Skip to main content Accessibility help
×
Home
Hostname: page-component-5959bf8d4d-2zkqf Total loading time: 3.473 Render date: 2022-12-10T00:03:58.579Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Part II - Models and Measures

Published online by Cambridge University Press:  08 July 2022

John W. Schwieter
Affiliation:
Wilfrid Laurier University
Zhisheng (Edward) Wen
Affiliation:
Macao Polytechnic University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Aboitiz, F. (2017). A brain for speech: A view from evolutionary neuroanatomy. Springer.CrossRefGoogle Scholar
Aboitiz, F., Aboitiz, S., & García, R. R. (2010). The phonological loop: A key innovation in human evolution. Current Anthropology, 51(S1), S55S65.CrossRefGoogle Scholar
Aboitiz, F., García, R. R., Bosman, C., & Brunetti, E. (2006). Cortical memory mechanisms and language origins. Brain and Language, 98(1), 4056.CrossRefGoogle ScholarPubMed
Anderson, S. R. (2013). What is special about the human language faculty and how did it get that way? In Botha, R. & Everaert, M. (Eds.), The evolutionary emergence of language: Evidence and inference (pp. 1841). Oxford University Press.CrossRefGoogle Scholar
Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system and its control processes. In Spence, K. W. & Spence, J. T. (Eds.), The psychology of learning and motivation: Advances in research and theory (Vol. 2, pp. 89195). Academic Press.Google Scholar
Baddeley, A. D. (2001). Is working memory still working? American Psychologist, 56, 851864.CrossRefGoogle ScholarPubMed
Baddeley, A. D. (2007). Working memory, thought, and action. Oxford University Press.CrossRefGoogle Scholar
Baddeley, A. D. (2012). Working memory: Theories, models, and controversies. Annual Review of Psychology, 63, 129.CrossRefGoogle ScholarPubMed
Baddeley, A. D., & Hitch, G. (1974). Working memory. Psychology of Learning and Motivation, 8, 4789.CrossRefGoogle Scholar
Baddeley, A. D., & Logie, R. H. (1999). Working memory: The multiple-component model. In Miyake, A. & Shah, P. (Eds.), Models of working memory: Mechanisms of active maintenance and executive control (p. 2861). Cambridge University Press.CrossRefGoogle Scholar
Baddeley, A., Gathercole, S., & Papagno, C. (1998). The phonological loop as a language learning device. Psychological Review, 105(1), 158173.CrossRefGoogle ScholarPubMed
Barham, L., & Everett, D. (2020). Semiotics and the origin of language in the lower Palaeolithic. Journal of Archaeological Method and Theory, 1–45.Google Scholar
Berwick, R. C., & Chomsky, N. (2017). Why only us: Recent questions and answers. Journal of Neurolinguistics, 43, 166177.CrossRefGoogle Scholar
Berwick, R. C., Hauser, M., & Tattersall, I. (2013). Neanderthal language? Just-so stories take center stage. Frontiers in Psychology, 4, 671.CrossRefGoogle Scholar
Bickerton, D. (2000). How protolanguage became language. In Knight, C., Studdert-Kennedy, M., & Hurford, J., The evolutionary emergence of language: Social function and the origins of linguistic form (pp. 264284). Cambridge University Press.CrossRefGoogle Scholar
Bolhuis, J. J., Tattersall, I., Chomsky, N., & Berwick, R. C. (2014). How could language have evolved? PLoS Biology, 12(8), e1001934.CrossRefGoogle ScholarPubMed
Botha, R. (2010). On the soundness of inferring modern language from symbolic behaviour. Cambridge Archaeological Journal, 20, 345356.CrossRefGoogle Scholar
Botha, R., & Everaert, M. (Eds.). (2013). The evolutionary emergence of language: Evidence and inference. Oxford University Press.CrossRefGoogle Scholar
Bramble, D. M., & Lieberman, D. E. (2004). Endurance running and the evolution of Homo. Nature, 432(7015), 345352.CrossRefGoogle ScholarPubMed
Bruner, E. (2004). Geometric morphometrics and paleoneurology: Brain shape evolution in the genus. Homo: Journal of Human Evolution, 47, 279303.Google ScholarPubMed
Bruner, E., & Iriki, A. (2015). Extending mind, visuospatial integration, and the evolution of the parietal lobes in the human genus. Quaternary International, 369, 113.Google Scholar
Cachel, S., & Harris, J. W. (1995). Ranging patterns, land-use and subsistence in Homo erectus from the perspective of evolutionary ecology. In Bower, J. R. & Sartono, S. (Eds), Human evolution in its ecological context: Palaeo-anthropology: Evolution and ecology of Homo erectus (pp. 5265). Pithecanthropus Centennial Foundation.Google Scholar
Caplan, D., & Waters, G. S. (1995). Aphasic disorders of syntactic comprehension and working memory capacity. Cognitive Neuropsychology, 12(6), 637649.CrossRefGoogle Scholar
Chomsky, N. (2015). Some core contested concepts. Journal of Psycholinguistic Research, 44, 91104.CrossRefGoogle ScholarPubMed
Conway, A. R., Kane, M. J., Bunting, M. F., Hambrick, D. Z., Wilhelm, O., & Engle, R. W. (2005). Working memory span tasks: A methodological review and user’s guide. Psychonomic Bulletin & Review, 12(5), 769786.CrossRefGoogle ScholarPubMed
Coolidge, F. L. (2014). The exaptation of the parietal lobes in Homo sapiens. Journal of Anthropological Sciences, 92, 295298.Google Scholar
Coolidge, F. L. (2019). The ultimate origins of learning and memory systems. Human Evolution, 34, 2138.Google Scholar
Coolidge, F. L. (2020). Evolutionary neuropsychology: An introduction to the evolution of the structures and functions of the human brain. Oxford University Press.CrossRefGoogle Scholar
Coolidge, F. L., Haidle, M. N., Lombard, M., & Wynn, T. (2016). Bridging theory and bow hunting: Human cognitive evolution and archaeology. Antiquity, 90, 219228.CrossRefGoogle Scholar
Coolidge, F. L., Overmann, K. A., & Wynn, T. (2010). Recursion: What is it? Who has it? How did it evolve? WIRE Cognitive Science, 1, 18.Google Scholar
Coolidge, F. L. & Wynn, T. (2001). Executive functions of the frontal lobes and the evolutionary ascendancy of Homo sapiens. Cambridge Archaeological Journal, 11, 255260.CrossRefGoogle Scholar
Coolidge, F. L., & Wynn, T. (2005). Working memory, its executive functions, and the emergence of modern thinking. Cambridge Archaeological Journal, 15, 526.CrossRefGoogle Scholar
Coolidge, F. L., & Wynn, T. (2006). The effects of the tree-to-ground sleep transition in the evolution of cognition in early Homo. Before Farming: The Archaeology and Anthropology of Hunter-Gatherers, 4, 118.CrossRefGoogle Scholar
Coolidge, F. L., & Wynn, T. (2018). The rise of Homo sapiens: The evolution of modern thinking. Oxford University Press.Google Scholar
Corballis, M. C. (2011). The recursive mind: The origins of human language, thought, and civilization. Princeton University Press.Google Scholar
Corballis, M. C. (2017). The truth about language: What it is and where it came from. University of Chicago Press.CrossRefGoogle Scholar
Darwin, C. (1871). The descent of man, and selection in relation to sex. John Murray.Google Scholar
de Boer, B., Thompson, B., Ravignani, A., & Boeckx, C. (2020). Evolutionary dynamics do not motivate a single-mutant theory of human language. Scientific Reports, 10(1), 19.CrossRefGoogle Scholar
Dunbar, R. I. M. (1998). The social brain hypothesis. Evolutionary Anthropology: Issues, News, and Reviews: Issues, News, and Reviews, 6(5), 178190.3.0.CO;2-8>CrossRefGoogle Scholar
Evans, P. D., Gilbert, S. L., Mekel-Bobrov, N., Vallender, E. J., Anderson, J. R., Vaez-Azizi, L. M.,…& Lahn, B. T. (2005). Microcephalin, a gene regulating brain size, continues to evolve adaptively in humans. Science, 309(5741), 17171720.CrossRefGoogle ScholarPubMed
Finlayson, C. (2019). The smart Neanderthal: Bird catching, cave art, and the cognitive revolution. Oxford University Press.Google Scholar
Fitch, W. T., Hauser, M. D., & Chomsky, N. (2005). The evolution of the language faculty: Clarifications and implications. Cognition, 97(2), 179210.CrossRefGoogle ScholarPubMed
Friedman, N. P., Miyake, A., Young, S. E., DeFries, J. C., Corley, R. P., & Hewitt, J. K. (2008). Individual differences in executive functions are almost entirely genetic in origin. Journal of Experimental Psychology: General, 137(2), 201225.CrossRefGoogle ScholarPubMed
Gibson, K. R. (2012). Language or protolanguage? A review of the ape language literature. In Tallerman, M. & Gibson, K. R., The Oxford handbook of language evolution (pp.4658). Oxford University Press.Google Scholar
Hauser, M. D., Chomsky, N., & Fitch, W. T. (2002). The faculty of language: What is it, who has it, and how did it evolve? Science, 298(5598), 15691579.CrossRefGoogle ScholarPubMed
Jackendoff, R., & Pinker, S. (2005). The nature of the language faculty and its implications for evolution of language (Reply to Fitch, Hauser, and Chomsky). Cognition, 97(2), 211225.CrossRefGoogle Scholar
Kane, M. J., & Engle, R. W. (2002). The role of prefrontal cortex in working-memory capacity, executive attention, and general fluid intelligence: An individual-differences perspective. Psychonomic Bulletin & Review, 9(4), 637671.CrossRefGoogle Scholar
Klein, R. G. (2000). Archeology and the evolution of human behavior. Evolutionary Anthropology Issues News and Reviews, 9, 1736.3.0.CO;2-A>CrossRefGoogle Scholar
Klein, R. G. (2009). The human career: Human biological and cultural origins. University of Chicago Press.CrossRefGoogle Scholar
Lemasson, A., Ouattara, K., & Zuberbu, K. (2013). Exploring the gaps between primate calls and human language. In Botha, R. & Everaert, M. (Eds.), The evolutionary emergence of language: Evidence and inference (pp. 181203). Oxford University Press.CrossRefGoogle Scholar
Lieberman, D., Bramble, D., Rachlen, D., & Shea, J. (2009). Brains, brawn, and the evolution of human endurance running capabilities. In Grine, F., Fleagle, J. & Leakey, R. (Eds.), The first humans: Origin and early evolution of the genus Homo (pp. 7792): Springer.CrossRefGoogle Scholar
Luria, A. R. (1966/2012). Higher cortical functions in man. Springer.Google Scholar
Mithen, S. J. (1996). The prehistory of the mind: The cognitive origins of art, religion and science. Thames and Hudson.Google Scholar
Mithen, S. (2006). The singing Neanderthals: The origins of music, language, mind and body. Harvard University Press.Google Scholar
Neubauer, S., Hublin, J. J., & Gunz, P. (2018). The evolution of modern human brain shape. Science Advances, 4(1), eaao5961.CrossRefGoogle ScholarPubMed
Overmann, K. A., & Coolidge, F. L. (Eds.). (2019). Squeezing minds from stones: Cognitive archaeology and the evolution of the human mind. Oxford University Press.CrossRefGoogle Scholar
Parker, A. R. (2006). Evolving the narrow language faculty: Was recursion the pivotal step? In Smith, K. (Ed.), Proceedings of the 6th International Conference on the Evolution of Language (pp. 239246). World Scientific Publishing.Google Scholar
Pinker, S. (2007). The stuff of thought. Penguin Books.Google Scholar
Pinker, S., & Bloom, P. (1990). Natural language and natural selection. Behavioral and Brain Sciences, 13(4), 707727.CrossRefGoogle Scholar
Pinker, S., & Jackendoff, R. (2005). The faculty of language: What’s special about it? Cognition, 95(2), 201236.CrossRefGoogle Scholar
Price, T., Wadewitz, P., Cheney, D., Seyfarth, R., Hammerschmidt, K., & Fischer, J. (2015). Vervets revisited: A quantitative analysis of alarm call structure and context specificity. Scientific reports, 5(1), 111.CrossRefGoogle ScholarPubMed
Rodríguez-Vidal, J., d’Errico, F., Pacheco, F. G., Blasco, R., Rosell, J., Jennings, R. P., … & Finlayson, C. (2014). A rock engraving made by Neanderthals in Gibraltar. Proceedings of the National Academy of Sciences, 111(37), 1330113306.CrossRefGoogle ScholarPubMed
Seyfarth, R. M., Cheney, D. L., & Marler, P. (1980). Monkey responses to three different alarm calls: Evidence of predator classification and semantic communication. Science, 210 (4471) 801803.CrossRefGoogle ScholarPubMed
Schacter, D. L. (2012). Adaptive constructive processes and the future of memory. American Psychologist, 67(8), 603613. https://doi.org/10.1037/a0029869CrossRefGoogle Scholar
Schlenker, P., Chemla, E., Arnold, K., & Zuberbühler, K. (2016). Pyow-hack revisited: Two analyses of putty-nosed monkey alarm calls. Lingua, 171, 123.CrossRefGoogle Scholar
Scott-Phillips, T. C., & Blythe, R. A. (2013). Why is combinatorial communication rare in the natural world, and why is language an exception to this trend? Journal of the Royal Society Interface, 10(88), 20130520.CrossRefGoogle ScholarPubMed
Shah, P., & Miyake, A. (Eds.). (2005). The Cambridge handbook of visuospatial thinking. Cambridge University Press.CrossRefGoogle Scholar
Shepard, R. N. (1997). The genetic basis of human scientific knowledge. In Chadwick, D. J. & Cardew, G., Ciba Foundation Symposium (pp. 2338). Wiley & Sons.Google Scholar
Tallerman, M. (2007). Did our ancestors speak a holistic protolanguage? Lingua, 117, 579604.CrossRefGoogle Scholar
Tallerman, M., & Gibson, K. R. (2012). Introduction: The evolution of language. Tallerman, In M. & Gibson, K. R., The Oxford handbook of language evolution (pp. 135). Oxford University Press.Google Scholar
