Birge, R. R. 1985. Raman spectroscopic study of kaolinite in aqueous suspension. Clays and Clay Minerals, 33 (6), 483489.CrossRefGoogle Scholar
Kalinowski, B. & Schweda, P. 1996. Kinetics of muscovite, phlogopite, and biotite dissolution and alteration at pH 1–4, room temperature. Geochimica et Cosmochimica Acta, 60 (3), 367385.CrossRefGoogle Scholar
Karimi, P., Abdollahi, H., Amini, A., et al. 2010. Cyanidation of gold ores containing copper, silver, lead, arsenic and antimony. International Journal of Mineral Processing, 95 (1–4), 6877.CrossRefGoogle Scholar
Kaya, Ş. & Topkaya, Y. A. 2011. High pressure acid leaching of a refractory lateritic nickel ore. Minerals Engineering, 24 (11), 11881197.CrossRefGoogle Scholar
Kinrade, S. D. & Swaddle, T. W. 1989. Direct detection of aluminosilicate species in aqueous-solution by Si-29 and Al-27 NMR-spectroscopy. Inorganic Chemistry, 28 (10), 19521954.CrossRefGoogle Scholar
Köhler, S. J., Bosbach, D. & Oelkers, E. H. 2005. Do clay mineral dissolution rates reach steady state? Geochimica et Cosmochimica Acta, 69 (8), 19972006.CrossRefGoogle Scholar
Korichi, S. & Bensmaili, A. 2009. Sorption of uranium (VI) on homoionic sodium smectite experimental study and surface complexation modeling. Journal of Hazardous Materials, 169 (1–3), 780793.CrossRefGoogle ScholarPubMed
Kurganskaya, I., Arvidson, R. S., Fischer, C. & Lüttge, A. 2012. Does the stepwave model predict mica dissolution kinetics? Geochimica et Cosmochimica Acta, 97, 120130.CrossRefGoogle Scholar
Kuwahara, Y. 2006. In-situ AFM study of smectite dissolution under alkaline conditions at room temperature. American Mineralogist, 91, 11421149.CrossRefGoogle Scholar
La Brooy, S. R., Linge, H. G. & Walker, G. S. 1994. Review of gold extraction from ores. Minerals Engineering, 7 (10), 12131241.CrossRefGoogle Scholar
Lasaga, A. C. & Lüttge, A. 2001. Variation of crystal dissolution rate based on dissolution stepwave model. Science, 291 (5512), 24002404.CrossRefGoogle ScholarPubMed
Lasaga, A. C. & Lüttge, A. 2003. A model for crystal dissolution. European Journal of Mineralogy, 15 (4), 603615.CrossRefGoogle Scholar
Laws, M. 2005. Reactions of kaolinite in the predesilication processing of bauxite ores. PhD, University of Melbourne.Google Scholar
Lottering, M. J., Lorenzen, L., Phala, N. S., Smit, J. T. & Schalkwyk, G. A. C. 2008. Mineralogy and uranium leaching response of low grade South African ores. Minerals Engineering, 21 (1), 1622.CrossRefGoogle Scholar
Lu, J., Dreisinger, D. & West-Sells, P. 2007. Acid curing and agglomeration. In: Riveros, P. A., Dixon, D. G., Dreisinger, D. B. & Collins, M. J. (eds) The John E. Dutrizac International Symposium on Copper Hydrometallurgy. Toronto: The Canadian Institute of Mining, Metallurgy and Petroleum, 453464.Google Scholar
Martin, R. B. 1991. Fe3+ and Al3+ hydrolysis equilibria: Cooperativity in Al3+ hydrolysis reactions. Journal of Inorganic Biochemistry, 44 (2), 141147.CrossRefGoogle Scholar
Mattus, A. J. & Torma, A. E. 1980. A comparison of carbonate leaching of a low-grade uranium ore at atmospheric and increased pressures. Hydrometallurgy, 5 (2–3), 179190.Google Scholar
