Skip to main content Accessibility help
×
Home
Hostname: page-component-7ccbd9845f-9nx8b Total loading time: 0.27 Render date: 2023-01-27T19:02:07.257Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

9 - DNA, RNA and protein interactions

Published online by Cambridge University Press:  07 September 2010

Get access

Summary

Introduction

The transformation of a normal cell into a malignant cell, after exposure to a chemical carcinogen, is the result of a complex series of biochemical events. It is generally believed that the initial step involves the reaction of an electrophile (formed from the carcinogen either directly or by metabolism) with cellular macromolecules such as DNA, RNA and protein. Which of these cellular macromolecules represents the critical target for the chemical carcinogen in the initiation of the carcinogenic process has been the subject of much theoretical discussion. The somatic mutation theory proposes that some permanent inheritable change in the nucleotide sequence occurs as the result of an alteration, deletion or rearrangement of the primary structure of DNA. Alternatively, epigenetic changes in cellular transcription and translation may bring about malignant cell transformation; such epigenetic changes also occur in normal development and differentiation (see Rubin, 1980; Marquardt, 1979a; and Barrett and Ts'o, 1978, for a fuller discussion of these hypotheses). The weight of evidence currently favours the somatic mutation theory, and underlies the widespread acceptance of the use of short-term mutation assays, such as the Ames Test, to indicate compounds with potential carcinogenic activity (many chemical carcinogens are mutagens). The DNA adducts formed in vivo and in vitro after attack by PAHs have been, in general, well characterized in terms of their chemical structure: it is often known which bases are involved, whereabouts on the base the PAH has bound and what type of functional group on the PAH is responsible for such binding.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×