Tattersall, I. (2008). An evolutionary framework for the acquisition of symbolic cognition by Homo sapiens. Comparative Cognition & Behavior Reviews, 3, 99114.CrossRefGoogle Scholar
Tulving, E. (1972). Episodic and semantic memory. In Tulving, E. & Donaldson, W. (Eds.), Organization of memory (pp. 381403). Academic Press.Google Scholar
Tulving, E. (1995). Organization of memory: Quo vadis? In Gazzaniga, M. S. (Ed.), The cognitive neurosciences (p. 839853). The MIT Press.Google Scholar
Tulving, E. (2002). Episodic memory: From mind to brain. Annual Review of Psychology, 53, 125.CrossRefGoogle Scholar
Underwood, B. J. (1966). Experimental psychology. Appleton-Century-Crofts.Google Scholar
Villa, P., & Roebroeks, W. (2014). Neandertal demise: An archaeological analysis of the modern human superiority complex. PLoS ONE, 9(4), e96424.CrossRefGoogle ScholarPubMed
Wadley, L. (2010). Compound-adhesive manufacture as a behavioral proxy for complex cognition in the Middle Stone Age. Current Anthropology, 51, S111S119.CrossRefGoogle Scholar
Wells, J. C., & Stock, J. T. (2007). The biology of the colonizing ape. Yearbook of Physical Anthropology, 50, 191222.CrossRefGoogle Scholar
Wilson, E. O. (1978). What is sociobiology? Society, 15(6), 1014.CrossRefGoogle Scholar
Wynn, T. (2009). Hafted spears and the archaeology of mind. Proceedings of the National Academy of Sciences, 106, 95449545.CrossRefGoogle Scholar
Wynn, T., & Coolidge, F. L. (2010). Beyond symbolism and language. Current Anthropology, 51, S5S16.CrossRefGoogle Scholar
Wynn, T., & Coolidge, F. L. (2015). Technical cognition, working memory, and creativity. Pragmatics & Cognition, 22, 4563.CrossRefGoogle Scholar

References

Aliaga-Garcìa, C., Mora, J. C., & Cervino-Provedano, E. (2010). Phonological short-term memory and L2 speech learning in adulthood. In Wrembel, M., Kul, M., & Dziubalska-Kołaczyk, K. (Eds.), New sounds 2010: Proceedings of the 6th International Symposium on the Acquisition of Second Language Speech (pp. 1924). Peter Lang.Google Scholar
Archibald, L. M., & Gathercole, S. E. (2006a). Nonword repetition in Specific Language Impairment: More than a phonological short-term memory deficit. Psychonomic Bulletin & Review, 14, 919924.CrossRefGoogle Scholar
Archibald, L. M., & Gathercole, S. E. (2006b). Short-term and working memory in specific language impairment. International Journal of Language & Communication Disorders, 41, 675693.CrossRefGoogle ScholarPubMed
Atkins, P. W. B., & Baddeley, A. D. (1998). Working memory and distributed vocabulary learning. Applied Psycholinguistics, 19, 537552.CrossRefGoogle Scholar
Baddeley, A. D. (1966a). Short-term memory for word sequences as a function of acoustic, semantic and formal similarity. Quarterly Journal of Experimental Psychology, 18, 362365.CrossRefGoogle ScholarPubMed
Baddeley, A. D. (1966b). The influence of acoustic and semantic similarity on long-term memory for word sequences. Quarterly Journal of Experimental Psychology, 18, 302309.CrossRefGoogle ScholarPubMed
Baddeley, A. D. (1993). Short-term phonological memory and longterm learning: A single case study. European Journal of Cognitive Psychology, 5, 129148.CrossRefGoogle Scholar
Baddeley, A. D. (2003). Working memory: Looking back and looking forward. Nature, Reviews Neuroscience, 4, 829839.CrossRefGoogle ScholarPubMed
Baddeley, A. D. (2012). Working memory: Theories, models and controversies. Annual Review of Psychology, 63, 130.CrossRefGoogle ScholarPubMed
Baddeley, A. D., Gathercole, S. E., & Papagno, C. (1998) The phonological loop as a language learning device. Psychogical Review, 105, 158173.CrossRefGoogle ScholarPubMed
Baddeley, A. D., & Hitch, G. (1974). Working memory. In Bower, G. A. (Ed.), Recent advances in learning and motivation (Vol. 8, pp. 4790). Academic Press.Google Scholar
Baddeley, A. D., & Hitch, G. (2019). The phonological loop as a buffer store: An update. Cortex, 112, 91106.CrossRefGoogle ScholarPubMed
Baddeley, A. D., Lewis, V., & Vallar, G. (1984) Exploring the articulatory loop. Quarterly Journal of Experimental Psychology, 36, 233252.CrossRefGoogle Scholar
Baddeley, A. D., Papagno, C., & Vallar, G. (1988) When long-term learning depends on short-term storage. Journal of Memory and Language, 27, 586595.CrossRefGoogle Scholar
Baddeley, A. D., Thomson, N., & Buchanan, M. (1975). Word length and the structure of short-term memory. Journal of Verbal Learning and Verbal Behavior, 14, 575589.CrossRefGoogle Scholar
Bartolotti, J., & Marian, V. (2017) Orthographic knowledge and lexical form influence vocabulary learning, Applied Psycholinguistics, 38, 427456.CrossRefGoogle ScholarPubMed
Basso, A., Spinnleer, H. R., Vallar, G., & Zanobio, E. (1982) Left hemisphere damage and selective impairment of auditory-verbal short-term memory. Neuropsychologia, 20, 263274.CrossRefGoogle ScholarPubMed
Bishop, D. V. M. (1992). The underlying nature of specific language impairment. Journal of Child Psychology and Child Psychiatry, 33, 164.CrossRefGoogle ScholarPubMed
Bishop, D. V. M., North, T., & Donlan, C. (1996). Nonword repetition as a behavioural marker for inherited language impairment: Evidence from a twin study. Journal of Child Psychology and Psychiatry, 37, 391403.CrossRefGoogle ScholarPubMed
Bishop, D. M. V., Snowling, M. G., Thompson, P. A., Greenhalgh, T., & the Catalise-2 Consortium. (2017) Phase 2 of CATALISE: A multinational and multidisciplinary Delphi consensus study of problems with language development: Terminology. Journal of Child Psychology and Psychiatry, 58, 10681080.CrossRefGoogle ScholarPubMed
Bormann, T., Seyboth, M., Umarova, R., Weiller, C. (2015) “I know your name, but not your number”: Patients with short-term memory deficits are impaired in learning sequences of digits. Neuropsychologia, 72, 8086.CrossRefGoogle ScholarPubMed
Bowey, J. A. (1996). On the association between phonological memory and receptive vocabulary in five-year-olds. Journal of Experimental Child Psychology, 63, 4478.CrossRefGoogle ScholarPubMed
Chiat, S. (2001) Mapping theories of developmental language impairment: premises, predictions and evidence. Language and Cognitive Processes, 16, 113142.CrossRefGoogle Scholar
Conrad, R. (1964). Acoustic confusions in immediate memory. British Journal of Psychology, 55(1), 7584.CrossRefGoogle Scholar
Conrad, R., & Hull, A. J. (1964). Information, acoustic confusion and memory span. British Journal of Psychology, 55, 429432.CrossRefGoogle ScholarPubMed
Dispaldro, M., Leonard, L. B., & Deevy, P. (2013) Real-word and nonword repetition in Italian-speaking children with specific language impairment: A study of diagnostic accuracy. Journal of Speech, Language, and Hearing Research, 56, 323336.CrossRefGoogle ScholarPubMed
Dittmann, J., & Abel, St. (2010) Verbales Arbeitsgedachtnis und verbales Lernen: Wort- und Pseudowortlernen in einem Fall von pathologischer Arbeitsgedachtnisbeeintrachtigung. Sprache-Stimme-Gehor, 34, e1e9.CrossRefGoogle Scholar
Freedman, M. I., & Martin, R. C. (2001) Dissociable components of short-term memory and their relation to long-term learning. Cognitive Neuropsychology, 18 (3), 193226.CrossRefGoogle ScholarPubMed
French, L. M., O’Brien, I (2008). Phonological memory and children’s second language grammar learning. Applied Psycholinguistics, 29 (3), 463487.CrossRefGoogle Scholar
Gathercole, S. E. (2006) Nonword repetition and word learning: The nature of the relationship. Applied Psycholinguistics, 27, 513543.CrossRefGoogle Scholar
Gathercole, S. E., & Adams, A. (1993). Phonological working memory in very young children. Developmental Psychology, 29, 770778.CrossRefGoogle Scholar
Gathercole, S. E., & Adams, A. (1994). Children’s phonological working memory: Contributions of long-term knowledge and rehearsal. Journal of Memory and Language, 33, 672688.CrossRefGoogle Scholar
Gathercole, S. E., & Baddeley, A. D. (1989) Evaluation of the role of phonological STM in the development of vocabulary in children: A longitudinal study. Journal of Memory and Language, 28, 200213.CrossRefGoogle Scholar
Gathercole, S., & Baddeley, A. (1990a). Phonological memory deficits in language disordered children: Is there a causal connection? Journal of Memory and Language, 29, 336360.CrossRefGoogle Scholar
Gathercole, S. E., & Baddeley, A. D. (1990b) The role of phonological memory in vocabulary acquisition: A study of young children learning arbitrary names of toys. British Journal of Psychology, 81, 439454.CrossRefGoogle Scholar
Gathercole, S. E., Frankish, C., Pickering, S. J., & Peaker, S. (1999). Phonotactic influences on short-term memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 25, 8495.Google ScholarPubMed
Gathercole, S. E., Hitch, G. J., Service, E.,& Martin, A. J. (1997). Short-term memory and new word learning in children. Developmental Psychology, 33, 966979.CrossRefGoogle ScholarPubMed
Gathercole, S. E., Service, E., Hitch, G. J., Adams, A.-M., & Martin, A. J. (1999). Phonological short-term memory and vocabulary development: Further evidence on the nature of the relationship. Applied Cognitive Psychology, 13, 6577.3.0.CO;2-O>CrossRefGoogle Scholar
Gathercole, S. E., Tiffany, C., Briscoe, J., Thorn, A., & The ALSPAC Team. (2005). Developmental consequences of poor phonological short-term memory function in childhood: A longitudinal study. Journal of Child Psychology and Psychiatry, 46, 598611.CrossRefGoogle ScholarPubMed
Gathercole, S. E., Willis, C., Emslie, H., & Baddeley, A. D. (1992). Phonological memory and vocabulary development during the early school years: A longitudinal study. Developmental Psychology, 28, 887898.CrossRefGoogle Scholar
Girbau, D. (2016). The nonword repetition task as a clinical marker of specific language impairment in Spanish-speaking children. First Language, 36, 3049.CrossRefGoogle Scholar
Girbau, D., & Schwartz, R. G. (2007). Non-word repetition in Spanish-speaking children with Specific Language Impairment (SLI). International Journal of Language & Communication Disorders, 42 (1), 5975.CrossRefGoogle Scholar
Graf Estes, K., Evans, J. L., & Else-Quest, N. M., (2007) Differences in the nonword repetition performance of children with and without specific language impairment: A meta-analysis. Journal of Speech, Language and Hearing Research, 50, 177195.CrossRefGoogle ScholarPubMed
Gupta, P. (2003). Examining the relationship between word learning, nonword repetition, and immediate serial recall in adults. Quarterly Journal of Experimental Psychology, 56A, 12131236.CrossRefGoogle Scholar
Gupta, P., MacWhinney, B., Feldman, H. M., & Sacco, K. (2003). Phonological memory and vocabulary learning in children with focal lesions. Brain and Language, 87, 241252.CrossRefGoogle ScholarPubMed
Gupta, P., & Tisdale, J. (2009). Does phonological short-term memory causally determine vocabulary learning? Toward a computational resolution of the debate. Journal of Memory and Language, 61, 481502.CrossRefGoogle Scholar
Hayashi, K., & Takahashi, N. (2020). The relationship between phonological short-term memory and vocabulary acquisition in Japanese young children. Open Journal of Modern Linguistics, 10, 132160.CrossRefGoogle Scholar
Hayakawa, S., Bartolotti, J., & Marian, V. (2020). Native language similarity during foreign language learning: Effects of cognitive strategies and affective states. Applied Linguistics, 1–28.Google Scholar
Hummel, K. M. (2020). Phonological memory and L2 vocabulary learning in a narrated story task. Journal of Psycholinguistic Research.Google Scholar
Jackson, E., Leitao, S., & Claessen, M. (2016) The relationship between phonological short-term memory, receptive vocabulary, and fast mapping in children with specific language impairment. International Journal of Language Communication Disorders, 51, 6173.CrossRefGoogle ScholarPubMed
Kail, R., & Leonard, L. B. (1986). Word-finding abilities in language-impaired children. (ASHA Monographs No. 25). American Speech-Language-Hearing Association.Google Scholar
Kormos, J., & Sáfár, A. (2008). Phonological short-term memory, working memory and foreign language performance in intensive language learning. Bilingualism: Language and Cognition, 11, 261271.CrossRefGoogle Scholar
Leahy, W., & Sweller, J. (2011). Cognitive load theory, modality of presentation and the transient information effect. Applied Cognitive Psychology, 25, 943951.CrossRefGoogle Scholar
Leonard, L. B. (2014) Children with specific language impairment (p. 480). MIT Press.CrossRefGoogle ScholarPubMed
Linck, J. A., Osthus, P., Koeth, J. T., & Bunting, M. F. (2014). Working memory and second language comprehension and production: A meta-analysis. Psychonomic Bulletin Revue, 21, 861883.CrossRefGoogle ScholarPubMed
Martin, K. I., & Ellis, N. C. (2012). The roles of phonological short-term memory and working memory in L2 grammar and vocabulary learning. Studies in Second Language Acquisition, 34, 379413.CrossRefGoogle Scholar
