Skip to main content Accessibility help
×
Hostname: page-component-7d684dbfc8-dh8xm Total loading time: 0 Render date: 2023-09-30T20:55:18.672Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

25 - Moral Reasoning: A Network Neuroscience Perspective

from Part III - Intentionality-Based Forms of the Imagination

Published online by Cambridge University Press:  26 May 2020

Anna Abraham
Affiliation:
University of Georgia
Get access

Summary

Through imagining possible actions and considering their consequences, we are able to reason about the morality of behavior – judging whether an action is morally right or wrong. Neuroscience research indicates that moral reasoning depends on a complex, broadly distributed network of brain regions that interact in a both cooperative and competitive manner. Understanding the underlying neurobiology that governs how these regions dynamically interact to produce patterns of behavior is therefore of interest to the field. Currently, prominent theories suggest that moral judgments (consequentialist or deontological) are the product of two distinct cognitive systems (i.e. a dual-process framework). Network neuroscience, an emerging field that measures and interprets brain activity through the framework of modern network science, is positioned to expand our understanding of this dual-process framework by examining how topological properties of networks influence consequentialist and deontological reasoning, and how these two processing systems interact in order to imagine hypothetical scenarios during complex deontological reasoning tasks. In this chapter, we review evidence from neuroscience that bears on our understanding of the dual-process moral reasoning framework and advance a network neuroscience perspective on the neurobiological substrates that underlie it.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barbey, A. K. (2018). Network Neuroscience Theory of Human Intelligence. Trends in Cognitive Sciences, 22, 820.
Barbey, A. K., Colom, R., Paul, E. J., and Grafman, J. (2014). Architecture of Fluid Intelligence and Working Memory Revealed by Lesion Mapping. Brain Structure & Function, 219(2), 485494.
Bassett, D. S., and Sporns, O. (2017). Network Neuroscience. Nature Neuroscience, 20(3), 353364.
Benoit, R. G., Szpunar, K. K., and Schacter, D. L. (2014). Ventromedial Prefrontal Cortex Supports Affective Future Simulation by Integrating Distributed Knowledge. Proceedings of the National Academy of Sciences, 111(46), 1655016555.
Betzel, R. F., Gu, S., Medaglia, J. D., Pasqualetti, F., and Bassett, D. S. (2016). Optimally Controlling the Human Connectome: The Role of Network Topology. Scientific Reports, 6, 30770.
Braun, U., Schäfer, A., Walter, H., et al. (2015). Dynamic Reconfiguration of Frontal Brain Networks during Executive Cognition in Humans. Proceedings of the National Academy of Sciences of the United States of America, 112(37), 1167811683.
Bressler, S. L., and Menon, V. (2010). Large-Scale Brain Networks in Cognition: Emerging Methods and Principles. Trends in Cognitive Sciences, 14(6), 277290.
Bullmore, E., and Sporns, O. (2012). The Economy of Brain Network Organization. Nature Reviews Neuroscience, 13, 336349.
Carmichael, S. T., and Price, J. L. (1995). Limbic Connections of the Orbital and Medial Prefrontal Cortex in Macaque Monkeys. The Journal of Comparative Neurology, 363(4), 615641.
Chiong, W., Wilson, S. M., D’Esposito, M., et al. (2013). The Salience Network Causally Influences Default Mode Network Activity during Moral Reasoning. Brain, 136(6), 19291941.
Chuang, C.-C., and Sun, C.-W. (2014). Gender-Related Effects of Prefrontal Cortex Connectivity: A Resting-State Functional Optical Tomography Study. Biomedical Optics Express, 5(8), 25032516.
Ciaramelli, E., Muccioli, M., Làdavas, E., and di Pellegrino, G. (2007). Selective Deficit in Personal Moral Judgment Following Damage to Ventromedial Prefrontal Cortex. Social Cognitive and Affective Neuroscience, 2(2), 8492.
