Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-15T14:50:59.369Z Has data issue: false hasContentIssue false

Section 2 - Medical Conditions and Symptoms

from Part II - Medical Topics

Published online by Cambridge University Press:  05 June 2019

Carrie D. Llewellyn
Affiliation:
University of Sussex
Susan Ayers
Affiliation:
City, University of London
Chris McManus
Affiliation:
University College London
Stanton Newman
Affiliation:
City, University of London
Keith J. Petrie
Affiliation:
University of Auckland
Tracey A. Revenson
Affiliation:
City University of New York
John Weinman
Affiliation:
King's College London
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Adler, N. E., David, H. P., Major, B. N., et al. (1990). Psychological responses after abortion. Science, 248, 4144.CrossRefGoogle ScholarPubMed
Beutel, M., Deckardt, R., von Rad, M., et al. (1995). Grief and depression after miscarriage: their separation, antecedents and course. Psychosomatic Medicine, 57, 517526.Google Scholar
Bradshaw, Z. & Slade, P. (2003). The effects of induced abortion on emotional experiences and relationships: a critical review of the literature. Clinical Psychology Review, 23, 929958.CrossRefGoogle ScholarPubMed
Broen, A. M., Moum, T., Brodtker, A. S. & Ekeberg, O. (2005). Reasons for induced abortions and their relation to women’s emotional distress: a prospective two year follow up study. General Hospital Psychiatry, 27, 3643.CrossRefGoogle ScholarPubMed
Geller, P. A., Kerns, D. & Klier, M. C. (2004). Anxiety following miscarriage and the subsequent pregnancy: a review of the literature and furture directions. Journal of Psychosomatic Research, 56, 3545.Google Scholar
Gilchrist, A. C., Hannaford, P. S., Frank, P. & Kay, C. R. (1995). Termination of pregnancy and psychiatric morbidity. British Journal of Psychiatry, 167, 243248.CrossRefGoogle ScholarPubMed
Grimes, D. A. & Stuart, G. (2010). Abortion jabberwocky: the need for better terminology. Contraception, 81, 9396.Google Scholar
Lazarus, R. & Folkman, S. (1984). Stress, Appraisal, and Coping. New York: Springer Verlag.Google Scholar
Lee, C. & Rowlands, I. J. (2015). When mixed methods produce mixed results: integrating disparate findings about miscarriage and women’s well-being. British Journal of Health Psychology, 20, 3644.CrossRefGoogle Scholar
Lok, I. H. & Neugebauer, R. (2007). Psychological morbidity following miscarriage. Best Practice & Research Clinical Obstetrics & Gynaecology, 21, 229247.Google Scholar
Madden, M. E. (1994). The variety of emotional reactions to miscarriage. Women and Health, 12, 85104.CrossRefGoogle Scholar
Maker, C. & Ogden, J. (2003). The miscarriage experience: More then just a trigger to psychological morbidity? Psychology & Health, 18, 403415.CrossRefGoogle Scholar
Miller, W. B., Pasta, D. J., & Dean, C. L. (1998). Testing the model of the psychological consequences of abortion. In Beckman, L. J. & Harvey, S. M. (eds), The New Civil War (pp. 235267). Washington, DC: American Psychological Association.Google Scholar
Munk-Olsen, T., Munk Laursen, T., Pedersen, C. B., Lidegaard, O. & Mortensen, P. B. (2011). Induced first-trimester abortion and risk of mental disorder. New England Journal of Medicine, 364, 332339.CrossRefGoogle ScholarPubMed
Murphy, F. A., Lipp, A. & Powles, D. L. (2012). Follow-up for improving psychological well being for women after a miscarriage. Cochrane Database of Systematic Reviews, 3, CD008679Google ScholarPubMed
National Collaborating Centre for Mental Health (NCCMH) (2011). Academy of Medical Royal Colleges Induced Abortion and Mental Health, 2011: A Systematic Review of the Mental Health Outcomes of Induced Abortions, Including Their Prevalence and Associated factors. London: NCCMHGoogle Scholar
Nikčević, A. V., Tunkel, S. A. & Nicolaides, K. H. (1998). Psychological outcomes following missed abortions and provision of follow-up care. Ultrasound in Obstetrics & Gynaecology, 11, 123128.Google Scholar
Raymond, E. G. & Grimes, D. A. (2012). The comparative safety of legal induced abortion and childbirth in the United States. Obstetrics & Gynecology, 119, 215219.Google Scholar
RCOG (2006). Management of Early Pregnancy Loss. London: Royal College of Obstetricians and Gynaecologists.Google Scholar
Sedgh, G., Bearak, J., Singh, S., et al. (2016). Abortion incidence between 1990 and 2014: global, regional, and subregional levels and trends. Lancet, 388, 258267.Google Scholar
Wells, N. (1992). Reducing distress during abortion: a test of sensory information. Journal of Advanced Nursing, 17, 10501056.Google Scholar
World Health Organization (2011). Unsafe Abortion: Global and Regional Estimates of the Incidence of Unsafe Abortion and Associated Mortality in 2008 (6th edn). Geneva: World Health Organization.Google Scholar