Martin, N., & Saffran, E. (1997). Language and auditory-verbal short-term memory impairments: Evidence for common underlying processes. Cognitive Neuropsychology, 14, 641682.Google Scholar
Martin, N., Saffran, E. K., & Dell, G. (1996). Recovery in deep dysphasia: Evidence for a relation between auditory–verbal STM capacity and lexical errors in repetition. Brain and Language, 52, 83113.CrossRefGoogle ScholarPubMed
Masoura, E. V., & Gathercole, S. E. (2005). Contrasting contributions of phonological short‐term memory and long‐term knowledge to vocabulary learning in a foreign language, Memory, 13:3–4, 422429.Google Scholar
Melby-Lervåg, M., & Lervåg, A. (2011). Cross-linguistic transfer of oral language decoding, phonological awareness and reading comprehension: A meta-analysis of the correlational evidence. Journal of Research in Reading, 34, 114135.CrossRefGoogle Scholar
Michas, I. C., & Henry, L. A. (1994). The link between phonological memory and vocabulary acquisition. British Journal of Developmental Psychology, 12, 147164.CrossRefGoogle Scholar
Miles, T. R., & Ellis, N. C. (1981). A lexical encoding difficulty II: Clinical observations. In Th. Pavlidis, G. and Miles, T. R. (Eds.), Dyslexia research and its applications to education. Wiley.Google Scholar
Montgomery, J. (2000). Verbal working memory in sentence comprehension in children with specific language impairment. Journal of Speech, Language, and Hearing Research, 43, 293308.CrossRefGoogle ScholarPubMed
Næss, K-A. B., Halaas Lyster, S.-A., Hulme, C., & Melby-Lervag, M. (2011). Language and verbal short-term memory skills in children with Down syndrome: A meta-analytic review. Research in Developmental Disabilities, 32, 22252234.CrossRefGoogle ScholarPubMed
Nicolay, A.-C., & Poncelet, M. (2013). Cognitive abilities underlying second-language vocabulary acquisition in an early second-language immersion education context: A longitudinal study. Journal of Experimental Child Psychology, 115(4), 655671.CrossRefGoogle Scholar
O’Brien, I., Segalowitz, N., Collentine, J., & Freed, B. (2006). Phonological memory and lexical narrative, and grammatical skills in second language oral production. Applied Psycholinguistics, 27(3), 377402.CrossRefGoogle Scholar
Papagno, C., & Cecchetto, C. (2019). Is STM involved in sentence comprehension? Cortex, 112, 8090.CrossRefGoogle ScholarPubMed
Papagno, C., Cecchetto, C., Reati, F., & Bello, L. (2007). Processing of syntactically complex sentences relieson verbal short-term memory: Evidence from a STM patient. Cognitive Neuropsychology, 24(3), 292311.CrossRefGoogle Scholar
Papagno, C., Lucchelli, F., & Vallar, G. (2008) Phonological recoding, visual short-term store and the effect of unattended speech. Cortex, 44, 312324.CrossRefGoogle ScholarPubMed
Papagno, C., Valentine, T., & Baddeley, A. D. (1991). Phonological short-term memory and foreign-language learning. Journal of Memory and Language, 30, 331347.CrossRefGoogle Scholar
Papagno, C., & Vallar, G. (1992). Phonological short-term memory and the learning of novel words: The effects of phonological similarity and item length. Quarterly Journal of Experimental Psychology, 44A, 4767.CrossRefGoogle Scholar
Papagno, C., & Vallar, G. (1995). Verbal short-term memory and vocabulary learning in polyglots. The Quarterly Journal of Experimental Psychology, 48, 98107.CrossRefGoogle ScholarPubMed
Ringbom, H. (2007). Actual, perceived and assumed cross-linguistic similarities in foreign language learning. AFinLan Vuosikiria, 65, 183196.Google Scholar
Serafini, E., & Sanz, C. (2016). Evidence for the decreasing impact of cognitive ability on second language development as proficiency increases. Studies in Second Language Acquisition, 38, 607646.CrossRefGoogle Scholar
Service, E. (1992). Phonology, working memory, and foreign-language learning. Quarterly Journal of Experimental Psychology, 45A, 2150.CrossRefGoogle Scholar
Service, E., & Craik, F. I. M. (1993). Differences between young and older adults in learning a foreign vocabulary. Journal of Memory and Language, 32, 608623.CrossRefGoogle Scholar
Service, E. K., & Kohonen, V. (1995). Is the relation between phonological memory and foreign language learning accounted for by vocabulary acquisition? Applied Psycholinguistics, 16, 155172.CrossRefGoogle Scholar
Shallice, T., & Papagno, C. (2019). Impairments of auditory-verbal short-term memory: Do selective deficits of the input phonological buffer exist? Cortex, 112, 107121.CrossRefGoogle ScholarPubMed
Shallice, T., & Warrington, E. K. (1970). Independent functioning of verbal memory stores: A neuropsychological study. The Quarterly Journal of Experimental Psychology, 22(2), 261273.CrossRefGoogle ScholarPubMed
Snowling, M. J. (2006). Nonword repetition and language learning disorders: A developmental contingency framework. Applied Psycholinguistics, 27, 588591.CrossRefGoogle Scholar
Snowling, M., Chiat, S., & Hulme, C. (1991). Words, nonwords and phonological processes: Some comments on Gathercole, Willis, Emslie, & Baddeley. Applied Psycholinguistics, 12, 369373.CrossRefGoogle Scholar
Speciale, G., Ellis, N. C., & Bywater, T. (2004). Phonological sequence learning and short-term store capacity determine second language vocabulary acquisition. Applied Psycholinguistics, 25, 293321.CrossRefGoogle Scholar
Trojano, L., & Grossi, D. (1995). Phonological and lexical coding in verbal short-term memory and learning. Brain and Language, 51, 336354.CrossRefGoogle ScholarPubMed
Trojano, L., Stanzione, M., & Grossi, L. (1992) Short-term memory and verbal learning with auditory phonological coding defect: A neuropsychological case study. Brain and Cognition, 18, 1223.CrossRefGoogle ScholarPubMed
van der Lely, H. K. J., & Howard, D. (1993). Children with specific language impairment: Linguistic impairment or short-term memory deficit? Journal of Speech and Hearing Research, 36, 11931207.CrossRefGoogle ScholarPubMed
Verhagen, J., & Leseman, P. P. M. (2016). How do verbal short-term memory and working memory relate to the acquisition of vocabulary and grammar? A comparison between first and second language learners. Journal of Experimental Child Psychology, 141, 6582.CrossRefGoogle Scholar
White, M. J. (2020). Phonological working memory and non-verbal complex working memory as predictors of future English outcomes in young ELLs. International Journal of Bilingualism.Google Scholar

References

Adams, A. M. (1996). Phonological working memory and spoken language development in young children. The Quarterly Journal of Experimental Psychology Section A, 49(1), 216233.CrossRefGoogle Scholar
Adams, E. J., & Cowan, N. (2021). The girl was watered by the flower: Effects of working memory loads on syntactic production in young children. Journal of Cognition and Development, 22(1), 125148.CrossRefGoogle ScholarPubMed
Adams, E. J., Nguyen, A. T., & Cowan, N. (2018). Theories of working memory: Differences in definition, degree of modularity, role of attention, and purpose. Language, Speech, and Hearing Services in Schools, 49(3), 340355.CrossRefGoogle ScholarPubMed
Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system and its control processes. Psychology of learning and motivation, 2(4), 89195.CrossRefGoogle Scholar
Awh, E., Barton, B., & Vogel, E. K. (2007). Visual working memory represents a fixed number of items regardless of complexity. Psychological Science, 18(7), 622628.CrossRefGoogle ScholarPubMed
Baddeley, A. (2000). The episodic buffer: A new component of working memory? Trends in Cognitive Sciences, 4(11), 417423.CrossRefGoogle ScholarPubMed
Baddeley, A. D., & Hitch, G. (1974). Working memory. In Psychology of learning and motivation (Vol. 8, pp. 4789). Academic Press.Google Scholar
Baddeley, A. D., Thomson, N., & Buchanan, M. (1975). Word length and the structure of short‑term memory. Journal of Verbal Learning and Verbal Behavior, 14, 575589.CrossRefGoogle Scholar
Balota, D. A., & Duchek, J. M. (1986). Voice‑specific information and the 20‑second delayed suffix effect. Journal of Experimental Psychology: Learning, Memory, and Cognition, 12, 509516.Google Scholar
Balota, D. A. (1983). Automatic semantic activation and episodic memory encoding. Journal of Verbal Learning and Verbal Behavior, 22, 88104.CrossRefGoogle Scholar
Bergelson, E., & Swingley, D. (2012). At 6–9 months, human infants know the meanings of many common nouns. Proceedings of the National Academy of Sciences, 109(9), 32533258.CrossRefGoogle ScholarPubMed
Bialystok, E. (1997). The structure of age: In search of barriers to second language acquisition. Second Language Research, 13(2), 116137.CrossRefGoogle Scholar
Blake, J., Austin, W., Cannon, M., Lisus, A., & Vaughan, A. (1994). The relationship between memory span and measures of imitative and spontaneous language complexity in preschool children. International Journal of Behavioral Development, 17(1), 91107.CrossRefGoogle Scholar
Bock, K., & Levelt, W. J. (1994). Language production: Grammatical encoding (pp. 945984). Academic Press.Google Scholar
Broadbent, D. E. (1958). Perception and communication. Pergamon Press.CrossRefGoogle Scholar
Burns, T. C., Yoshida, K. A., Hill, K., & Werker, J. F. (2007). The development of phonetic representation in bilingual and monolingual infants. Applied Psycholinguistics, 28(3), 455474.CrossRefGoogle Scholar
Chen, Z., & Cowan, N. (2005). Chunk limits and length limits in immediate recall: A reconciliation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31(6), 1235.Google ScholarPubMed
Chen, Z., & Cowan, N. (2009). Core verbal working memory capacity: The limit in words retained without covert articulation. Quarterly Journal of Experimental Psychology, 62, 14201429.CrossRefGoogle ScholarPubMed
Cherry, E. C. (1953). Some experiments on the recognition of speech, with one and with two ears. The Journal of the Acoustical Society of America, 25(5), 975979.CrossRefGoogle Scholar
Conway, A. R., Cowan, N., & Bunting, M. F. (2001). The cocktail party phenomenon revisited: The importance of working memory capacity. Psychonomic Bulletin & Review, 8(2), 331335.CrossRefGoogle ScholarPubMed
Cowan, N. (1988). Evolving conceptions of memory storage, selective attention, and their mutual constraints within the human information-processing system. Psychological Bulletin, 104(2), 163.CrossRefGoogle ScholarPubMed
Cowan, N. (1999). An embedded-processes model of working memory. Models of Working Memory: Mechanisms of Active Maintenance and Executive Control, 20, 506.Google Scholar
Cowan, N. (2000). Processing limits of selective attention and working memory: Potential implications for interpreting. Interpreting, 5(2), 117146.CrossRefGoogle Scholar
Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24(1), 87114.CrossRefGoogle ScholarPubMed
Cowan, N. (2008). What are the differences between long-term, short-term, and working memory? Progress in Brain Research, 169, 323338.CrossRefGoogle ScholarPubMed
Cowan, N. (2011). The focus of attention as observed in visual working memory tasks: Making sense of competing claims. Neuropsychologia, 49(6), 14011406.CrossRefGoogle ScholarPubMed
Cowan, N. (2019). Short-term memory based on activated long-term memory: A review in response to Norris (2017). Psychological Bulletin, 145(8), 822847.CrossRefGoogle Scholar
Cowan, N., AuBuchon, A. M., Gilchrist, A. L., Blume, C. L., Boone, A. P., and Saults, J. S. (2021). Developmental change in the nature of attention allocation in a dual task. Developmental Psychology. 57(1), 3346.CrossRefGoogle Scholar
Cowan, N., & Barron, A. (1987). Cross-modal, auditory-visual Stroop interference and possible implications for speech memory. Perception & Psychophysics, 41(5), 393401.CrossRefGoogle ScholarPubMed
Cowan, N., Li, Y., Glass, B., & Saults, J. S. (2018). Development of the ability to combine visual and acoustic information in working memory. Developmental Science, 21, e12635, 114.CrossRefGoogle ScholarPubMed
Cowan, N., Lichty, W., & Grove, T. R. (1990). Properties of memory for unattended spoken syllables. Journal of Experimental Psychology: Learning, Memory, & Cognition, 16, 258269.Google ScholarPubMed
Cowan, N., Ricker, T. J., Clark, K. M., Hinrichs, G. A., & Glass, B. A. (2015). Knowledge cannot explain the developmental growth of working memory capacity. Developmental Science, 18(1), 132145.CrossRefGoogle ScholarPubMed
Cowan, N., Rouder, J. N., Blume, C. L., & Saults, J. S. (2012). Models of verbal working memory capacity: What does it take to make them work? Psychological Review, 119, 480499.CrossRefGoogle ScholarPubMed
Darcy, I., Park, H., & Yang, C. L. (2015). Individual differences in L2 acquisition of English phonology: The relation between cognitive abilities and phonological processing. Learning and Individual Differences, 40, 6372.CrossRefGoogle Scholar
Dell, G. S. (1986). A spreading-activation theory of retrieval in sentence production. Psychological Review, 93(3), 283321.CrossRefGoogle ScholarPubMed