McDonald, R. G. & Whittington, B. I. 2008. Atmospheric acid leaching of nickel laterites review Part I: Sulphuric acid technologies. Hydrometallurgy, 91 (1–2), 3555.CrossRefGoogle Scholar
McKinley, J. P., Zachara, J. M., Smith, S. C. & Tuner, G. D. 1995. The influence of uranyl hydrolysis and multiple site-binding reactions on adsorption of U(VI) to montmorillonite. Clays and Clay Minerals, 43 (5), 586598.CrossRefGoogle Scholar
Miller, G. 2003. Ore geotechnical effects on copper heap leach kinetics. In: Young, C., Alfantazi, A., Anderson, C., James, A., Dreisinger, D. & Harris, B. (eds) Hydrometallurgy 2003: Proceedings of the Fifth International Symposium Honoring Professor Ian Ritchie. Vancouver, BC: The Minerals, Metals and Materials Society, 329342.Google Scholar
Miller, J. D., Wan, R. Y. & Díaz, X. 2005. Preg-robbing gold ores. In: Adams, M. D. & Wills, B. A. (eds) Developments in Mineral Processing. New York: Elsevier.Google Scholar
Moats, M. S. & Janwong, A. 2008. The art and science of crushed ore agglomeration for heap leaching. In: Young, C. A., Taylor, P. R., Anderson, C. G. & Choi, Y. (eds) Proceedings of the Sixth International Symposium on Hydrometallurgy. Phoenix, AZ: Society for Mining, Metallurgy, and Exploration, Inc., 912917.Google Scholar
Mohammadnejad, S., Provis, J. L. & van Deventer, J. S. J. 2011. Gold sorption by silicates in acidic and alkaline chloride media. International Journal of Mineral Processing, 100 (3–4), 149156.CrossRefGoogle Scholar
Neely, J. & Connick, R. 1970. Rate of water exchange from hydrated magnesium ion. Journal of the American Chemical Society, 92 (11), 34763478.CrossRefGoogle Scholar
Newman, A. C. D. & Brown, G. 1987. The chemical constitution of clays. In: Newman, A. C. D. (ed.) Chemistry of Clays and Clay Minerals. Chantilly, VA: Mineralogical Society Monographs.Google Scholar
O’Kane, M., Barbour, S. L. & Haug, M. D. 1999. A framework for improving the ability to understand and predict the performance of heap leach piles. In: Young, S. K., Dreisinger, D. B., Hackl, R. P. & Dixon, D. G. (eds) Hydrometallurgy of Copper. Warrendale, PA: The Minerals, Metals and Materials Society, 409419.Google Scholar
O’Neill, C. E. 1978. Leaching nickeliferous silicate ores with hydrochloric acid. Canadian Patent 1024353.
Oelkers, E. H. 2001. General kinetic description of multioxide silicate mineral and glass dissolution. Geochimica et Cosmochimica Acta, 65 (21), 37033719.CrossRefGoogle Scholar
Oelkers, E. H., Schott, J., Gauthier, J.-M. & Herrero-Roncal, T. 2008. An experimental study of the dissolution mechanism and rates of muscovite. Geochimica et Cosmochimica Acta, 72 (20), 49484961.CrossRefGoogle Scholar
Oelkers, E. H., Golubev, S. V., Chairat, C., Pokrovsky, O. S. & Schott, J. 2009. The surface chemistry of multi-oxide silicates. Geochimica et Cosmochimica Acta, 73 (16), 46174634.CrossRefGoogle Scholar
Okada, K., Temuujin, J., Kameshima, Y. & Mackenzie, K. J. D. 2003. Selective acid leaching of talc. Clay Science, 12 (3), 159165.Google Scholar
Okamoto, G., Okura, T. & Goto, K. 1957. Properties of silica in water. Geochimica et Cosmochimica Acta, 12 (1–2), 123132.CrossRefGoogle Scholar