References

Altshuler, L. L., Kupka, R. W., Hellemann, G., et al. (2010). Gender and depressive symptoms in 711 patients with bipolar disorder evaluated prospectively in the Stanley Foundation bipolar treatment outcome network. American Journal of Psychiatry, 167(6), 708715.Google Scholar
American Psychiatric Association (APA) (2013). Diagnostic and Statistical Manual of Mental Disorders (5th edn.) (DSM-V). Washington, DC; American Psychiatric Association Press.Google Scholar
Anderson, N. B. (2003). Emotional Longevity: What Really Determines How Long You Live. New York: Viking.Google Scholar
Beck, A. T., Epstein, N., Brown, G., & Steer, R. A. (1988). An inventory for measuring clinical anxiety: psychometric properties. Journal of Consulting and Clinical Psychology, 56(6), 893897.Google Scholar
Beck, A. T., Steer, R. A. & Brown, G. K. (1996). Manual for the Beck Depression Inventory-II. San Antonio, TX: Psychological Corporation.Google Scholar
Cipriani, A., Hawton, K., Stockton, S. & Geddes, J. R. (2013). Lithium in the prevention of suicide in mood disorders: updated systematic review and meta-analysis. BMJ, 346. https://doi.org/10.1136/bmj.f3646Google Scholar
Dell’Aglio, J. C. Jr., Basso, L. A., Argimon, I. I. & Arteche, A. (2013). Systematic review of the prevalence of bipolar disorder and bipolar spectrum disorders in population based studies. Trends in Psychiatry and Psychotherapy, 35(2), 99105.CrossRefGoogle ScholarPubMed
Depue, R., Krauss, S., Spoont, M. R. & Arbisi, P. (1989). General behavior inventory identification of unipolar and bipolar affective conditions in a nonclinical university population. Journal of Abnormal Psychology, 98(2), 117126.CrossRefGoogle Scholar
DeRubeis, R. J., Siegle, G. J. & Hollon, S. D. (2008). Cognitive therapy versus medication for depression: treatment outcomes and neural mechanisms. Nature Reviews Neuroscience, 9, 788796.CrossRefGoogle ScholarPubMed
Fiedorowicz, J. G., Palagummi, N. M., Forman-Hoffman, V. L., Miller, D. D. & Haynes, W. G. (2008). Elevated prevalence of obesity, metabolic syndrome, and cardiovascular risk factors in bipolar disorder. Annals of Clinical Psychiatry, 20(3), 131137.Google Scholar
Goldstein, B. I., Fagiolini, A., Houck, P. & Kupfer, D. J. (2009). Cardiovascular disease and hypertension among adults with bipolar I disorder in the United States. Bipolar Disorders, 11(6), 657662.CrossRefGoogle ScholarPubMed
Goodwin, G. M., Haddad, P. M., Ferrier, I. N., et al. (2016) Evidence-based guidelines for treating bipolar disorder: revised third edition recommendations from the British Association for Psychopharmacology. Journal of Psychopharmacology, 30(6), 495553.Google Scholar
Gurpegui, M., Martínez-Ortega, J. M., Gutiérrez-Rojas, L., et al. (2012). Overweight and obesity in patients with bipolar disorder or schizophrenia compared with a non-psychiatric sample. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 37(1), 169175.Google Scholar
Hamilton, M. C. (1960). Hamilton Depression Rating Scale (HAM-D). Redloc, 23, 5662.Google Scholar
Hirschfeld, R. M. (2014). Differential diagnosis of bipolar disorder and major depressive disorder. Journal of Affective Disorders, 169, S12S16.Google Scholar
Hirschfeld, R. M., Williams, J. B., Spitzer, R. L., et al. (2000). Development and validation of a screening instrument for bipolar spectrum disorder: the Mood Disorder Questionnaire. American Journal of Psychiatry, 157(11), 18731875.CrossRefGoogle ScholarPubMed