Dell, G. S., Schwartz, M. F., Nozari, N., Faseyitan, O., & Coslett, H. B. (2013). Voxel-based lesion-parameter mapping: Identifying the neural correlates of a computational model of word production. Cognition, 128, 380396.CrossRefGoogle ScholarPubMed
Eich, E. (1984). Memory for unattended events: Remembering with and without awareness. Memory & Cognition, 12(2), 105111.CrossRefGoogle Scholar
Eichorn, N., Marton, K., Schwartz, R. G., Melara, R. D., & Pirutinsky, S. (2016). Does working memory enhance or interfere with speech fluency in adults who do and do not stutter? Evidence from a dual-task paradigm. Journal of Speech, Language, and Hearing Research, 59(3), 415429.CrossRefGoogle Scholar
Elliott, E. M., Cowan, N., & Valle-Inclan, F. (1998). The nature of cross-modal color-word interference effects. Perception & Psychophysics, 60(5), 761767.CrossRefGoogle ScholarPubMed
Ellis, N. C., & Sinclair, S. G. (1996). Working memory in the acquisition of vocabulary and syntax: Putting language in good order. The Quarterly Journal of Experimental Psychology Section A, 49(1), 234250.CrossRefGoogle Scholar
Endress, A. D., & Potter, M. C. (2014). Large capacity temporary visual memory. Journal of Experimental Psychology: General, 143(2), 548.CrossRefGoogle ScholarPubMed
Ferreira, F., Bailey, K. G., & Ferraro, V. (2002). Good-enough representations in language comprehension. Current Directions in Psychological Science, 11(1), 1115.CrossRefGoogle Scholar
Ferreira, V. S., Bock, K., Wilson, M. P., & Cohen, N. J. (2008). Memory for syntax despite amnesia. Psychological Science, 19(9), 940946.CrossRefGoogle ScholarPubMed
Forbes, P. B. R. (1933). Greek pioneers in philology and grammar. The Classical Review, 47(3), 105112.CrossRefGoogle Scholar
Fromkin, V. A. (1973). Slips of the tongue. Scientific American, 229(6), 110117.CrossRefGoogle ScholarPubMed
Gathercole, S. E., Pickering, S. J., Ambridge, B., & Wearing, H. (2004). The structure of working memory from 4 to 15 years of age. Developmental Psychology, 40(2), 177.CrossRefGoogle ScholarPubMed
Gilchrist, A. L., Cowan, N., & Naveh-Benjamin, M. (2009). Investigating the childhood development of working memory using sentences: New evidence for the growth of chunk capacity. Journal of Experimental Child Psychology, 104(2), 252265.CrossRefGoogle ScholarPubMed
Gilchrist, A. L., Cowan, N., & Naveh-Benjamin, M. (2008). Working memory capacity for spoken sentences decreases with adult ageing: Recall of fewer, but not smaller chunks in older adults. Memory, 16, 773787.CrossRefGoogle Scholar
Gwilliams, L., Poeppel, D., Marantz, A., & Linzen, T. (2017). Phonological (un)certainty weights lexical activation. arXiv preprint arXiv:1711.06729.Google Scholar
Halford, G. S., Cowan, N., & Andrews, G. (2007). Separating cognitive capacity from knowledge: A new hypothesis. Trends in Cognitive Sciences, 11(6), 236242.CrossRefGoogle ScholarPubMed
Hambrick, D. Z., & Engle, R. W. (2002). Effects of domain knowledge, working memory capacity, and age on cognitive performance: An investigation of the knowledge-is-power hypothesis. Cognitive Psychology, 44(4), 339387.CrossRefGoogle ScholarPubMed
Hanulíková, A., Dediu, D., Fang, Z., Bašnaková, J., & Huettig, F. (2012). Individual differences in the acquisition of a complex L2 phonology: A training study. Language Learning, 62, 79109.CrossRefGoogle Scholar
Hartsuiker, R. J., & Barkhuysen, P. N. (2006). Language production and working memory: The case of subject-verb agreement. Language and Cognitive Processes, 21(1–3), 181204.CrossRefGoogle Scholar
Jalbert, A., Neath, I., & Surprenant, A. M. (2011). Does length or neighborhood size cause the word length effect? Memory & Cognition, 39(7), 11981210.CrossRefGoogle ScholarPubMed
James, W. (1890). The principles of psychology. Henry Holt.Google Scholar
Jarvella, R. J. (1971). Syntactic processing of connected speech. Journal of Verbal Learning & Verbal Behavior, 10, 409416.CrossRefGoogle Scholar
Jarvella, R. J. & Collas, J. G. (1974). Memory for the intentions of sentences. Memory & Cognition, 2, 185188.CrossRefGoogle ScholarPubMed
Kemper, S., Herman, R. E., & Lian, C. H. (2003). The costs of doing two things at once for young and older adults: Talking while walking, finger tapping, and ignoring speech of noise. Psychology and Aging, 18(2), 181.CrossRefGoogle Scholar
Kemtes, K. A., & Kemper, S. (1997). Younger and older adults’ on-line processing of syntactically ambiguous sentences. Psychology and Aging, 12(2), 362.CrossRefGoogle ScholarPubMed
Kidd, E. (2012). Implicit statistical learning is directly associated with the acquisition of syntax. Developmental Psychology, 48(1), 171.CrossRefGoogle ScholarPubMed
Kintsch, W. (1988). The role of knowledge in discourse comprehension: A construction-integration model. Psychological Review, 93, 163182.CrossRefGoogle Scholar
Kintsch, W., & van Dijk, T. A. (1978). Toward a model of text comprehension and production. Psychological Review, 85, 363394.CrossRefGoogle Scholar
Klingberg, T., Forssberg, H., & Westerberg, H. (2002). Increased brain activity in frontal and parietal cortex underlies the development of visuospatial working memory capacity during childhood. Journal of Cognitive Neuroscience, 14(1), 110.CrossRefGoogle ScholarPubMed
Lewis-Peacock, J. A., & Postle, B. R. (2008). Temporary activation of long-term memory supports working memory. Journal of Neuroscience, 28(35), 87658771.CrossRefGoogle ScholarPubMed
Linck, J. A., Osthus, P., Koeth, J. T., & Bunting, M. F. (2014). Working memory and second language comprehension and production: A meta-analysis. Psychonomic Bulletin & Review, 21(4), 861883.CrossRefGoogle ScholarPubMed
Logie, R. H. (2016). Retiring the central executive. Quarterly Journal of Experimental Psychology, 69, 20932109.CrossRefGoogle ScholarPubMed
Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390(6657), 279281.CrossRefGoogle ScholarPubMed
Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63(2), 81.CrossRefGoogle ScholarPubMed
Moray, N. (1959). Attention in dichotic listening: Affective cues and the influence of instructions. Quarterly Journal of Experimental Psychology, 11(1), 5660.CrossRefGoogle Scholar
Nairne, J. S. (2002). Remembering over the short-term: The case against the standard model. Annual Review of Psychology, 53(1), 5381.CrossRefGoogle ScholarPubMed
Norrman, G., & Bylund, E. (2016). The irreversibility of sensitive period effects in language development: Evidence from second language acquisition in international adoptees. Developmental Science, 19(3), 513520.CrossRefGoogle ScholarPubMed
Ouellette, G. P. (2006). What’s meaning got to do with it: The role of vocabulary in word reading and reading comprehension. Journal of Educational Psychology, 98(3), 554.CrossRefGoogle Scholar
Perfetti, C. (2007). Reading ability: Lexical quality to comprehension. Scientific Studies of Reading, 11(4), 357383.CrossRefGoogle Scholar
Pitt, M. A., & Samuel, A. G. (2006). Word length and lexical activation: Longer is better. Journal of Experimental Psychology: Human Perception and Performance, 32(5), 1120.Google ScholarPubMed
Qian, D. (1999). Assessing the roles of depth and breadth of vocabulary knowledge in reading comprehension. Canadian Modern Language Review, 56(2), 282308.CrossRefGoogle Scholar
Rhodes, S., & Cowan, N. (2018). Attention in working memory: Attention is needed but it yearns to be free. Annals of the New York Academy of Science, 1424, 5263.CrossRefGoogle ScholarPubMed
Richardson, J. T. E., & Baddeley, A. D. (1975). The effect of articulatory suppression in free recall. Journal of Verbal Learning and Verbal Behavior, 14(6), 623629.CrossRefGoogle Scholar
Ricker, T. J., & Cowan, N. (2014). Differences between presentation methods in working memory procedures: A matter of working memory consolidation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40(2), 417.Google ScholarPubMed
Sachs, J. S. (1967). Recognition memory for syntactic and semantic aspects of connected discourse. Perception & Psychophysics, 2, 437442.CrossRefGoogle Scholar
Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996). Statistical learning by 8-month-old infants. Science, 274(5294), 19261928.CrossRefGoogle ScholarPubMed
Schneider, W., & Shiffrin, R. M. (1977). Controlled and automatic human information processing: I. Detection, search, and attention. Psychological Review, 84, 166.CrossRefGoogle Scholar
Sokolov, E. N. (1963). Perception and the conditioned reflex. Pergamon Press.Google Scholar
Soto, D., & Humphreys, G. W. (2008). Stressing the mind: The effect of cognitive load and articulatory suppression on attentional guidance from working memory. Perception & Psychophysics, 70(5), 924934.CrossRefGoogle ScholarPubMed
Swets, B., Desmet, T., Hambrick, D. Z., & Ferreira, F. (2007). The role of working memory in syntactic ambiguity resolution: A psychometric approach. Journal of Experimental Psychology: General, 136(1), 64.CrossRefGoogle ScholarPubMed
Thalmann, M., Souza, A. S., & Oberauer, K. (2019). How does chunking help working memory? Journal of Experimental Psychology: Learning, Memory, and Cognition, 45(1), 37.Google ScholarPubMed
Thomason, M. E., Race, E., Burrows, B., Whitfield-Gabrieli, S., Glover, G. H., & Gabrieli, J. D. (2009). Development of spatial and verbal working memory capacity in the human brain. Journal of Cognitive Neuroscience, 21(2), 316332.CrossRefGoogle ScholarPubMed
Thompson, S. P., & Newport, E. L. (2007). Statistical learning of syntax: The role of transitional probability. Language Learning and Development, 3(1), 142.CrossRefGoogle Scholar
Underwood, B. J. (1957). Interference and forgetting. Psychological Review, 64(1), 49.CrossRefGoogle ScholarPubMed
Van den Noort, M. W., Bosch, P., & Hugdahl, K. (2006). Foreign language proficiency and working memory capacity. European Psychologist, 11(4), 289296.CrossRefGoogle Scholar
Vandierendonck, A. (2016). A working memory system with distributed executive control. Perspectives on Psychological Science, 11, 74100.CrossRefGoogle ScholarPubMed
Vogel, E. K., McCollough, A. W., & Machizawa, M. G. (2005). Neural measures reveal individual differences in controlling access to working memory. Nature, 438(7067), 500503.CrossRefGoogle ScholarPubMed
Wood, N., & Cowan, N. (1995a). The cocktail party phenomenon revisited: Attention and memory in the classic selective listening procedure of Cherry (1953). Journal of Experimental Psychology: General, 124, 243262.CrossRefGoogle Scholar
Wood, N., & Cowan, N. (1995b). The cocktail party phenomenon revisited: How frequent are attention shifts to one’s name in an irrelevant auditory channel? Journal of Experimental Psychology: Learning, Memory, & Cognition, 21, 255260.Google Scholar
Wood, N. L., Stadler, M. A., & Cowan, N. (1997). Is there implicit memory without attention? A re-examination of task demands in Eich’s (1984) procedure. Memory & Cognition, 25, 772779.CrossRefGoogle Scholar
Yang, Y., Chen, M., He, W., & Merrill, E. C. (2020). The role of working memory in implicit memory: A developmental perspective. Cognitive Development, 55, 100929.CrossRefGoogle Scholar

References

Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system and its control processes. Psychology of Learning and Motivation, 2(4), 89195.CrossRefGoogle Scholar
Baddeley, A. D. (1986). Working Memory. Oxford University Press.Google ScholarPubMed
Baddeley, A. (2000). The episodic buffer: A new component of working memory? Trends in Cognitive Sciences, 4(11), 417423.CrossRefGoogle ScholarPubMed
Bever, T. G. (1970). The cognitive basis for linguistic structures. Cognition and the Development of Language, 279(362), 161.Google Scholar
Bilalić, M. (2017). The Neuroscience of Expertise. Cambridge University Press.CrossRefGoogle Scholar
Bilalić, M. (2018). The double take of expertise: Neural expansion is associated with outstanding performance. Current Directions in Psychological Science, 27(6), 462469.CrossRefGoogle Scholar
Brown, J. (1958). Some tests of the decay theory of immediate memory. Quarterly Journal of Experimental Psychology, 10(1), 1221.CrossRefGoogle Scholar
Campitelli, G. (2015). Memory behavior requires knowledge structures, not memory stores. Frontiers in Psychology, 6, 1696.CrossRefGoogle Scholar
Caplan, D., & Waters, G. S. (1995a). Aphasic disorders of syntactic comprehension and working memory capacity. Cognitive Neuropsychology, 12(6), 637649.CrossRefGoogle Scholar
Caplan, D., & Waters, G. S. (1995b). On the nature of the phonological output planning processes involved in verbal rehearsal: Evidence from aphasia. Brain and Language, 48(2), 191220.CrossRefGoogle ScholarPubMed
Caplan, D., & Waters, G. S. (1999). Verbal working memory and sentence comprehension. Behavioral and Brain Sciences, 22(1), 7794.CrossRefGoogle ScholarPubMed
Caplan, D., & Waters, G. (2013). Memory mechanisms supporting syntactic comprehension. Psychonomic Bulletin & Review, 20(2), 243268.CrossRefGoogle ScholarPubMed
Cavanna, A. E., & Trimble, M. R. (2006). The precuneus: A review of its functional anatomy and behavioural correlates. Brain, 129 (3), 564583.CrossRefGoogle ScholarPubMed