Cima, M., Tonnaer, F., and Hauser, M. D. (2010). Psychopaths Know Right from Wrong but Don’t Care. Social Cognitive and Affective Neuroscience, 5(1), 5967.
Cohen, , Jonathan, D. (2005). The Vulcanization of the Human Brain: A Neural Perspective on Interactions between Cognition and Emotion. Journal of Economic Perspectives, 19(4), 324.
Cole, M. W., Bassett, D. S., Power, J. D., Braver, T. S., and Petersen, S. E. (2014). Intrinsic and Task-Evoked Network Architectures of the Human Brain. Neuron, 83(1), 238251.
Cole, M. W., Ito, T., Bassett, D. S., and Schultz, D. H. (2016). Activity Flow over Resting-State Networks Shapes Cognitive Task Activations. Nature Neuroscience, 19(12), 17181726.
Cole, M. W., Yarkoni, T., Repovs, G., Anticevic, A., and Braver, T. S. (2012). Global Connectivity of Prefrontal Cortex Predicts Cognitive Control and Intelligence. Journal of Neuroscience, 32(26), 89888999.
Crockett, M. J. (2013). Models of Morality. Trends in Cognitive Sciences, 17(8), 363366.
Cushman, F. (2013). Action, Outcome, and Value: A Dual-System Framework for Morality. Personality and Social Psychology Review: An Official Journal of the Society for Personality and Social Psychology, Inc, 17(3), 273292.
Daw, N. D., Gershman, S. J., Seymour, B., Dayan, P., and Dolan, R. J. (2011). Model-Based Influences on Humans’ Choices and Striatal Prediction Errors. Neuron, 69(6), 12041215.
Dayan, P. (2012). How to Set the Switches on this Thing. Current Opinion in Neurobiology, 22(6), 10681074.
Dayan, P., and Berridge, K. C. (2014). Model-Based and Model-Free Pavlovian Reward Learning: Revaluation, Revision and Revelation. Cognitive, Affective and Behavioral Neuroscience, 14(2), 473492.
Domenech, P., Redouté, J., Koechlin, E., and Dreher, J.-C. (2018). The Neuro-Computational Architecture of Value-Based Selection in the Human Brain. Cerebral Cortex, 28(2), 585601.
Dosenbach, N. U. F., Fair, D. A., Cohen, A. L., Schlaggar, B. L., and Petersen, S. E. (2008). A Dual-Networks Architecture of Top-Down Control. Trends in Cognitive Sciences, 12(3), 99105.
Economides, M., Kurth-Nelson, Z., Lübbert, A., Guitart-Masip, M., and Dolan, R. J. (2015). Model-Based Reasoning in Humans Becomes Automatic with Training. PLOS Computational Biology, 11(9), e1004463.
Evans, J. S., (2008). Dual-Processing Accounts of Reasoning, Judgment, and Social Cognition. The Annual Review of Psychology, 59, 255278.
Everitt, B. J., Morris, K. A., O’Brien, A., and Robbins, T. W. (1991). The Basolateral Amygdala-Ventral Striatal System and Conditioned Place Preference: Further Evidence of Limbic-Striatal Interactions Underlying Reward-Related Processes. Neuroscience, 42(1), 118.
Friesdorf, R., Conway, P., and Gawronski, B. (2015). Gender Differences in Responses to Moral Dilemmas: A Process Dissociation Analysis. Personality & Social Psychology Bulletin, 41(5), 696713.
Gallos, L. K., Makse, H. A., and Sigman, M. (2012). A Small World of Weak Ties Provides Optimal Global Integration of Self-Similar Modules in Functional Brain Networks. Proceedings of the National Academy of Sciences of the United States of America, 109(8), 28252830.
Garrigan, B., Adlam, A. L. R., and Langdon, P. E. (2016). The Neural Correlates of Moral Decision-Making: A Systematic Review and Meta-Analysis of Moral Evaluations and Response Decision Judgements. Brain and Cognition, 108, 8897.
Gläscher, J., Adolphs, R., Damasio, H., et al. (2012). Lesion Mapping of Cognitive Control and Value-Based Decision Making in the Prefrontal Cortex. Proceedings of the National Academy of Sciences, 109(36), 1468114686.
Gläscher, J., Daw, N., Dayan, P., and O’Doherty, J. P. (2010). States versus Rewards: Dissociable Neural Prediction Error Signals Underlying Model-Based and Model-Free Reinforcement Learning. Neuron, 66(4), 585595.
Gray, R. T., and Robinson, P. A. (2013). Stability Constraints on Large-Scale Structural Brain Networks. Frontiers in Computational Neuroscience, 7.