Key, B. L., Campbell, T. S., Bacon, S. L. & Gerin, W. (2008). The influence of trait and state rumination on cardiovascular recovery from a negative emotional stressor. Journal of Behavioral Medicine, 31, 237248.CrossRefGoogle ScholarPubMed
Kroenke, K., Spitzer, R. L. & Williams, J. B. W. (2001). The PHQ-9: validity of a brief depression severity measure. Journal of General Internal Medicine, 16(9), 606613.Google Scholar
Kubzansky, L. D. & Kawachi, I. (2000). Going to the heart of the matter: do negative emotions cause coronary heart disease? Manual of Psychosomatic Research, 48, 323337.CrossRefGoogle Scholar
Nanayakkara, S., Misch, D., Chang, L. & Henry, D. (2013). Depression and exposure to suicide predict suicide attempt. Depression and Anxiety, 30(10), 991996.Google ScholarPubMed
National Institute of Mental Health (NIMH) (2016a). Major depression among adults. www.nimh.nih.gov/health/statistics/prevalence/major-depression-among-adults.shtml.Google Scholar
National Institute of Mental Health (NIMH) (2016b). Anxiety disorders. www.nimh.nih.gov/health/topics/anxiety-disorders/index.shtml.Google Scholar
National Institute of Mental Health (NIMH) (2016c). Any anxiety disorder among adults. www.nimh.nih.gov/health/statistics/prevalence/any-anxiety-disorder-among-adults.shtml.Google Scholar
Paterniti, M., Zureik, M., Ducimetiere, P., Feve, J. M. & Alperovitch, A. (2001). Sustained anxiety and 4-year progression of carotid atherosclerosis. Atherosclerosis, Thrombosis and Vascular Biology, 21, 136141.Google Scholar
Pennix, B. W. J. H., Guralnik, J. M., Pahor, M., et al. (1998). Chronically depressed mood and cancer risk in older persons. Journal of the National Cancer Institute, 90, 18881893.Google Scholar
Peters, A., Sylvia, L. G., da Silva Magalhães, P. V., et al. (2014). Age at onset, course of illness and response to psychotherapy in bipolar disorder: results from the Systematic Treatment Enhancement Program for Bipolar Disorder (STEP-BD). Psychological Medicine, 44, 34553467.CrossRefGoogle ScholarPubMed
Phillips, M. L. & Kupfer, D. J. (2013). Bipolar disorder diagnosis: challenges and future directions. Lancet, 381(9878), 16631671.CrossRefGoogle ScholarPubMed
Rhebergen, D., Graham, R., Hadzi-Pavlovic, D., et al. (2012). The categorisation of dysthymic disorder: can its constituents be meaningfully apportioned? Journal of Affective Disorders, 143(1–3), 179186.Google Scholar
Spielberger, C. D. (1983). Manual for the State-Trait Anxiety Inventory. Palo Alto, CA: Consulting Psychologists Press.Google Scholar
Swartz, H. & Fagiolini, A. (2012) Cardiovascular diseases and bipolar disorder: risk and clinical implications. Journal of Clinical Psychology, 73(12), 15631565.Google Scholar
Sylvia, L. G., Nierenberg, A. A., Stange, J. P., Peckham, A. D. & Deckersbach, T. (2011). Development of an integrated psychosocial treatment to address the medical burden associated with bipolar disorder. Journal of Psychiatric Practice, 17(3), 224232.CrossRefGoogle ScholarPubMed
Wu, E., Chien, I. & Lin, C. (2014). Increased risk of hypertension in patients with anxiety disorders: a population-based study. Journal of Psychosomatic Research, 77(6), 522527.CrossRefGoogle ScholarPubMed