Charness, N. (1976). Memory for chess positions: Resistance to interference. Journal of Experimental Psychology: Human Learning and Memory, 2(6), 641653.Google Scholar
Chase, W. G., & Ericsson, K. A. (1982). Skill and working memory. Psychology of Learning and Motivation, 16, 158.CrossRefGoogle Scholar
Chase, W. G., & Simon, H. A. (1973). Perception in chess. Cognitive Psychology, 4(1), 5581.CrossRefGoogle Scholar
Conway, A. R. A., & Engle, R. W. (1994). Working memory and retrieval: A resource-dependent inhibition model. Journal of Experimental Psychology: General, 123(4), 354373.CrossRefGoogle ScholarPubMed
Coughlin, L. D., & Patel, V. L. (1987). Processing of critical information by physicians and medical students. Journal of Medical Education, 62 (10), 818828.Google ScholarPubMed
Cowan, N. (2008). What are the differences between long-term, short-term, and working memory? Progress in Brain Research, 169, 323338.CrossRefGoogle ScholarPubMed
Crutcher, R. J., & Ericsson, K. A. (2000). The role of mediators in memory retrieval as a function of practice: Controlled mediation to direct access. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26(5), 1297.Google ScholarPubMed
Daneman, M., & Carpenter, P. A. (1980). Individual differences in working memory and reading. Journal of Verbal Learning and Verbal Behavior, 19(4), 450466.CrossRefGoogle Scholar
Daneman, M., & Carpenter, P. A. (1983). Individual differences in integrating information between and within sentences. Journal of Experimental Psychology: Learning, Memory, and Cognition, 9(4), 561584.Google Scholar
Daneman, M., & Merikle, P. M. (1996). Working memory and language comprehension: A meta-analysis. Psychonomic Bulletin & Review, 3(4), 422433.CrossRefGoogle ScholarPubMed
DeGroot, A. (1965). Thought and choice in chess. Mouton.Google Scholar
Delaney, P. F. (2018). The role of long-term working memory and template theory in contemporary expertise research. Journal of Expertise, 1 (3), 155161.Google Scholar
Delaney, P. F., & Ericsson, K. A. (2016). Long-term working memory and transient storage in reading comprehension: What is the evidence? Comment on Foroughi, Werner, Barragán, and Boehm-Davis (2015). Journal of Experimental Psychology: General, 145(10), 14061409.CrossRefGoogle Scholar
Delaney, P. F., Wallander, R., & Preheim, G. A. (2018). Protocol analysis. In Dunn, D. S. (Ed.), Oxford bibliographies online: Psychology. Oxford University Press.Google Scholar
Dixon, P., & Sharma, A. (2019). Distraction and temporal order in narrative situation models. Discourse Processes, 56(5–6), 402414.CrossRefGoogle Scholar
Engle, R. W., Cantor, J., & Carullo, J. J. (1992). Individual differences in working memory and comprehension: A test of four hypotheses. Journal of Experimental Psychology: Learning, Memory, and Cognition, 18 (5), 972992.Google ScholarPubMed
Engle, R. W., Kane, M. J., & Tuholski, S. W. (1999). Individual differences in working memory capacity and what they tell us about controlled attention, general fluid intelligence and functions of the prefrontal cortex. In Miyake, A. & Shah, P. (Eds.), Models of working memory: Mechanisms of active maintenance and executive control (pp. 102134). Cambridge University Press.CrossRefGoogle Scholar
Ericsson, K. A., & Delaney, P. F. (1998). Working memory and expert performance. In Logie, R., & Gilhooly, K. J. (Eds.), Working memory and thinking (pp. 93−114). Erlbaum.Google Scholar
Ericsson, K. A., & Delaney, P. F. (1999). Long-term working memory as an alternative to capacity models of working memory in everyday skilled performance. In Miyake, A. & Shah, P. (Eds.), Models of working memory: Mechanisms of active maintenance and executive control (pp. 257297). Cambridge University Press.CrossRefGoogle Scholar
Ericsson, K. A., Delaney, P. F., Weaver, G. E., & Mahadevan, S. (2004). Uncovering the structure of a memorist’s superior “basic” memory capacity. Cognitive Psychology, 49 (3), 191237.CrossRefGoogle ScholarPubMed
Ericsson, K. A., & Kintsch, W. (1995). Long-term working memory. Psychological Review, 102(2), 211245.CrossRefGoogle ScholarPubMed
Ericsson, K. A., & Simon, H. A. (1993). Protocol analysis: Verbal reports as data (Rev. ed.). MIT Press.CrossRefGoogle Scholar
Ericsson, K. A., & Staszewski, J. J. (1988). Skilled memory and expertise: Mechanisms of exceptional performance. In Klahr, D. & Kotovsky, K. J. (Eds.), Complex information processing: The impact of Herbert A. Simon (pp. 235267). Erlbaum.Google Scholar
Estevez, A., & Calvo, M. G. (2000). Working memory capacity and the time course of predictive inferences. Memory, 8(1), 5161.CrossRefGoogle ScholarPubMed
Eva, K. W., Norman, G. R., Neville, A. J., Wood, T. J., Brooks, L. R. (2002). Expert-novice differences in memory: A reformulation. Teaching and Learning in Medicine, 14(4), 257263.CrossRefGoogle ScholarPubMed
Ferreira, F., Henderson, J. M., Anes, M. D., Weeks, P. A., & McFarlane, D. K. (1996). Effects of lexical frequency and syntactic complexity in spoken-language comprehension: Evidence from the auditory moving-window technique. Journal of Experimental Psychology: Learning, Memory, and Cognition, 22(2), 324335.Google Scholar
Ferstl, E. C., Neumann, J., Bogler, C., & von Cramon, D. Y. (2008). The extended language network: A meta-analysis of neuroimaging studies on text comprehension. Human Brain Mapping, 29(5), 581593.CrossRefGoogle ScholarPubMed
Fischer, B., & Glanzer, M. (1986). Short-term storage and the processing of cohesion during reading. Quarterly Journal of Experimental Psychology, 38A(3), 431460.CrossRefGoogle Scholar
Fletcher, C. R. (1981). Short-term memory processes in text comprehension. Journal of Verbal Learning and Verbal Behavior, 20(5), 264274.CrossRefGoogle Scholar
Foroughi, C. K., Werner, N. E., Barragán, D., & Boehm-Davis, D. A. (2015). Interruptions disrupt reading comprehension. Journal of Experimental Psychology: General, 144(3), 704709.CrossRefGoogle ScholarPubMed
Gauthier, I., Williams, P., Tarr, M. J., & Tanaka, J. (1998). Training “greeble” experts: A framework for studying expert object recognition processes. Vision Research, 38(15–16), 24012428.CrossRefGoogle ScholarPubMed
Gernsbacher, M. A. (1990). Language comprehension as structure building. Erlbaum.CrossRefGoogle Scholar
Givón, T. (1995). Coherence in text vs. coherence in mind. In Givón, T. & Gernsbacher, M. A. (Eds.), Coherence in natural text (pp. 59116). John Benjamins Publishing Company.Google Scholar
Glanzer, M., Dorfman, D., & Kaplan, B. (1981). Short-term storage in the processing of text. Journal of Verbal Learning and Verbal Behavior, 20(6), 656670.CrossRefGoogle Scholar
Glanzer, M., Fischer, B., & Dorfman, D. (1984). Short-term storage in reading. Journal of Verbal Learning and Verbal Behavior, 23(4), 467486.CrossRefGoogle Scholar
Gobet, F., & Simon, H. A. (1996a). Recall of rapidly presented random chess positions as a function of skill. Psychonomic Bulletin & Review, 3(2), 159163.CrossRefGoogle ScholarPubMed
Gobet, F., & Simon, H. A. (1996b). Templates in chess memory: A mechanism for recalling several boards. Cognitive Psychology, 31(1), 140.CrossRefGoogle ScholarPubMed
Gordon, P. C., Hendrick, R., & Levine, W. H. (2002). Memory-load interference in syntactic processing. Psychological Science, 13(5), 425430.CrossRefGoogle ScholarPubMed
Guida, A., Gobet, F., Tardieu, H., & Nicolas, S. (2012). How chunks, long-term working memory and templates offer a cognitive explanation for neuroimaging data on expertise acquisition: A two-stage framework. Brain and Cognition, 79(3), 221244.CrossRefGoogle Scholar
Guida, A., Gras, D., Noel, Y., Le Bohec, O., Quaireau, C., & Nicolas, S. (2013). The effect of long-term working memory through personalization applied to free recall: Uncurbing the primacy-effect enthusiasm. Memory & Cognition, 41(4), 571587.CrossRefGoogle ScholarPubMed
Hagoort, P., Hald, L., Bastiaansen, M., & Petersson, K. M. (2004). Integration of word meaning and world knowledge in language comprehension. Science, 304(5669), 438441.CrossRefGoogle ScholarPubMed
Jacoby, L. L., & Wahlheim, C. N. (2013). On the importance of looking back: The role of recursive remindings in recency judgments and cued recall. Memory & Cognition, 41(5), 625637.CrossRefGoogle ScholarPubMed
James, A. N., Fraundorf, S. H., Lee, E. K., & Watson, D. G. (2018). Individual differences in syntactic processing: Is there evidence for reader-text interactions? Journal of Memory and Language, 102, 155181.CrossRefGoogle ScholarPubMed
Johnson-Laird, P. N. (1983). Mental models. Erlbaum.Google Scholar
Kane, M. J., & Engle, R. W. (2003). Working-memory capacity and the control of attention: The contributions of goal neglect, response competition, and task set to Stroop interference. Journal of Experimental Psychology: General, 132(1), 4770.CrossRefGoogle ScholarPubMed
King, J., & Just, M. A. (1991). Individual differences in syntactic processing: The role of working memory. Journal of Memory and Language, 30(5), 580602.CrossRefGoogle Scholar
Kintsch, W. (1988). The use of knowledge in discourse processing: A construction-integration model. Psychological Review, 95(2), 163182CrossRefGoogle Scholar
Kintsch, W. (1988). The role of knowledge in discourse comprehension: A construction-integration model. Psychological Review, 95(2), 163182.CrossRefGoogle ScholarPubMed
Kintsch, W. (1992a). A cognitive architecture for comprehension. In Pick, H. L. Jr., van den Broek, P., & Knill, D. (Eds.), Cognition: Conceptual and methodological issues (pp. 143164). American Psychological Association.CrossRefGoogle Scholar
Kintsch, W. (1992b). How readers construct situation models for stories: The role of syntactic cues and causal inferences. In Healy, A. F., Kosslyn, S. M., & Shiffrin, R. M. (Eds.), From learning processes to cognitive processes: Essays in honor of William K. Estes (pp. 261278). Erlbaum.Google Scholar
Kintsch, W. (1994a). Discourse processes. In d’Ydewalle, G., Eelen, P., & Bertelson, P. (Eds.), Current advances in psychological science: An international perspective (Vol. 2, pp. 135155). Erlbaum.Google Scholar
Kintsch, W. (1994b). Text comprehension, memory, and learning. American Psychologist, 49(4), 294303.CrossRefGoogle ScholarPubMed
Kintsch, W., Patel, V. L., & Ericsson, K. A. (1999). The role of long-term working memory in text comprehension. Psychologia, 42(4), 186198.Google Scholar
Kintsch, W, & Welsch, D. M. (1991). The construction-integration model: A framework for studying memory for text. In Hockley, W. E. & Lewandowsky, S. (Eds.), Relating theory and data: Essays on human memory in honor of Bennett B. Murdoch (pp. 367385). ErlbaumGoogle Scholar
Kintsch, W., Welsch, D., Schmalhofer, F., & Zimny, S. (1990). Sentence memory: A theoretical analysis. Journal of Memory and Language, 29(2), 133159.CrossRefGoogle Scholar
Klein, K. A., Shiffrin, R. M., & Criss, A. H. (2007). Putting context in context. In Nairne, J. S. (Ed.), The foundations of remembering: Essays in honor of Henry L. Roediger III (p. 171189). Psychology Press.Google Scholar
Kutas, M., & Federmeier, K. D. (2011). Thirty years and counting: Finding meaning in the N400 component of the event related brain potential (ERP). Annual Review of Psychology, 62, 621647.CrossRefGoogle Scholar
Lehman, M., & Karpicke, J. D. (2016). Elaborative retrieval: Do semantic mediators improve memory? Journal of Experimental Psychology: Learning, Memory, and Cognition, 42(10), 15731591.Google ScholarPubMed
MacDonald, M. C., Just, M. A., & Carpenter, P. A. (1992). Working memory constraints on the processing of syntactic ambiguity. Cognitive Psychology, 24(1), 5698.CrossRefGoogle ScholarPubMed
McElree, B., & Dyer, L. (2013). Beyond capacity: the role of memory processes in building linguistic structure in real time. In Sanz, M., Laka, I., and Tanenhaus, M. K (Eds.), Language down the garden path: The cognitive and biological basis for linguistic structures (pp. 229240). Oxford University Press.CrossRefGoogle Scholar
McGugin, R. W., Gatenby, J. C., Gore, J. C., & Gauthier, I. (2012). High-resolution imaging of expertise reveals reliable object selectivity in the fusiform face area related to perceptual performance. Proceedings of the National Academy of Sciences, 109(42), 1706317068.CrossRefGoogle ScholarPubMed
McVay, J. C., & Kane, M. J. (2010). Adrift in the stream of thought: The effects of mind wandering on executive control and working memory capacity. In Gruszka, A., Matthews, G., & Szymura, B. (Eds.), Handbook of individual differences in cognition (pp. 321334). Springer.CrossRefGoogle Scholar
Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63(2), 8197.CrossRefGoogle ScholarPubMed
Miller, J. R., & Kintsch, W. (1980). Readability and recall for short passages: A theoretical analysis. Journal of Experimental Psychology: Human Learning and Memory, 6(4), 335354.Google Scholar