Oku, T. & Yamada, K. 1971. The dissolution rate of quartz and the rate of desilication in the Bayer liquor. In: Edgeworth, T. G. (ed.) 100th AIME Annual Meeting of Light Metals. New York: TMS, 3145.Google Scholar
Padilla, G. A., Cisternas, L. A. & Cueto, J. Y. 2008. On the optimization of heap leaching. Minerals Engineering, 21 (9), 673678.CrossRefGoogle Scholar
Pautler, J. B., Strominger, M. G. & Gross, A. E. 1990. New Polymeric Agglomeration Aid Improves Heap Leach Efficiency at Brewer Gold. Naperville, IL: Nalco Company.Google Scholar
Quaicoe, I., Nosrati, A., Skinner, W. & Addai-Mensah, J. 2014. Single and mixed oxide and clay particle agglomeration: Influence of feed mineralogy and percent drum volume loading. Powder Technology, 253, 568579.CrossRefGoogle Scholar
Queneau, P. B. & Berthold, C. E. 1986. Silica in hydrometallurgy: An overview Canadian Metallurgical Quarterly, 25 (3), 201209.CrossRefGoogle Scholar
Queneau, P. B., Berggren, M. H., Cooperrider, M. W. & Doane, R. E. 1983. Control of silica deposition during pressure let-down of acidic leach slurries. In: Osseo-Asare, K. & Millers, J. D. (eds) Hydrometallurgy Research, Development and Plant Practice, March 6–10. 1983. Atlanta, GA: The Metallurgical Society of AIME.Google Scholar
Readett, D. J. & Fox, J. 2009. Development of Heap Leaching and its Integration into the Murrin Murrin Operations. Perth, WA: ALTA Metallurgical Services.Google Scholar
Readett, D. J. & Fox, J. 2011. Agglomeration: The key to success for the Murrin Murrin Ni laterite heap leach. In: Australasian Institute of Mining and Metallurgy (ed.) MetPlant 2011, 8–9 August, 2011. Perth, WA: Australasian Institute of Mining and Metallurgy.Google Scholar
Roach, G. I. D. & White, A. J. 1988. Dissolution kinetics of kaolin in caustic liquors. In: Boxall, L. G. (ed.) 117th TMS Annual Meeting of Light Metals. January 25–28, 1988. Phoenix, AZ: TMS, 4147.Google Scholar
Rozalen, M., Huertas, F. J. & Brady, P. V. 2009. Experimental study of the effect of pH and temperature on the kinetics of montmorillonite dissolution. Geochimica et Cosmochimica Acta, 73 (13), 37523766.CrossRefGoogle Scholar
Salgado, C., Perez, C., Alvayai, C. & Zarate, G. 2009. Acid management in heap leaching: Are we doing right? In: Domic, E. & Casas, J. (eds) Hydrocopper. Santiago: GECAMIN, 4756.Google Scholar
Schindler, P. W. & Stumm, W. 1987. The surface chemistry of oxides, hydroxides, and oxide minerals. In: Stumm, W. (ed.) Aquatic Surface Chemistry. New York: Wiley & Sons.Google Scholar
Schott, J., Pokrovsky, O. S. & Oelkers, E. H. 2009. The link between mineral dissolution/precipitation kinetics and solution chemistry. Reviews in Mineralogy & Geochemistry, 70 (1), 207258.CrossRefGoogle Scholar
Seidel, D. C. 1979. Extracting uranium from its ores. IAEA Bulletin, 23 (2), 2528.Google Scholar
Senanayake, G., Das, G. K., de Lange, A., Li, J. & Robinson, D. J. 2015. Reductive atmospheric acid leaching of lateritic smectite/nontronite ores in H2SO4/Cu(II)/SO2 solutions. Hydrometallurgy, 152, 4454.CrossRefGoogle Scholar
Sipos, P. 2009. The structure of Al(III) in strongly alkaline aluminate solutions: A review. Journal of Molecular Liquids, 146 (1–2), 114.CrossRefGoogle Scholar
Sobol, S. I. 1972. Secondary losses of nickel and cobalt during the autoclave leaching oxidized nickel ores. Tsvetnye Metally, 45 (5), 2528.Google Scholar