References

Antolín‑Amérigo, D., Manso, L., Caminati, M., et al. (2016). Quality of life in patients with food allergy. Clinical & Mollecular Allergy, 14, 4.Google Scholar
Cheng, T. S., Chen, H., Lee, T., et al. (2015). An independent association of prenatal depression with wheezing and anxiety with rhinitis in infancy. Paediatric Allergy & Immunology, 26, 765771.CrossRefGoogle ScholarPubMed
Chida, Y., Hamer, M. & Steptoe, A. (2008). A bidirectional relationship between psychosocial factors and atopic disorders: a systematic review and meta-analysis. Psychosomatic Medicine, 70, 102116.Google Scholar
El-Turki, A., Smith, H. E., Llewellyn, C. D. & Jones, C. J. (2017). A systematic review of patients’, parents’ and health professionals’ adrenaline auto-injector administration technique. Emergency Medicine Journal. 34, 403416.Google Scholar
Garg, N. & Silverberg, J. I. (2014). Association between childhood allergic disease, psychological comorbidity, and injury requiring medical attention. Annals of Allergy, Asthma & Immunology, 116, 525532.CrossRefGoogle Scholar
Jones, C. J., Smith, H. E., Frew, A. J., et al. (2014). Explaining adherence to self-care behaviours amongst adolescents with food allergy: a comparison of the health belief model and the common sense self-regulation model. British Journal of Health Psychology, 19, 6582.CrossRefGoogle ScholarPubMed
Jones, C. J., Smith, H. E., Frew, A. J., et al. (2015). Factors associated with good adherence to self-care behaviours amongst adolescents with food allergy. Paediatric Allergy & Immunology, 26, 111118.CrossRefGoogle ScholarPubMed
Kemp, S. F., Lockey, R. F. & Simons, F. E. R. (2008). Epinephrine: the drug of choice for anaphylaxis – a statement of the World Allergy Organization. World Allergy Organization Journal, 1, s18s26.Google Scholar
King, R. M., Knibb, R. C. & Hourihane, J. O. (2009). Impact of peanut allergy on quality of life, stress and anxiety in the family. Allergy, 64, 461468.Google Scholar
Knibb, R. C. (2015). Effectiveness of cognitive behaviour therapy for mothers of children with food allergy: a case series. Healthcare, 3, 11941211.Google Scholar
Lind, N., Nordin, M., Palmquist, E., et al. (2015). Coping and social support in asthma and allergy: the Västerbotten Environmental Health Study. Journal of Asthma, 52, 622629.Google Scholar
McConnell, T. H. (2007). The Nature of Disease Pathology for the Health Professions. Baltimore, MD: Lippincott Williams & Wilkins.Google Scholar
Meltzer, E. O. (2001). Quality of life in adults and children with allergic rhinitis. Journal of Allergy & Clinical Immunology, 108, S45S53.CrossRefGoogle ScholarPubMed
Montoro, J., Mullol, J., Jáuregui, I., et al. (2009). Stress and allergy. Journal of Investigational Allergology and Clinical Immunology, 19, 4047.Google Scholar
Pawankar, R. (2014). Allergic diseases and asthma: a global public health concern and a call to action. World Allergy Organization Journal, 7, 12.CrossRefGoogle Scholar
Pawankar, R., Canonica, G. W., Holgate, S. T., Lockey, R. F. & Blaiss, M. S. (2013). The WAO White Book on Allergy: Update 2013. World Allergy Organization. www.worldallergy.org/UserFiles/file/WhiteBook2-2013-v8.pdf (accessed 12 July 2017).Google Scholar
Polloni, L. (2014). Psychological care of food-allergic children and their families: an exploratory analysis. Pediatric Allergy & Immunology, 26, 8092.Google Scholar
Polloni, L., Ferruzza, E., Ronconi, L., et al. (2015). Perinatal stress and food allergy: a preliminary study on maternal reports. Psychology, Health & Medicine, 20, 732741.CrossRefGoogle Scholar
Rusznak, C. & Davies, R. J. (1998). Diagnosing allergies. British Medical Journal, 28, 686689.CrossRefGoogle Scholar
Schreier, H. M. C. & Wright, R. J. (2014). Stress and food allergy: mechanistic considerations. Annals of Allergy, Asthma & Immunology, 112, 296301.CrossRefGoogle ScholarPubMed
Smith, H. E. & Jones, C. J. (2015). Illness perception, mood and coping in patients with rhinitis. In Akdis, C., Hellings, P. & Agache, I. (eds), Global Atlas of Allergic Rhinitis and Chronic Rhinosinusitis (pp. 276278). Zurich: European Academy of Allergy and Clinical Immunology,Google Scholar
Spergel, J. M. (2010). From atopic dermatitis to asthma: the atopic march. Annals of Asthma, Allergy & Immunology, 105, 99106.CrossRefGoogle ScholarPubMed
Timonen, M., Jokelainen, J., Hakko, H., et al. (2003). Atopy and depression: results from the Northern Finland 1966 Birth Cohort Study. Molecular Psychiatry, 8, 738744.CrossRefGoogle ScholarPubMed
Wamboldt, M., Hewitt, J. K., Schmitz, S., et al. (2000). Familial association between allergic disorders and depression in adult Finnish twins. American Journal of Medical Genetics, 96, 146153.3.0.CO;2-J>CrossRefGoogle ScholarPubMed