Myers, J. L., O’Brien, E. J., Balota, D. A., & Toyofuku, M. L. (1984). Memory search without interference: The role of integration. Cognitive Psychology, 16 (2), 217242.CrossRefGoogle Scholar
Neath, I., Brown, G. D. A., Poirier, M., & Fortin, C. (2005). Short-term and working memory: Past, progress, and prospects. Memory, 13(3/4), 225235.Google ScholarPubMed
Newell, A., & Simon, H. A. (1972). Human problem solving. Prentice-Hall.Google Scholar
Perfetti, C. A., & Lesgold, A. M. (1977). Discourse comprehension and sources of individual differences. In Just, M. A. & Carpenter, P. A. (Eds.), Cognitive processes in comprehension (pp. 165). Erlbaum.Google Scholar
Peterson, L., & Peterson, M. J. (1959). Short-term retention of individual verbal items. Journal of Experimental Psychology, 58(3), 193198.CrossRefGoogle ScholarPubMed
Pettijohn, K. A., & Radvansky, G. A. (2016). Narrative event boundaries, reading times, and expectation. Memory & Cognition, 44(7), 10641075.CrossRefGoogle ScholarPubMed
Reder, L. M., & Anderson, J. R. (1980). A partial resolution of the paradox of interference: The role of integrating knowledge. Cognitive Psychology, 12(4), 447472.CrossRefGoogle ScholarPubMed
Sachs, J. S. (1967). Recognition memory for syntactic and semantic aspects of connected discourse. Perception & Psychophysics, 2(9), 437442.CrossRefGoogle Scholar
Sahakyan, L., Delaney, P. F., Foster, , & Abushanab, B. (2013). List-method directed forgetting in cognitive and clinical research: A theoretical and methodological review. Psychology of Learning and Motivation, 59, 131189.CrossRefGoogle Scholar
Schneider, W., & Shiffrin, R. M. (1977). Controlled and automatic human information processing: I. Detection, search, and attention. Psychological Review, 84(1), 166.CrossRefGoogle Scholar
Shiffrin, R. M., & Schneider, W. (1977). Controlled and automatic human information processing: II. Perceptual learning, automatic attending and a general theory. Psychological Review, 84(2), 127190.CrossRefGoogle Scholar
Singer, M. (1990). Psychology of language: An introduction to sentence and discourse processes. Erlbaum.Google Scholar
Speer, N. K., Reynolds, J. R., Swallow, K. M., & Zacks, J. M. (2009). Reading stories activates neural representations of visual and motor experiences. Psychological Science, 20(8), 989999.CrossRefGoogle ScholarPubMed
Speer, N. K., Reynolds, J. R., & Zacks, J. M. (2007). Human brain activity time-locked to narrative event boundaries. Psychological Science, 18(5), 449455.CrossRefGoogle ScholarPubMed
Trabasso, T., & Suh, S. Y. (1993). Using talk-aloud protocols to reveal inferences during comprehension of text. Discourse Processes, 16(1), 334.CrossRefGoogle Scholar
Unsworth, N., Fukuda, K., Awh, E., & Vogel, E. K. (2014). Working memory and fluid intelligence: Capacity, attention control, and secondary memory retrieval. Cognitive Psychology, 71, 126.CrossRefGoogle ScholarPubMed
Unsworth, N., Spillers, G. J., & Brewer, G. A. (2012). Working memory capacity and retrieval limitations from long-term memory: An examination of differences in accessibility. Quarterly Journal of Experimental Psychology, 65(12), 23972410.CrossRefGoogle ScholarPubMed
van Dijk, T. A., & Kintsch, W. (1983). Strategies of discourse comprehension. Academic Press.Google Scholar
Wahlheim, C. N., & Jacoby, L. (2013). Experience with proactive interference diminishes its effects: Mechanisms of change. Memory & Cognition, 39(2), 185195.CrossRefGoogle Scholar
Wanner, H. E., & Maratsos, M. (1978). An ATN approach to comprehension. In Halle, M. A., Bresnan, J., & Miller, G. A. (Eds.), Linguistic theory and psychological reality (pp. 119161). MIT Press.Google Scholar
Waters, G. S., & Caplan, D. (1995). What the study of patients with speech disorders and of normal speakers tells us about the nature of rehearsal. In Campbell, R. and Conway, M. (Eds.), Broken memories: Case studies in memory impairment (pp. 302330). Blackwell.Google Scholar
Whitney, C., Huber, W., Klann, J., Weis, S., Krach, S., & Kircher, T. (2009). Neural correlates of narrative shifts during auditory story comprehension. NeuroImage, 47(1), 360366.CrossRefGoogle ScholarPubMed
van Berkum, J. J. A., Zwitserlood, P., Hagoort, P., & Brown, C. M. (2003). When and how do listeners relate a sentence to the wider discourse? Evidence from the N400 effect. Cognitive Brain Research, 17(3), 701718.CrossRefGoogle Scholar
Zwaan, R. A. (1994). Effect of genre expectations on text comprehension. Journal of Experimental Psychology: Learning, Memory, and Cognition, 20(4), 920933.Google Scholar
Zwaan, R.A. (2004). The immersed experiencer: Toward an embodied theory of language comprehension. Psychology of Learning and Motivation, 44, 3562.CrossRefGoogle Scholar
Zwaan, R. A., Langston, M. C., & Graesser, A. C. (1995). The construction of situation models in narrative comprehension: An event-indexing model. Psychological Science, 6(5), 292297.CrossRefGoogle Scholar
Zwaan, R. A., Magliano, J. P., & Graesser, A. C. (1995). Dimensions of situation model construction in narrative comprehension. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21(2), 386397.Google Scholar
Zwaan, R. A., & Radvansky, G. A. (1998). Situation models in language comprehension and memory. Psychological Bulletin, 123(2), 162185.CrossRefGoogle ScholarPubMed

References

Abutalebi, J., Canini, M., Della Rosa, P. A., Green, D. W., & Weekes, B. S. (2015). The neuroprotective effects of bilingualism upon the inferior parietal lobule: A structural neuroimaging study in aging Chinese bilinguals. Journal of Neurolinguistics, 33, 313. https://doi.org/10.1016/j.jneuroling.2014.09.008CrossRefGoogle Scholar
Abutalebi, J., Canini, M., Della Rosa, P. A., Sheung, L. P., Green, D. W., & Weekes, B. S. (2014). Bilingualism protects anterior temporal lobe integrity in aging. Neurobiology of Aging, 35(9), 21262133. https://doi.org/10.1016/j.neurobiolaging.2014.03.010CrossRefGoogle Scholar
Acheson, D. J., Hamidi, M., Binder, J. R., & Postle, B. R. (2011). A common neural substrate for language production and verbal working memory. Journal of Cognitive Neuroscience, 23(6), 13581367. https://doi.org/10/bcv4c5CrossRefGoogle ScholarPubMed
Acheson, D. J., & MacDonald, M. C. (2009). Verbal working memory and language production: Common approaches to the serial ordering of verbal information. Psychological Bulletin, 135(1), 5068. https://doi.org/10/dxhnfjCrossRefGoogle Scholar
Ali, N., Green, D. W., Kherif, F., Devlin, J. T., & Price, C. J. (2010). The role of the left head of caudate in suppressing irrelevant words. Journal of Cognitive Neuroscience, 22(10), 23692386. https://doi.org/10/cfcdwrCrossRefGoogle ScholarPubMed
Allen, R. J., Hitch, G. J., & Baddeley, A. D. (2018). Exploring the sentence advantage in working memory: Insights from serial recall and recognition. Quarterly Journal of Experimental Psychology, 71(12), 25712585. https://doi.org/10.1177/1747021817746929CrossRefGoogle Scholar
Amici, S., Brambati, S. M., Wilkins, D. P., Ogar, J., Dronkers, N. L., Miller, B. L., & Gorno-Tempini, M. L. (2007). Anatomical correlates of sentence comprehension and verbal working memory in neurodegenerative disease. Journal of Neuroscience, 27(23), 62826290. https://doi.org/10/db6h6vCrossRefGoogle ScholarPubMed
Baddeley, A. D. (2003). Working memory and language: An overview. Journal of Communication Disorders, 36(3), 189208. https://doi.org/10.1016/s0021-9924(03)00019-4CrossRefGoogle ScholarPubMed
Baddeley, A. D., & Hitch, G. J. (1974). Working memory. In Bower, G. A. (Ed.), Recent advances in learning and motivation, Vol.8 (pp. 4790). Academic Press.Google Scholar
Baddeley, A. D., Papagno, C., & Vallar, G. (1988). When long-term learning depends on short-term storage. Journal of Memory and Language, 27(5), 586595. https://doi.org/10.1016/0749-596X(88)90028-9CrossRefGoogle Scholar
Berwick, R. C., Friederici, A. D., Chomsky, N., & Bolhuis, J. J. (2013). Evolution, brain, and the nature of language. Trends in Cognitive Sciences, 17(2), 8998. https://doi.org/10/f4j39rCrossRefGoogle ScholarPubMed
Binder, J. R. (2017). Current controversies on Wernicke’s area and its role in language. Current Neurology and Neuroscience Reports, 17(8), 110. https://doi.org/10/gf26w5CrossRefGoogle ScholarPubMed
Bock, J. K., & Levelt, W. J. M. (1994). Language production: Grammatical encoding. In Gernsbacher, M. A. (Ed.), Handbook of psycholinguistics (pp. 945984). Elsevier/Academic Press.Google Scholar
Bornkessel, I., & Schlesewsky, M. (2006). The extended argument dependency model: A neurocognitive approach to sentence comprehension across languages. Psychological Review, 113(4), 787821. https://doi.org/10/ctj65qCrossRefGoogle ScholarPubMed
Bornkessel, I., Zysset, S., Friederici, A. D., von Cramon, D. Y., & Schlesewsky, M. (2005). Who did what to whom? The neural basis of argument hierarchies during language comprehension. NeuroImage, 26, 221233. https://doi.org/10/fjrs3tCrossRefGoogle ScholarPubMed
Buchsbaum, B. R., & D’Esposito, M. (2019). A sensorimotor view of verbal working memory. Cortex, 112, 134148. https://doi.org/10/ghpwf3CrossRefGoogle ScholarPubMed
Caplan, D., & Waters, G. (2013). Memory mechanisms supporting syntactic comprehension. Psychonomic Bulletin & Review, 20(2), 243268. https://doi.org/10/f4qqwsCrossRefGoogle ScholarPubMed
Chang, S.-E., Kenney, M. K., Loucks, T. M. J., Poletto, C. J., & Ludlow, C. L. (2009). Common neural substrates support speech and non-speech vocal tract gestures. NeuroImage, 47(1), 314325. https://doi.org/10/d2jc3vCrossRefGoogle ScholarPubMed
Chein, J. M., Ravizza, S. M., & Fiez, J. A. (2003). Using neuroimaging to evaluate models of working memory and their implications for language processing. Journal of Neurolinguistics, 16(4–5), 315339. https://doi.org/10/fw5shnCrossRefGoogle Scholar
Christophel, T. B., Hebart, M. N., & Haynes, J.-D. (2012). Decoding the contents of visual short-term memory from human visual and parietal cortex. Journal of Neuroscience, 32(38), 1298312989. https://doi.org/10.1523/JNEUROSCI.0184-12.2012CrossRefGoogle ScholarPubMed
Christophel, T. B., Klink, P. C., Spitzer, B., Roelfsema, P. R., & Haynes, J.-D. (2017). The distributed nature of working memory. Trends in Cognitive Sciences, 21(2), 111124. https://doi.org/10.1016/j.tics.2016.12.007CrossRefGoogle ScholarPubMed
Collette, F., Majerus, S., Van der Linden, M., Dabe, P., Degueldre, C., Delfiore, G., Luxen, A., & Salmon, E. (2001). Contribution of lexico-semantic processes to verbal short-term memory tasks: A PET activation study. Memory, 9(4–6), 249259. https://doi.org/10/bbzpf5CrossRefGoogle ScholarPubMed
Constantinidis, C., & Wang, X.-J. (2004). A Neural Circuit Basis for Spatial Working Memory. The Neuroscientist, 10(6), 553565. https://doi.org/10.1177/1073858404268742CrossRefGoogle ScholarPubMed
Cooke, A., Zurif, E. B., DeVita, C., Alsop, D., Koenig, P., Detre, J., Gee, J., Pinãngo, M., Balogh, J., & Grossman, M. (2002). Neural basis for sentence comprehension: Grammatical and short-term memory components. Human Brain Mapping, 15(2), 8094. https://doi.org/10/dxk2x9CrossRefGoogle ScholarPubMed
Curtis, C. E., Rao, V. Y., & D’Esposito, M. (2004). Maintenance of spatial and motor codes during oculomotor delayed response tasks. Journal of Neuroscience, 24(16), 39443952. https://doi.org/10.1523/JNEUROSCI.5640-03.2004CrossRefGoogle ScholarPubMed
Daneman, M., & Merikle, P. M. (1996). Working memory and language comprehension: A meta-analysis. Psychonomic Bulletin & Review, 3(4), 422433. https://doi.org/10/c659r8CrossRefGoogle ScholarPubMed
Dehaene-Lambertz, G., Dehaene, S., & Hertz-Pannier, L. (2002). Functional neuroimaging of speech perception in infants. Science, 298(5600), 20132015. https://doi.org/10.1126/science.1077066CrossRefGoogle ScholarPubMed
D’Esposito, M., & Postle, B. R. (2015). The cognitive neuroscience of working memory. Annual Review of Psychology, 66(1), 115142. https://doi.org/10.1146/annurev-psych-010814-015031CrossRefGoogle ScholarPubMed
Dronkers, N. F., Plaisant, O., Iba-Zizen, M. T., & Cabanis, E. A. (2007). Paul Broca’s historic cases: High resolution MR imaging of the brains of Leborgne and Lelong. Brain, 130(5), 14321441. https://doi.org/10/d5m4r2CrossRefGoogle ScholarPubMed
Emch, M., von Bastian, C. C., & Koch, K. (2019). Neural correlates of verbal working memory: An fMRI meta-analysis. Frontiers in Human Neuroscience, 13(180). https://doi.org/10/ggqqtfCrossRefGoogle ScholarPubMed
Eriksson, J., Vogel, E. K., Lansner, A., Bergström, F., & Nyberg, L. (2015). Neurocognitive architecture of working memory. Neuron, 88(1), 3346. https://doi.org/10.1016/j.neuron.2015.09.020CrossRefGoogle ScholarPubMed
Friederici, A. D. (2011). The brain basis of language processing: From structure to function. Physiological Reviews, 91(4), 13571392. https://doi.org/10/crdcmjCrossRefGoogle ScholarPubMed
Friederici, A. D. (2017). Language in our brain: The origins of a uniquely human capacity. MIT Press.CrossRefGoogle Scholar