Greene, J. D. (2017). The Rat-a-Gorical Imperative: Moral Intuition and the Limits of Affective Learning. Cognition, 167, 6677.
Greene, J. D., Sommerville, R. B., Nystrom, L. E., Darley, J. M., and Cohen, J. D. (2001). An fMRI Investigation of Emotional Engagement in Moral Judgment. Science, 293(5537), 21052108.
Gu, S., Pasqualetti, F., Cieslak, M., et al. (2015). Controllability of Structural Brain Networks. Nature Communications, 6(1), 110.
Hare, T. A., Camerer, C. F., and Rangel, A. (2009). Self-Control in Decision-Making Involves Modulation of the vmPFC Valuation System. Science (New York, N.Y.), 324(5927), 646648.
Harenski, C. L., Antonenko, O., Shane, M. S., and Kiehl, K. A. (2010). A Functional Imaging Investigation of Moral Deliberation and Moral Intuition. NeuroImage, 49(3), 27072716.
Jeurissen, D., Sack, A. T., Roebroeck, A., Russ, B. E., and Pascual-Leone, A. (2014). TMS Affects Moral Judgment, Showing the Role of DLPFC and TPJ in Cognitive and Emotional Processing. Frontiers in Neuroscience, 8.
Kédia, G., Berthoz, S., Wessa, M., Hilton, D., and Martinot, J.-L. (2008). An Agent Harms a Victim: A Functional Magnetic Resonance Imaging Study on Specific Moral Emotions. Journal of Cognitive Neuroscience, 20(10), 17881798.
Kerr, D. L., McLaren, D. G., Mathy, R. M., and Nitschke, J. B. (2012). Controllability Modulates the Anticipatory Response in the Human Ventromedial Prefrontal Cortex. Frontiers in Psychology, 3, 557.
Koch, K., Pauly, K., Kellermann, T., et al. (2007). Gender Differences in the Cognitive Control of Emotion: An fMRI Study. Neuropsychologia, 45(12), 27442754.
Koenigs, M. (2012). The Role of Prefrontal Cortex in Psychopathy. Reviews in the Neurosciences, 23(3), 253.
Koenigs, M., Kruepke, M., Zeier, J., and Newman, J. P. (2012). Utilitarian Moral Judgment in Psychopathy. Social Cognitive and Affective Neuroscience, 7(6), 708714.
Koenigs, M., Young, L., Adolphs, R., et al. (2007). Damage to the Prefrontal Cortex Increases Utilitarian Moral Judgements. Nature, 446(7138), 908911.
Kogler, L., Müller, V. I., Seidel, E.-M., et al. (2016). Sex Differences in the Functional Connectivity of the Amygdalae in Association with Cortisol. NeuroImage, 134, 410423.
Levy, D. J., and Glimcher, P. W. (2012). The Root of All Value: A Neural Common Currency for Choice. Current Opinion in Neurobiology, 22(6), 10271038.
Medaglia, J. D., Satterthwaite, T. D., Kelkar, A., et al. (2018). Brain State Expression and Transitions Are Related to Complex Executive Cognition in Normative Neurodevelopment. NeuroImage, 166, 293306.
Mendez, M. F., and Shapira, J. S. (2009). Altered Emotional Morality in Frontotemporal Dementia. Cognitive Neuropsychiatry, 14(3), 165179.
Meunier, D., Lambiotte, R., and Bullmore, E. T. (2010). Modular and Hierarchically Modular Organization of Brain Networks. Frontiers in Neuroscience, 4, 200.
Moll, J., de Oliveira-Souza, R., Zahn, R., and Grafman, J. (2008). The Cognitive Neuroscience of Moral Emotions. In Sinnott-Armstrong, W (ed.), Moral Psychology, Vol 3. The Neuroscience of Morality: Emotion, Brain Disorders, and Development. Cambridge, MA: MIT Press, 117.
Morgane, P. J., Galler, J. R., and Mokler, D. J. (2005). A Review of Systems and Networks of the Limbic Forebrain/Limbic Midbrain. Progress in Neurobiology, 75(2), 143160.
Motzkin, J. C., Newman, J. P., Kiehl, K. A., and Koenigs, M. (2011). Reduced Prefrontal Connectivity in Psychopathy. Journal of Neuroscience, 31(48), 1734817357.
Østby, Y., Walhovd, K., Tamnes, C., et al. (2012). Mental Time Travel and Default-Mode Network Functional Connectivity in the Developing Brain. Proceedings of the National Academy of Sciences of the United States of America, 109, 1680016804.
Pascual, L., Rodrigues, P., and Gallardo-Pujol, D. (2013). How Does Morality Work in the Brain? A Functional and Structural Perspective of Moral Behavior. Frontiers in Integrative Neuroscience, 7, 65.