References

Bauer, P. J. (2014). The development of forgetting: childhood amnesia. In Bauer, P.J. & Fivush, R. (eds), The Wiley-Blackwell Handbook on the Development of Children’s Memory (pp. 519544). Chichester: Wiley-Blackwell.Google Scholar
Bauer, P. J. (2015). A complementary processes account of the development of childhood amnesia and a personal past. Psychological Review, 2, 204231.CrossRefGoogle Scholar
Bauer, P. J. & Larkina, M. (2014a). Childhood amnesia in the making: different distributions of autobiographical memories in children and adults. Journal of Experimental Psychology: General, 143(2), 597611.Google Scholar
Bauer, P. J. & Larkina, M. (2014b). The onset of childhood amnesia in childhood: a prospective investigation of the course and determinants of forgetting of early-life events. Memory, 22, 907924.CrossRefGoogle ScholarPubMed
Cooper, J. M., Vargha-Khadem, F., Gadian, D. G. & Maguire, E. A. (2011). The effect of hippocampal damage in children on recalling the past and imagining new experiences. Neuropsychologia, 49, 18431850.CrossRefGoogle ScholarPubMed
Corkin, S. (1984). Lasting consequences of bilateral medial temporal lobectomy: clinical course and experimental findings in H.M. Seminars in Neurology, 4, 249259.Google Scholar
Corkin, S. (2002). What’s new with the amnesic patient H.M.? Nature Reviews, 3, 153160.Google Scholar
Fivush, R. (2011). The development of autobiographical memory. Annual Review of Psychology, 62, 559582.Google Scholar
Freud, S. (1905/1953). Childhood and concealing memories. In Brill, A. A. (ed.), The Basic Writings of Sigmund Freud. New York: The Modern Library.Google Scholar
Manns, J. R. & Eichenbaum, H. (2006). Evolution of declarative memory. Hippocampus, 16, 795808.CrossRefGoogle ScholarPubMed
Miles, C. (1893). A study of individual psychology. American Journal of Psychology, 6, 534558.Google Scholar
Milner, B. M., Corkin, S. & Teuber, H. L. (1968). Further analysis of the hippocampal amnesic syndrome: 14-year followup study of H.M. Neuropsychologia, 6, 215234.Google Scholar
Mullally, S. L., Vargha-Khadem, F. & Maguire, E. A. (2014). Scene construction in developmental amnesia: an fMRI study. Neuropsychologia, 52, 110.Google Scholar
Reed, J. M. & Squire, L. R. (1998). Retrograde amnesia for facts and events: findings from four new cases. Journal of Neuroscience, 18, 39433954.CrossRefGoogle ScholarPubMed
Rubin, D. (2006). The basic-systems model of episodic memory. Perspectives on Psychological Science, 1, 277311.Google Scholar
Squire, L. R. (1987). Memory and Brain. New York: Oxford University Press.Google Scholar
Squire, L. R. & Alvarez, P. (1995). Retrograde amnesia and memory consolidation: a neurobiological perspective. Current Opinion in Neurobiology, 5, 169177.CrossRefGoogle ScholarPubMed
Usher, J. & Neisser, U. (1993). Childhood amnesia and the beginnings of memory for four early life events. Journal of Experimental Psychology: General, 122, 155165.CrossRefGoogle ScholarPubMed
Wang, Q., Conway, M. & Hou, Y. (2004). Infantile amnesia: a crosscultural investigation. Cognitive Sciences, 1, 123135.Google Scholar
West, T. W. & Bauer, P. J. (1999). Assumptions of infantile amnesia: are there differences between early and later memories? Memory, 7, 257278.Google Scholar