Stopar, J. D., Jeffrey Taylor, G., Hamilton, V. E. & Browning, L. 2006. Kinetic model of olivine dissolution and extent of aqueous alteration on Mars. Geochimica et Cosmochimica Acta, 70 (24), 61366152.CrossRefGoogle Scholar
Stumm, W. 1992. Chemistry of the Solid–Water Interface: Processes at the Mineral–Water and Particle–Water Interface in Natural Systems. New York: Wiley.Google Scholar
Swaddle, T. W. 2001. Silicate complexes of aluminum(III) in aqueous systems. Coordination Chemistry Reviews, 219–221, 665686.CrossRefGoogle Scholar
Swaddle, T. W., Salerno, J. & Tregloan, P. A. 1994. Aqueous aluminates, silicates, and aluminosilicates. Chemical Society Reviews, 23 (5), 319325.CrossRefGoogle Scholar
Tan, H., Feng, D., Lukey, G. C. & van Deventer, J. S. J. 2005. The behaviour of carbonaceous matter in cyanide leaching of gold. Hydrometallurgy, 78 (3–4), 226235.CrossRefGoogle Scholar
Temuujin, J., Senna, M., Jadambaa, T., et al. 2006. Characterization and bleaching properties of acid-leached montmorillonite. Journal of Chemical Technology & Biotechnology, 81 (4), 688693.CrossRefGoogle Scholar
Terry, B. 1983. The acid decomposition of silicate minerals part II: Hydrometallurgical applications. Hydrometallurgy, 10 (2), 151171.CrossRefGoogle Scholar
Tizon, E., Clerin, P. & Cristol, B. 2004. Effect of predesilication and digestion conditions on silica level in Bayer liquor. In: Tabereaux, A. T. (ed.) 133rd TMS Annual Meeting of Light Metals. Charlotte, NC: TMS, 914.Google Scholar
Tremolada, J., Dzioba, R., Bernardo-Sánchez, A. & Menéndez-Aguado, J. M. 2010. The preg-robbing of gold and silver by clays during cyanidation under agitation and heap leaching conditions. International Journal of Mineral Processing, 94 (1–2), 6771.CrossRefGoogle Scholar
Walther, J. V. & Wood, B. J. 1986. Mineral–fluid reaction rates. In: Walther, J. V. & Wood, B. J. (eds) Fluid–Rock Interactions During Metamorphism. New York: Springer-Verlag.CrossRefGoogle Scholar
Wei, Y., Zhong, K., Adamov, E. V. & Smith, R. W. 1997. Semi-continuous biooxidation of the Chongyang refractory gold ore. Minerals Engineering, 10 (6), 577583.CrossRefGoogle Scholar
Whittington, B. I. & Muir, D. 2000. Pressure acid leaching of nickel laterites: A review. Mineral Processing and Extractive Metallurgy Review, 21 (6), 527600.CrossRefGoogle Scholar
Whittington, B. I., McDonald, R. G., Johnson, J. A. & Muir, D. M. 2003. Pressure acid leaching of arid-region nickel laterite ore: Part I. Effect of water quality. Hydrometallurgy, 70 (1–3), 3146.CrossRefGoogle Scholar
Wieland, E. & Stumm, W. 1992. Dissolution kinetics of kaolinite in acidic aqueous solutions at 25°C. Geochimica et Cosmochimica Acta, 56 (9), 33393355.CrossRefGoogle Scholar
Yusan, S. & Erenturk, S. 2011. Sorption behaviors of uranium (VI) ions on α-FeOOH. Desalination, 269 (1–3), 5866.CrossRefGoogle Scholar
Zambo, J. 1986. Structure of sodium aluminate liquors: Molecular model of the mechanism of their decomposition. In: Miller, R. E. & Peterson, W. S. (eds) 115th AIME Annual Meeting of Light Metals, March 2–6, 1986. New Orleans, LA: TMS Light Metals, 199215.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×