Pessoa, L. (2008). On the Relationship between Emotion and Cognition. Nature Reviews Neuroscience, 9(2), 148158.
Polanía, R., Moisa, M., Opitz, A., Grueschow, M., and Ruff, C. C. (2015). The Precision of Value-Based Choices Depends Causally on Fronto-Parietal Phase Coupling. Nature Communications, 6, 8090.
Power, J. D., Cohen, A. L., Nelson, S. M., et al. (2011). Functional Network Organization of the Human Brain. Neuron, 72(4), 665678.
Raine, A., and Yang, Y. (2006). Neural Foundations to Moral Reasoning and Antisocial Behavior. Social Cognitive and Affective Neuroscience, 1(3), 203213.
Rajmohan, V., and Mohandas, E. (2007). The Limbic System. Indian Journal of Psychiatry, 49(2), 132139.
Rangel, A., and Hare, T. (2010). Neural Computations Associated with Goal-Directed Choice. Current Opinion in Neurobiology, 20(2), 262270.
Roy, M., Shohamy, D., and Wager, T. (2012). Ventromedial Prefrontal-Subcortical Systems and the Generation of Affective Meaning. Trends in Cognitive Sciences, 16(3), 147–156.
Schneider, K., Pauly, K. D., Gossen, A., et al. (2013). Neural Correlates of Moral Reasoning in Autism Spectrum Disorder. Social Cognitive and Affective Neuroscience, 8(6), 702710.
Sescousse, G., Caldú, X., Segura, B., and Dreher, J.-C. (2013). Processing of Primary and Secondary Rewards: A Quantitative Meta-Analysis and Review of Human Functional Neuroimaging Studies. Neuroscience and Biobehavioral Reviews, 37(4).
Shenhav, A., and Greene, J. D. (2014). Integrative Moral Judgment: Dissociating the Roles of the Amygdala and Ventromedial Prefrontal Cortex. Journal of Neuroscience, 34(13), 47414749.
Shine, J. M., Bissett, P. G., Bell, P.T., et al. (2016). The Dynamics of Functional Brain Networks: Integrated Network States during Cognitive Task Performance. Neuron, 92(2), 544554.
Sporns, O., Tononi, G., and Edelman, G. M. (2000). Theoretical Neuroanatomy: Relating Anatomical and Functional Connectivity in Graphs and Cortical Connection Matrices. Cerebral Cortex, 10(2), 127141.
Spreng, R. N., Stevens, W. D., Chamberlain, J. P., Gilmore, A. W., and Schacter, D. L. (2010). Default Network Activity, Coupled with the Frontoparietal Control Network, Supports Goal-Directed Cognition. NeuroImage, 53(1), 303317.
Thomson, J. J. (1985). The Trolley Problem. The Yale Law Journal, 94(6), 13951415.
Tomasi, D., and Volkow, N. D. (2012). Gender Differences in Brain Functional Connectivity Density. Human Brain Mapping, 33(4), 849860.
van den Heuvel, M. P., Stam, C. J., Kahn, R. S., and Hulshoff Pol, H. E. (2009). Efficiency of Functional Brain Networks and Intellectual Performance. Journal of Neuroscience, 29(23), 76197624.
Vincent, J. L., Kahn, I., Snyder, A. Z., Raichle, M. E., and Buckner, R. L. (2008). Evidence for a Frontoparietal Control System Revealed by Intrinsic Functional Connectivity. Journal of Neurophysiology, 100(6), 33283342.
Welborn, B. L., Papademetris, X., Reis, D. L., et al. (2009). Variation in Orbitofrontal Cortex Volume: Relation to Sex, Emotion Regulation and Affect. Social Cognitive and Affective Neuroscience, 4(4), 328339.
Wunderlich, K., Dayan, P., and Dolan, R. J. (2012). Mapping Value Based Planning and Extensively Trained Choice in the Human Brain. Nature Neuroscience, 15(5), 786791.
Yeo, B. T. T., Krienen, F. M., Eickhoff, S. B., et al. (2015). Functional Specialization and Flexibility in Human Association Cortex. Cerebral Cortex (New York, NY), 25(10), 36543672.
Yeo, B. T. T., Krienen, F. M., Sepulcre, J., et al. (2011). The Organization of the Human Cerebral Cortex Estimated by Intrinsic Functional Connectivity. Journal of Neurophysiology, 106(3), 11251165.
Young, L., and Dungan, J. (2012). Where in the Brain is Morality? Everywhere and Maybe Nowhere. Social Neuroscience, 7(1), 110.
Young, L., and Saxe, R. (2008). The Neural Basis of Belief Encoding and Integration in Moral Judgment. NeuroImage, 40(4), 19121920.

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×