References

Basso, A. (1992). Prognostic factors in aphasia. Aphasiology, 6, 337348.Google Scholar
Berthier, M. (2014). Cognitive enhancing drugs in aphasia: a vote for hope. Aphasiology, 28, 128132.Google Scholar
Bhogal, S. K., Teasell, R. & Speechley, M. (2003). Intensity of aphasia therapy, impact on recovery. Stroke, 34, 987993.Google Scholar
Brumfitt, S. (1985). The use of repertory grids with aphasic people. In: Beail, N. (ed.), Repertory Grid Techniques and Personal Constructs. London: Croom Helm.Google Scholar
Cherney, L. R., Patterson, J. P. & Raymer, A. M. (2011). Intensity of aphasia therapy: evidence and efficacy. Current Neurology and Neuroscience Reports, 11, 560569.CrossRefGoogle ScholarPubMed
Code, C. (1994). The role of the right hemisphere in the treatment of aphasia. In Chapey, R. (ed.), Language Intervention Strategies in Adult Aphasia. (3rd edn) Baltimore, MD: Williams & Wilkins.Google Scholar
Code, C. (2001). Multifactorial processes in recovery from aphasia: developing the foundations for a multilevelled framework. Brain and Language, 77, 2544.Google Scholar
Code, C. & Herrmann, M. (2003). The relevance of emotional and psychosocial factors in aphasia to rehabilitation. Neuropsychological Rehabilitation, 13, 109132.CrossRefGoogle ScholarPubMed
Code, C. & Muller, D. J. (eds), (1995). The Treatment of Aphasia: From Theory to Practice. London: Whurr.Google Scholar
de Riesthal, M. & Wertz, R. T. (2004). Prognosis for aphasia: relationship between selected biographical and behavioural variables and outcome and improvement. Aphasiology, 18, 899915.Google Scholar
Duchan, J.F & Byng, S. (eds), (2004). Challenging Aphasia Therapies: Broadening the Discourse and Extending the Boundaries. Hove: Psychology Press.Google Scholar
El Hachioui, H., Lingsma, H. F.L, van de Sandt-Koenderman, M. W. M. E., et al. (2013). Long-term prognosis of aphasia after stroke. Journal of Neurology and Neurosurgy andPsychiatry, 84, 310315.CrossRefGoogle ScholarPubMed
Helm-Estabrooks, N. & Albert, M. L. (1991). Manual of Aphasia Therapy. Austin, TX.: Pro-Ed.Google Scholar
Hemsley, G. & Code, C. (1996). Interactions between recovery in aphasia, emotional and psychosocial factors in subjects with aphasia, their significant others and speech pathologists. Disability & Rehabilitation, 18, 567584.Google Scholar
Herrmann, M. & Wallesch, C-W. (1989). Psychosocial changes and adjustment with chronic and severe nonfluent aphasia. Aphasiology, 3, 513526.Google Scholar
Herrmann, M., Bartells, C. & Wallesch, C.-W. (1993). Depression in acute and chronic aphasia: symptoms, pathoanatomical-clinical correlations and functional implications. Journal of Neurology, Neurosurgery, and Psychiatry, 56, 672678.CrossRefGoogle ScholarPubMed
Holland, R. & Crinion, J. (2012). Can tDCS enhance treatment of aphasia after stroke? Aphasiology, 26, 11691191.Google Scholar
Howard, D., Webster, J. & Whitworth, A. (2013). A Cognitive Neuropsychological Approach to Assessment and Intervention in Aphasia (2nd edn). Hove: Psychology Press.Google Scholar
Kagan, A., Black, S., Duchan, J., et al., (2001). Training volunteers as conversational partners using ‘Supported Conversation with Adults with Aphasia’ (SCA): a controlled trial. Journal of Speech, Language, and Hearing Research, 44, 624638.Google Scholar
Kay, J., Lesser, R. & Coltheart, M. (1992). Psycholinguistic Assessments of Language Processing in Aphasia. Hove: Lawrence Erlbaum Associates.Google Scholar
Lam, J. M. C. & Wodchis, W. P. (2010). The relationship of 60 disease diagnoses and 15 conditions to preference-based health-related quality of life in Ontario hospital-based long-term care residents. Medical Care, 48, 380387.CrossRefGoogle ScholarPubMed
Lanyon, J., Rose, M. & Worrall, L. (2013). The efficacy of outpatient and community-based aphasia group interventions: a systematic review. International Journal of Speech-Language Pathology, 15, 359374.Google Scholar
Leff, A. P. & Howard, D. (2012). Has speech and language therapy been shown not to work? Nature Reviews Neurology, 8, 600601.Google Scholar
Luria, A., Naydyn, V. L., Tsvetkova, L. S., et al. (1969). Restoration of higher cortical function following local brain damage. In: Vinken, P. J. & Bruyn, G. W. (eds), Handbook of Clinical Neurology (pp. 368433). Amsterdam: North-Holland Publishing Company.Google Scholar
Pulvermüller, F. & Berthier, M. L. (2008). Aphasia therapy on a neuroscience basis. Aphasiology, 22, 563599CrossRefGoogle Scholar
Pulvermüller, F., Neininger, B., Elbert, T., et al. (2001). Constraint-induced therapy of chronic aphasia after stroke. Stroke, 32, 16211626.Google Scholar
Robinson, R. G., Lipsey, J. R., Rao, K. & Price, T. R. (1986). A two-year longitudinal study of poststroke mood disorders: comparison of acute-onset with delayed-onset depression. American Journal of Psychiatry, 143, 12381244.Google Scholar
Rose, M., Raymer, A., Lanyon, L. & Attard, M. C. (2013). A systematic review of gesture treatments for post-stroke aphasia. Aphasiology, 27,Google Scholar
Starkstein, S. E. & Robinson, R. G. (1988). Aphasia and depression. Aphasiology, 2, 120.Google Scholar
Stern, R. A. & Bachman, D. L. (1991). Depressive symptoms following stroke. American Journal of Psychiatry, 148, 351356.Google ScholarPubMed
Tanner, D. C. & Gerstenberger, D. L. (1988). The grief response in neuropathologies of speech and language. Aphasiology, 2, 7984.Google Scholar
van der Meulen, I., van de Sandt-Koenderman, M. E. & Ribbers, G. M. (2012). Melodic intonation therapy: present controversies and future opportunities. Archives of Physical Medicine and Rehabilitation, 93, (1 Suppl. 1), 4652.CrossRefGoogle ScholarPubMed