Friederici, A. D., Chomsky, N., Berwick, R. C., Moro, A., & Bolhuis, J. J. (2017). Language, mind and brain. Nature Human Behaviour, 1(10), 713722. https://doi.org/10.1038/s41562-017-0184-4CrossRefGoogle ScholarPubMed
Funahashi, S., Bruce, C. J., & Goldman-Rakic, P. S. (1989). Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex. Journal of Neurophysiology, 61(2), 331349. https://doi.org/10.1152/jn.1989.61.2.331CrossRefGoogle ScholarPubMed
Fuster, J. M., & Alexander, G. E. (1971). Neuron activity related to short-term memory. Science, 173(3997), 652654. https://doi.org/10.1126/science.173.3997.652CrossRefGoogle ScholarPubMed
Ganushchak, L. Y., Christoffels, I. K., & Schiller, N. O. (2011). The use of electroencephalography in language production research: A review. Frontiers in Psychology, 2, 16. https://doi.org/10/fn6k8pCrossRefGoogle ScholarPubMed
Gathercole, S. E. (1995). Is nonword repetition a test of phonological memory or long-term knowledge? It all depends on the nonwords. Memory and Cognition, 23(1), 8394. https://doi.org/10.3758/bf03210559CrossRefGoogle ScholarPubMed
Gathercole, S. E., Frankish, C. R., Pickering, S. J., & Peaker, S. (1999). Phonotactic influences on short-term memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 25(1), 8495. https://doi.org/10/cvchznGoogle ScholarPubMed
Glaser, Y. G., Martin, R. C., Van Dyke, J. A., Hamilton, A. C., & Tan, Y. (2013). Neural basis of semantic and syntactic interference in sentence comprehension. Brain and Language, 126(3), 314326. https://doi.org/10/f5gdtzCrossRefGoogle ScholarPubMed
Grant, A., Dennis, N. A., & Li, P. (2014). Cognitive control, cognitive reserve, and memory in the aging bilingual brain. Frontiers in Psychology, 5(1401), 110. https://doi.org/10.3389/fpsyg.2014.01401CrossRefGoogle ScholarPubMed
Herman, A. B., Houde, J. F., Vinogradov, S., & Nagarajan, S. S. (2013). Parsing the phonological loop: Activation timing in the dorsal speech stream determines accuracy in speech reproduction. Journal of Neuroscience, 33(13), 54395453. https://doi.org/10/f4svd5CrossRefGoogle ScholarPubMed
Howard, D., & Nickels, L. (2005). Separating input and output phonology: Semantic, phonological, and orthographic effects in short-term memory impairment. Cognitive Neuropsychology, 22(1), 4277. https://doi.org/10/fcjfkcCrossRefGoogle ScholarPubMed
Ishkhanyan, B., Boye, K., & Mogensen, J. (2019). The meeting point: Where language production and working memory share resources. Journal of Psycholinguistic Research, 48(1), 6179. https://doi.org/10.1007/s10936-018-9589-0CrossRefGoogle ScholarPubMed
Ji, J. L., Spronk, M., Kulkarni, K., Repovš, G., Anticevic, A., & Cole, M. W. (2019). Mapping the human brain’s cortical-subcortical functional network organization. NeuroImage, 185, 3557. https://doi.org/10.1016/j.neuroimage.2018.10.006CrossRefGoogle ScholarPubMed
Jones, T., & Farrell, S. (2018). Does syntax bias serial order reconstruction of verbal short-term memory? Journal of Memory and Language, 100, 98122. https://doi.org/10.1016/j.jml.2018.02.001CrossRefGoogle Scholar
Kellogg, R. T. (1996). A model of working memory in writing. In Levy, C. & Ransdell, S. (Eds.), The science of writing: Theories, methods, individual differences, and applications (pp. 5771). Erlbaum.Google Scholar
Kellogg, R. T., Whiteford, A., Turner, C., Cahill, M., & Mertens, A. (2013). Working memory in written composition: An evaluation of the 1966 model. Journal of Writing Research, 5(2), 159190. https://doi.org/10/gfpqbvGoogle Scholar
Koenigs, M., Barbey, A. K., Postle, B. R., & Grafman, J. (2009). Superior parietal cortex is critical for the manipulation of information in working memory. Journal of Neuroscience, 29(47), 1498014986. https://doi.org/10.1523/JNEUROSCI.3706-09.2009CrossRefGoogle ScholarPubMed
Kosslyn, S. M. (1994). Image and brain: The resolution of the imagery debate. MIT Press.CrossRefGoogle Scholar
Lee, H., Devlin, J. T., Shakeshaft, C., Stewart, L. H., Brennan, A., Glensman, J., Pitcher, K., Crinion, J., Mechelli, A., Frackowiak, R. S. J., Green, D. W., & Price, C. J. (2007). Anatomical traces of vocabulary acquisition in the adolescent brain. Journal of Neuroscience, 27(5), 11841189. https://doi.org/10.1523/JNEUROSCI.4442-06.2007CrossRefGoogle ScholarPubMed
Levelt, W. J. M. (2001). Spoken word production: A theory of lexical access. Proceedings of the National Academy of Sciences, 98(23), 1346413471. https://doi.org/10.1073/pnas.231459498CrossRefGoogle ScholarPubMed
Lewis-Peacock, J. A., Drysdale, A. T., Oberauer, K., & Postle, B. R. (2012). Neural evidence for a distinction between short-term memory and the focus of attention. Journal of Cognitive Neuroscience, 24(1), 6179. https://doi.org/10/dmmt42CrossRefGoogle ScholarPubMed
Li, P., Legault, J., & Litcofsky, K. A. (2014). Neuroplasticity as a function of second language learning: Anatomical changes in the human brain. Cortex, 58, 301324. https://doi.org/10.1016/j.cortex.2014.05.001CrossRefGoogle ScholarPubMed
Lohmann, G., Hoehl, S., Brauer, J., Danielmeier, C., Bornkessel-Schlesewsky, I., Bahlmann, J., Turner, R., & Friederici, A. (2010). Setting the frame: The human brain activates a basic low-frequency network for language processing. Cerebral Cortex, 20(6), 12861292. https://doi.org/10.1093/cercor/bhp190CrossRefGoogle ScholarPubMed
Luk, G., Bialystok, E., Craik, F. I. M., & Grady, C. L. (2011). Lifelong bilingualism maintains white matter integrity in older adults. Journal of Neuroscience, 31(46), 1680816813. https://doi.org/10.1523/JNEUROSCI.4563-11.2011CrossRefGoogle ScholarPubMed
Majerus, S., van der Linden, M., Mulder, L., Meulemans, T., & Peters, F. (2004). Verbal short-term memory reflects the sublexical organization of the phonological language network: Evidence from an incidental phonotactic learning paradigm. Journal of Memory and Language, 51(2), 297306. https://doi.org/10/cjw86hCrossRefGoogle Scholar
Makuuchi, M., & Friederici, A. D. (2013). Hierarchical functional connectivity between the core language system and the working memory system. Cortex, 49(9), 24162423. https://doi.org/10/f5dq23CrossRefGoogle ScholarPubMed
Miller, G. A., Galanter, E., & Pribram, K. H. (1960). Plans and the structure of behavior. Henry Holt. https://doi.org/10.1037/10039-000CrossRefGoogle Scholar
Novais-Santos, S., Gee, J., Shah, M., Troiani, V., Work, M., & Grossman, M. (2007). Resolving sentence ambiguity with planning and working memory resources: Evidence from fMRI. NeuroImage, 37(1), 361378. https://doi.org/10/bvn8g6CrossRefGoogle ScholarPubMed
O’Reilly, R. C., Braver, T. S., & Cohen, J. D. (1999). A biologically based computational model of working memory. In Miyake, A. & Shah, P. (Eds.), Models of Working Memory (1st ed., pp. 375411). Cambridge University Press. https://doi.org/10.1017/CBO9781139174909.014CrossRefGoogle Scholar
Peschke, C., Ziegler, W., Kappes, J., & Baumgaertner, A. (2009). Auditory–motor integration during fast repetition: The neuronal correlates of shadowing. NeuroImage, 47(1), 392402. https://doi.org/10.1016/j.neuroimage.2009.03.061CrossRefGoogle ScholarPubMed
Postle, B. R. (2006). Working memory as an emergent property of the mind and brain. Neuroscience, 139(1), 2338. https://doi.org/10.1016/j.neuroscience.2005.06.005CrossRefGoogle ScholarPubMed
Price, C. J. (2010). The anatomy of language: A review of 100 fMRI studies published in 2009. Annals of the New York Academy of Sciences, 1191(1), 6288. https://doi.org/10.1111/j.1749-6632.2010.05444.xCrossRefGoogle ScholarPubMed
Rogalsky, C., & Hickok, G. (2011). The role of Brocaʼs area in sentence comprehension. Journal of Cognitive Neuroscience, 23(7), 16641680. https://doi.org/10.1162/jocn.2010.21530CrossRefGoogle ScholarPubMed
Rottschy, C., Langner, R., Dogan, I., Reetz, K., Laird, A. R., Schulz, J. B., Fox, P. T., & Eickhoff, S. B. (2012). Modelling neural correlates of working memory: A coordinate-based meta-analysis. NeuroImage, 60(1), 830846. https://doi.org/10.1016/j.neuroimage.2011.11.050CrossRefGoogle ScholarPubMed
Sakai, K. L. (2005). Language acquisition and brain development. Science, 310(5749), 815819. https://doi.org/10.1126/science.1113530CrossRefGoogle ScholarPubMed
Sanches, C., Routier, A., Colliot, O., & Teichmann, M. (2018). The structure of the mental lexicon: What primary progressive aphasias reveal. Neuropsychologia, 109, 107115. https://doi.org/10.1016/j.neuropsychologia.2017.12.018CrossRefGoogle Scholar
Savill, N., Cornelissen, P., Whiteley, J., Woollams, A., & Jefferies, E. (2019). Individual differences in verbal short-term memory and reading aloud: Semantic compensation for weak phonological processing across tasks. Journal of Experimental Psychology: Learning, Memory, and Cognition, 45(10), 18151831. https://doi.org/10.1037/xlm0000675Google ScholarPubMed
Schiller, N. O., Bles, M., & Jansma, B. M. (2003). Tracking the time course of phonological encoding in speech production: An event-related brain potential study. Cognitive Brain Research, 17(3), 819831. https://doi.org/10.1016/s0926–6410(03)00204-0CrossRefGoogle Scholar
Schwering, S. C., & MacDonald, M. C. (2020). Verbal working memory as emergent from language comprehension and production. Frontiers in Human Neuroscience, 14, 68. https://doi.org/10.3389/fnhum.2020.00068CrossRefGoogle ScholarPubMed
Shafi, M., Zhou, Y., Quintana, J., Chow, C., Fuster, J., & Bodner, M. (2007). Variability in neuronal activity in primate cortex during working memory tasks. Neuroscience, 146(3), 10821108. https://doi.org/10/bcz5k9CrossRefGoogle ScholarPubMed
Slana Ozimič, A., & Repovš, G. (2020). Visual working memory capacity is limited by two systems that change across lifespan. Journal of Memory and Language, 112, 104090. https://doi.org/10/ggjfhbCrossRefGoogle Scholar
Starc, M., Anticevic, A., & Repovš, G. (2017). Fine-grained versus categorical: Pupil size differentiates between strategies for spatial working memory performance. Psychophysiology, 54(5), 724735. https://doi.org/10.1111/psyp.12828CrossRefGoogle ScholarPubMed
Stokes, M. G. (2015). “Activity-silent” working memory in prefrontal cortex: A dynamic coding framework. Trends in Cognitive Sciences, 19(7), 394405. https://doi.org/10.1016/j.tics.2015.05.004CrossRefGoogle ScholarPubMed
Sweeney, J. A., Mintun, M. A., Kwee, S., Wiseman, M. B., Brown, D. L., Rosenberg, D. R., & Carl, J. R. (1996). Positron emission tomography study of voluntary saccadic eye movements and spatial working memory. Journal of Neurophysiology, 75(1), 454468. https://doi.org/10.1152/jn.1996.75.1.454CrossRefGoogle ScholarPubMed
Vallar, G., & Baddeley, A. D. (1984). Fractionation of working memory: Neuropsychological evidence for a phonological short-term store. Journal of Verbal Learning and Verbal Behavior, 23(2), 151161. https://doi.org/10.1016/S0022-5371(84)90104-XCrossRefGoogle Scholar
Van Dyke, J. A., & Johns, C. L. (2012). Memory interference as a determinant of language comprehension: Interference in comprehension. Language and Linguistics Compass, 6(4), 193211. https://doi.org/10.1002/lnc3.330CrossRefGoogle ScholarPubMed
Vogel, E. K., & Machizawa, M. G. (2004). Neural activity predicts individual differences in visual working memory capacity. Nature, 428(6984), 748751. https://doi.org/10/dpb3j5CrossRefGoogle ScholarPubMed
Walenski, M., Europa, E., Caplan, D., & Thompson, C. K. (2019). Neural networks for sentence comprehension and production: An ALE‐based meta‐analysis of neuroimaging studies. Human Brain Mapping, 40(8), 22752304. https://doi.org/10.1002/hbm.24523CrossRefGoogle ScholarPubMed
Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C., & Wager, T. D. (2011). Large-scale automated synthesis of human functional neuroimaging data. Nature Methods, 8(8), 665670. https://doi.org/10.1038/nmeth.1635CrossRefGoogle ScholarPubMed
Zheng, Z. Z., Munhall, K. G., & Johnsrude, I. S. (2010). Functional overlap between regions involved in speech perception and in monitoring one’s own voice during speech production. Journal of Cognitive Neuroscience, 22(8), 17701781. https://doi.org/10.1162/jocn.2009.21324CrossRefGoogle ScholarPubMed

References

Ahissar, E., Nagarajan, S., Ahissar, M., Protopapas, A., Mahncke, H., & Merzenich, M. M. (2001). Speech comprehension is correlated with temporal response patterns recorded from auditory cortex. Proceedings of the National Academy of Sciences, 98(23), 1336713372.CrossRefGoogle ScholarPubMed
Atkinson, R. C. & Shiffrin, R. M. (1968). Human memory: A proposed system and its control processes. In Spence, K. W. (Ed.), The psychology of learning and motivation: Advances in research and theory (Vol. 2, pp. 89195). Academic Press.Google Scholar
Baddeley, A. D. (1966a). Influence of acoustic and semantic similarity on long-term memory for word sequences. Quarterly Journal of Experimental Psychology, 18, 302309.CrossRefGoogle ScholarPubMed
Baddeley, A. D. (1966b). Short-term memory for word sequences as a function of acoustic semantic and formal similarity. Quarterly Journal of Experimental Psychology, 18, 362365.CrossRefGoogle ScholarPubMed
