Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-vq995 Total loading time: 0.567 Render date: 2021-10-17T02:47:03.222Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

12 - LDPC Codes Based on Combinatorial Designs, Graphs, and Superposition

Published online by Cambridge University Press:  05 June 2012

William Ryan
Affiliation:
Zeta Associates Inc.
Shu Lin
Affiliation:
University of California, Davis
Get access

Summary

Combinatorial designs [1–8] form an important branch in combinatorial mathematics. In the late 1950s and during the 1960s, special classes of combinatorial designs, such as balanced incomplete block designs, were used to construct error correcting codes, especial majority-logic-decodable codes. More recently, combinatorial designs were successfully used to construct structured LDPC codes [9–12]. LDPC codes of practical lengths constructed from several classes of combinatorial designs were shown to perform very well over the binary-input AWGN channel with iterative decoding.

Graphs form another important branch in combinatorial mathematics. They were also used to construct error-correcting codes in the early 1960s, but not very successfully. Only a few small classes of majority-logic-decodable codes were constructed. However, since the rediscovery of LDPC codes in the middle of the 1990s, graphs have become an important tool for constructing LDPC codes. One example is to use protographs for constructing iteratively decodable codes as described in Chapters 6 and 8.

This chapter presents several methods for constructing LDPC codes based on special types of combinatorial designs and graphs.

Balanced Incomplete Block Designs and LDPC Codes

Balanced incomplete block designs (BIBDs) form an important class of combinatorial designs. A special subclass of BIBDs can be used to construct RC-constrained matrices or arrays of CPMs from which LDPC codes can be constructed. This section gives a brief description of BIBDs. For an in-depth understanding of this subject, readers are referred to [1–8].

Type
Chapter
Information
Channel Codes
Classical and Modern
, pp. 523 - 560
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
1
Cited by

Send book to Kindle

To send this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Send book to Dropbox

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Dropbox.

Available formats
×

Send book to Google Drive

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Google Drive.

Available formats
×