References

Barlow, J., Wright, C., Sheasby, J., Turner, A. & Hainsworth, J. (2002). Self-management approaches for people with chronic conditions: a review. Patient Education and Counseling, 48, 177187.Google Scholar
Creer, T. L. (1979). Asthma Therapy: A Behavioral Health Care System for Respiratory Disorders. New York: Springer.Google Scholar
Denford, S., Taylor, R. S., Campbell, J. L. & Greaves, C. J. (2014). Effective behavior change techniques in asthma self-care interventions: systematic review and meta-regression. Health Psychology, 33, 577587.Google Scholar
Gross, N. J. (1980). What is this thing called love? Or, defining asthma. American Review of Respiratory Disease, 121, 203204.Google ScholarPubMed
Hahn, E. A., Mora, P. & Leventhal, H. (2006). No symptoms, no asthma: the acute episodic disease belief is associated with poor self-management among inner-city adults with persistent asthma. Chest, 129, 573580.Google Scholar
Kaptein, A. A., Klok, T., Moss-Morris, R. & Brand, P. L. P. (2010). Illness perceptions: impact on self-management and control in asthma. Current Opinion in Allergy and Clinical Immunology, 10, 194199.CrossRefGoogle ScholarPubMed
Kaptein, A. A., Meulenberg, F. & Smyth, J. M. (2015). A breath of fresh air: images of respiratory illness in novels, poems, films, music, and paintings. Journal of Health Psychology, 20, 246258.Google Scholar
Kinsman, R. A., Dahlem, N. W., Spector, S. & Staudenmayer, H. K. (1977). Observations on subjective symptomatology, coping behavior, and medical decisions in asthma. Psychosomatic Medicine, 39, 102119.Google Scholar
Lee, A. & Wright, R. J. (2016). Prenatal stress and childhood asthma risk: taking a broader view. European Respiratory Journal, 47, 406409.Google Scholar
Levy, B. D., Noel, P. J., Freemer, M. M., et al. (2015). Future research directions in asthma. American Journal of Respiratory and Critical Care Medicine, 192, 13661372.Google Scholar
Petrie, K. J., Perry, K., Broadbent, E. & Weinman, J. (2011). A text message programme designed to modify patients’ illness and treatment beliefs improves self-reported adherence to asthma preventer medication. British Journal of Health Psychology, 17, 7484.Google Scholar
Peytremann-Brideveaux, I., Arditi, C., Gex, G., et al. (2015). Chronic disease management programmes for adults with asthma. Cochrane Database of Systematic Reviews, 5, CD007988.Google Scholar
Queneau, R. (1987). The Skin of Dreams. London: Atlas Press.Google Scholar
Ritz, T., Meuret, A. E., Trueba, A. F., Fritsche, A. & von Leupoldt, A. (2013). Psychosocial factors and behavioral medicine interventions in asthma. Journal of Consulting and Clinical Psychology, 81, 231250.Google Scholar
Smyth, J. M., Stone, A. A., Hurewitz, A. & Kaell, A. (1999). Effects of writing about stressful experiences on symptom reduction in patients with asthma or rheumatoid arthritis: a randomized trial. JAMA, 281, 13041309.Google Scholar