Baddeley, A. D. (1968). How does acoustic similarity influence short-term memory? The Quarterly Journal of Experimental Psychology, 20, 249264.CrossRefGoogle ScholarPubMed
Baddeley, A. D. (1986). Working Memory. Oxford University Press.Google ScholarPubMed
Baddeley, A. D. (2000). The episodic buffer: A new component of working memory? Trends in Cognitive Sciences, 4, 417423.CrossRefGoogle ScholarPubMed
Baddeley, A. D., Allen, R. J., & Hitch, G. J. (2011). Binding in visual working memory: The role of the episodic buffer. Neuropsychologia, 49, 13931400.CrossRefGoogle ScholarPubMed
Baddeley, A., Eldridge, M., & Lewis, V. (1981). The role of subvocalization in reading. Quarterly Journal of Experimental Psychology Section a: Human Experimental Psychology, 33, 439454.CrossRefGoogle Scholar
Baddeley, A. D., Gathercole, S., & Papagno, C. (1998). The phonological loop as a language learning device. Psychological Review, 105, 158173.CrossRefGoogle ScholarPubMed
Baddeley, A. D. & Hitch, G. J. (1974). Working memory. In Bower, G. H. (Ed.), The psychology of learning and motivation: Advances in research and theory (Vol. VIII, pp. 4790). Academic Press.Google Scholar
Baddeley, A. D., Hitch, G. J., & Allen, R. J. (2009). Working memory and binding in sentence recall. Journal of Memory and Language, 61, 438456.CrossRefGoogle Scholar
Baddeley, A. D., Lewis, V., & Vallar, G. (1984). Exploring the articulatory loop. Quarterly Journal of Experimental Psychology Section a: Human Experimental Psychology, 36, 233252.CrossRefGoogle Scholar
Baddeley, A. D., Papagno, C., & Vallar, G. (1988). When long-term learning depends on short-term storage. Journal of Memory and Language, 27, 586595.CrossRefGoogle Scholar
Baddeley, A. D., Thomson, N., & Buchanan, M. (1975). Word length and structure of short-term-memory. Journal of Verbal Learning and Verbal Behavior, 14, 575589.CrossRefGoogle Scholar
Baddeley, A. D., & Warrington, E. K. (1970). Amnesia and distinction between long-and short-term memory. Journal of Verbal Learning and Verbal Behavior, 9, 176189.CrossRefGoogle Scholar
Besner, D., Davies, J., & Daniels, S. (1981). Reading for meaning: The effects of concurrent articulation. Quarterly Journal of Experimental Psychology Section a: Human Experimental Psychology, 33, 415437.CrossRefGoogle Scholar
Boomer, D. S. & Laver, J. D. M. (1968). Slips of the tongue. British Journal of Disorders of Communication, 3, 212.CrossRefGoogle ScholarPubMed
Botvinick, M. M. & Plaut, D. C. (2006). Short-term memory for serial order: A recurrent neural network model. Psychological Review, 113(2), 201.CrossRefGoogle ScholarPubMed
Brener, R. (1940). An experimental investigation of memory span. Journal of Experimental Psychology, 26, 467482.CrossRefGoogle Scholar
Broadbent, D. E. (1958). Perception and Communication. Pergamon Press.CrossRefGoogle Scholar
Brown, G. D. A., Neath, I., & Chater, N. (2007). A temporal ratio model of memory. Psychological Review, 114, 539576.CrossRefGoogle Scholar
Brown, G. D. A., Preece, T., & Hulme, C. (2000). Oscillator-based memory for serial order. Psychological Review, 107, 127181.CrossRefGoogle ScholarPubMed
Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P.,…& Amodei, D. (2020). Language models are few-shot learners. arXiv preprint arXiv:2005.14165.Google Scholar
Burgess, N,. & Hitch, G. J. (1992). Towards a network model of the articulatory loop. Journal of Memory and Language, 31, 429460.CrossRefGoogle Scholar
Burgess, N,. & Hitch, G. (1999). Memory for serial order: A network model of the phonological loop and its timing. Psychological Review, 106, 551581.CrossRefGoogle Scholar
Burgess, N., & Hitch, G. J. (2006). A revised model of short-term memory and long-term learning of verbal sequences. Journal of Memory and Language 55, 627652.CrossRefGoogle Scholar
Conrad, R. (1964). Acoustic confusions in immediate memory. British Journal of Psychology, 55, 7584.CrossRefGoogle Scholar
Cowan, N. (1995). Attention and memory: An integrated framework. Oxford Psychology Series, no. 26. Oxford University Press.Google Scholar
Craik, F. I. M., & Lockhart, R. S. (1972). Levels of processing: A framework for memory research. Journal of Verbal Learning and Verbal Behavior, 11, 671684.CrossRefGoogle Scholar
Crannell, C. W., & Parrish, J. M. (1957). A comparison of immediate memory span for digits, letters, and words. The Journal of Psychology, 44, 319327.CrossRefGoogle Scholar
Crowder, R. G. (1982). The demise of short-term-memory. Acta Psychologica, 50, 291323.CrossRefGoogle ScholarPubMed
Daneman, M., & Carpenter, P. A. (1980). Individual-differences in working memory and reading. Journal of Verbal Learning and Verbal Behavior, 19, 450466.CrossRefGoogle Scholar
Dell, G. S., & Reich, P. A. (1981). Stages in sentence production: An analysis of speech error data. Journal of Verbal Learning and Verbal Behavior, 20(6), 611629.CrossRefGoogle Scholar
Ding, N., & Simon, J. Z. (2014). Cortical entrainment to continuous speech: functional roles and interpretations. Frontiers in Human Neuroscience, 8, 311.CrossRefGoogle ScholarPubMed
Drewnowski, A., & Murdock, B. B. Jr. (1980). The role of auditory features in memory span for words. Journal of Experimental Psychology: Learning, Memory, and Cognition, 6, 319332.Google ScholarPubMed
Ebbinghaus, H. (1885/1964). Memory: A contribution to experimental psychology. Dover.Google Scholar
Ellis, A. W. (1980). Errors in speech and short-term-memory: The effects of phonemic similarity and syllable position. Journal of Verbal Learning and Verbal Behavior, 19, 624634.CrossRefGoogle Scholar
Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14, 179211.CrossRefGoogle Scholar
Farrell, S. (2006). Mixed-list phonological similarity effects in delayed serial recall. Journal of Memory and Language, 55, 587600.CrossRefGoogle Scholar
Farrell, S., Hurlstone, M. J., & Lewandowsky, S. (2013). Sequential dependencies in recall of sequences: Filling in the blanks. Memory & Cognition, 41, 938952.CrossRefGoogle Scholar
Farrell, S. & Lewandowsky, S. (2002). An endogenous distributed model of ordering in serial recall. Psychonomic Bulletin & Review, 9, 5979.CrossRefGoogle ScholarPubMed
Farrell, S., & Lewandowsky, S. (2004). Modelling transposition latencies: Constraints for theories of serial order memory. Journal of Memory and Language, 51, 115135.CrossRefGoogle Scholar
Friedmann, N., & Gvion, A. (2001). Sentence comprehension and working memory limitation in aphasia: A dissociation between semantic-syntactic and phonological reactivation. Brain and Language, 86 (1), 2339.CrossRefGoogle Scholar
Gathercole, S. E., & Baddeley, A. D. (1989). Evaluation of the role of phonological STM in the development of vocabulary in children: A longitudinal study. Journal of Memory and Language, 28, 200213.CrossRefGoogle Scholar
Gathercole, S. E., Frankish, C. R., Pickering, S. J., & Peaker, S. (1999). Phonotactic influences on short-term memory. Journal of Experimental Psychology-Learning Memory and Cognition, 25, 8495.CrossRefGoogle ScholarPubMed
Gathercole, S. E., Willis, C. S., Emslie, H., & Baddeley, A. D. (1992). Phonological memory and vocabulary development during the early school years: A longitudinal study. Developmental Psychology, 28, 887898.CrossRefGoogle Scholar
Glanzer, M., & Cunitz, A. R. (1966). Two storage mechanisms in free recall. Journal of Verbal Learning and Verbal Behavior, 5, 351360.CrossRefGoogle Scholar
Glasspool, D. W. (2005). Modelling serial order in behaviour: Evidence from performance slips. In Houghton, G. (Ed.), Connectionist models in cognitive psychology (pp. 241270). Psychology Press.Google Scholar
Graf Estes, K., Evans, J. L., & Else-Quest, N. M. (2004). Differences in the nonword repetition performance of children with and without specific language impairment: A meta-analysis. Journal of Speech and Hearing Research, 50, 177195.CrossRefGoogle Scholar
Gregg, V. H., Freedman, C. M., & Smith, D. K. (1989). Word-frequency, articulatory suppression and memory span. British Journal of Psychology, 80, 363374.CrossRefGoogle Scholar
Grossberg, S. (1978a). A theory of human memory: Self-organization and performance of sensory-motor codes, maps, and plans. In Rosen, R. & Snell, (Eds.), Progress in theoretical biology (Vol. 5, pp. 233374). New York: Academic Press.CrossRefGoogle Scholar
Grossberg, S. (1978b). Behavioral contrast in short-term memory: Serial binary memory models or parallel continuous memory models? Journal of Mathematical Psychology, 17, 199219.CrossRefGoogle Scholar
Grossberg, S., & Pearson, L. R. (2008). Laminar cortical dynamics of cognitive and motor working memory, sequence learning and performance: Towards a unified theory of how the cerebral cortex works. Psychological Review, 115, 677732.CrossRefGoogle ScholarPubMed
Gupta, P. & MacWhinney, B. (1997). Vocabulary acquisition and verbal short-term memory: Computational and neural bases. Brain and Language, 59(2), 267333.CrossRefGoogle ScholarPubMed
Gvion, A. & Friedmann, N. (2012). Does phonological working memory impairment affect sentence comprehension? A study of conduction aphasia. Aphasiology, 26 (3-4), 494535.CrossRefGoogle Scholar
Hartley, T. (2002). Syllabic phase: A bottom-up representation of the temporal structure of speech. In Bullinaria, J. & Lowe, W. (Eds.), Connectionist models of cognition and perception (pp. 277288). World Scientific Publishing Co.CrossRefGoogle Scholar
Hartley, T., & Houghton, G. (1996). A linguistically constrained model of short-term memory for nonwords. Journal of Memory and Language, 35, 131.CrossRefGoogle Scholar
Hartley, T., Hurlstone, M. J., & Hitch, G. J. (2016). Effects of rhythm on memory for spoken sequences: A model and tests of its stimulus-driven mechanism. Cognitive Psychology, 87, 135178.CrossRefGoogle Scholar
Henson, R. N. A. (1996). Short-term memory for serial order (Doctoral dissertation, University of Cambridge).Google Scholar
Henson, R. N. A. (1998). Short-term memory for serial order: The start-end model. Cognitive Psychology, 36, 73137.CrossRefGoogle ScholarPubMed
Henson, R. N. A., Norris, D. G., Page, M. P. A., & Baddeley, A. D. (1996). Unchained memory: Error patterns rule out chaining models of immediate serial recall. Quarterly Journal of Experimental Psychology, 49A, 80115.CrossRefGoogle Scholar
Hitch, G. J. (1978). Role of short-term working memory in mental arithmetic. Cognitive Psychology, 10, 302323.CrossRefGoogle Scholar
Hitch, G. J., Burgess, N., Towse, J. N., & Culpin, V. (1996). Temporal grouping effects in immediate recall: A working memory analysis. Quarterly Journal of Experimental Psychology, 49A, 116139.CrossRefGoogle Scholar
Hochreiter, S. & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 17351780.CrossRefGoogle ScholarPubMed
Houghton, G. (1990). The problem of serial order: A neural network model of sequence learning and recall. In Dale, R., Mellish, C., & Zock, M., (Eds.), Current research in natural language generation (pp. 287319). Academic Press.Google Scholar
Houghton, G., & Hartley, T. (1995). Parallel models of serial behavior: Lashley revisited. Psyche, 2(25), 125.Google Scholar
Hulme, C., Maughan, S., & Brown, G. D. A. (1991). Memory for familiar and unfamiliar words: Evidence for a long-term-memory contribution to short-term-memory span. Journal of Memory and Language, 30, 685701.CrossRefGoogle Scholar
Hurlstone, M. J. (2021). Serial recall. In Kahana, M. J. & Wagner, A. D. (Eds.), The Oxford handbook of human memory. Oxford University Press.Google Scholar
Hurlstone, M. J., Hitch, G. J., & Baddeley, A. D. (2014). Memory for serial order across domains: An overview of the literature and directions for future research. Psychological Bulletin, 140, 339373.CrossRefGoogle ScholarPubMed
Jalbert, A., Neath, I., Bireta, T. J., & Surprenant, A. M. (2011). When does length cause the word length effect? Journal of Experimental Psychology: Learning Memory and Cognition, 37, 338353.Google ScholarPubMed
Jordan, M. I. (1986). Serial order: A parallel distributed processing approach. Finding structure in time. Cognitive Science, 14, 179211.Google Scholar
Kahana, M. J. (2012). Foundations of human memory. Oxford University Press.Google Scholar
Kane, M. J., Hambrick, D. Z., Tuholski, S. W., Wilhelm, O., Payne, T. W., & Engle, R. W. (2004). The generality of working memory capacity: A latent-variable approach to verbal and visuospatial memory span and reasoning. Journal of Experimental Psychology: General, 133, 189217.CrossRefGoogle ScholarPubMed
Kowialiewski, B., Gorin, S., & Majerus, S. (2021). Semantic knowledge constrains the processing of serial order information in Working Memory. Journal of Experimental Psychology: Learning, Memory and Cognition, 12, 19581970.Google Scholar
Lewandowsky, S., & Farrell, S. (2008). Short-term memory: New data and a model. The Psychology of Learning and Motivation, 49, 148.CrossRefGoogle Scholar
Lewandowsky, S., & Murdock, B. B. (1989). Memory for serial order. Psychological Review, 96, 2557.CrossRefGoogle Scholar