References

Akerblom, S., Perrin, S., Rivano Fischer, M. & McCracken, L. (2015). The mediating role of acceptance in multidisciplinary cognitive-behavioral therapy for chronic pain. Journal of Pain, 16(7), 606615.Google Scholar
Alexanders, J., Anderson, A. & Henderson, S. (2015). Musculoskeletal physiotherapists’ use of psychological interventions: a systematic review of therapists’ perceptions and practice. Physiotherapy, 101(2), 95102.Google Scholar
Artus, M., van der Windt, D. A., Jordan, K. P., et al. (2010). Low back pain symptoms show a similar pattern of improvement following a wide range of primary care treatments: a systematic review of randomized clinical trials. Rheumatology, 49(12), 23462356.CrossRefGoogle ScholarPubMed
Balague, F., Mannion, A. F., Pellise, F. & Cedraschi, C. (2012). Non-specific low back pain. Lancet, 379(9814), 482491.Google Scholar
Barker, E. & McCracken, L.M. (2014). From traditional cognitive-behavioural therapy to acceptance and commitment therapy for chronic pain: a mixed-methods study of staff experiences of change. British Journal of Pain, 8(3), 98106.Google Scholar
Brunner, E., De Herdt, A., Minguet, P., Baldew, S. S. & Probst, M. (2013). Can cognitive behavioural therapy based strategies be integrated into physiotherapy for the prevention of chronic low back pain? A systematic review. Disability and Rehabilitation, 35(1), 110.CrossRefGoogle ScholarPubMed
Campbell, C. & Guy, A. (2007). Why can’t they do anything for a simple back problem? A qualitative examination of expectations for low back pain treatment and outcome. Journal of Health Psychology, 12(4), 641652.Google Scholar
Dionne, C. E., Dunn, K. M., Croft, P. R., et al. (2008). A consensus approach toward the standardization of back pain definitions for use in prevalence studies. Spine, 33(1), 95103.CrossRefGoogle ScholarPubMed
Downie, A., Williams, C. M., Henschke, N., et al. (2013). Red flags to screen for malignancy and fracture in patients with low back pain: systematic review. BMJ, 347. https://doi.org/10.1136/bmj.f7095.Google Scholar
Ferreira, M. L., Machado, G., Latimer, J., et al. (2010). Factors defining care‐seeking in low back pain: a meta‐analysis of population based surveys. European Journal of Pain, 14, 747.e741747.e747.CrossRefGoogle ScholarPubMed
Freburger, J. K., Holmes, G. M., Agans, R. P., et al. (2009). The rising prevalence of chronic low back pain. Archives of Internal Medicine, 169(3), 251258. DOI:10.1001/archinternmed.2008.543.CrossRefGoogle ScholarPubMed
Godfrey, E., Galea Holmes, M., Wileman, V., et al. (2016). Physiotherapy informed by Acceptance and Commitment Therapy (PACT): protocol for a randomised controlled trial of PACT versus usual physiotherapy care for adults with chronic low back pain. BMJ Open, 6, e011548. DOI:10.1136/bmjopen-2016- 011548.Google Scholar
Gore, M., Sadosky, A., Stacey, B. R., Tai, K. S. & Leslie, D. (2012). The burden of chronic low back pain: clinical comorbidities, treatment patterns, and health care costs in usual care settings. Spine, 37(11), 668677.CrossRefGoogle ScholarPubMed
Hall, A., Richmond, H., Copsey, B., et al. (2016). Physiotherapist delivered cognitive-behavioural interventions are effective for low back pain, but can they be replicated in clinical practice? A systematic review. Disability and Rehabilitation. DOI:10.1080/09638288.2016.1236155.Google Scholar
Hayes, S. C., Strosahl, K. & Wilson, K.G.(1999). Acceptance and Commitment Therapy: An Experimental Approach to Behaviour Change. New York: Guilford Press.Google Scholar
Hill, J. C., Whitehurst, D. G., Lewis, M., et al. (2011). Comparison of stratified primary care management for low back pain with current best practice (STarT Back): a randomised controlled trial. Lancet, 378, 15601571.CrossRefGoogle Scholar
Hong, J., Reed, C., Novick, D. & Happich, M. (2013). Costs associated with treatment of chronic low back pain: an analysis of the UK General Practice Research Database. Spine, 38(1), 7582.Google Scholar
Hoy, D., Bain, C., Williams, G., et al. (2012). A systematic review of the global prevalence of low back pain. Arthritis and Rheumatism, 64(6), 20282037.CrossRefGoogle ScholarPubMed
Hoy, D. G., Smith, E., Cross, M., et al. (2014). Reflecting on the global burden of musculoskeletal conditions: lessons learnt from the Global Burden of Disease 2010 Study and the next steps forward. Annals of Rheumtic Disease, 73(6), 982989.Google Scholar
Itz, C., Geurts, J., Kleef, M. V. & Nelemans, P. (2013). Clinical course of non‐specific low back pain: a systematic review of prospective cohort studies set in primary care. European Journal of Pain, 17(1), 515.Google Scholar
Koes, B. W., van Tulder, M., Lin, C.-W. C., et al. (2010). An updated overview of clinical guidelines for the management of non-specific low back pain in primary care. European Spine Journal, 19(12), 20752094.Google Scholar
Lamb, S. E., Lall, R. S., Hansen, Z., et al. (2010). A multicentred randomised controlled trial of a primary care-based cognitive behavioural programme for low back pain: the back skills training (BeST) trial. Health Technology Assessment, 14(41), 1281.Google Scholar
McCracken, L. M. & Morley, S. (2014). The psychological flexibility model: a basis for integration and progress in psychological approaches to chronic pain management. Journal of Pain, 15, 221234.Google Scholar
Mehra, M., Hill, K., Nicholl, D. & Schadrack, J. (2012). The burden of chronic low back pain with and without a neuropathic component: a healthcare resource use and cost analysis. Journal of Medical Economics, 15(2), 245252.Google Scholar
Meucci, R. D., Fassa, A. G. & Faria, N. M. X. (2015). Prevalence of chronic low back pain: systematic review. Revista de Saúde Pública, 49. DOI:10.1590/S0034-8910.2015049005874.Google Scholar
Murray, C. J., Vos, T., Lozano, R., et al. (2012). Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet, 380,21972223.Google Scholar
NICE (2016). Low Back Pain and Sciatica in Over 16s: Assessment and Management. NICE guideline 59. London: NICE. www.nice.org.uk/guidance/ng59 (accessed 1 December 2016).Google Scholar
Nicholas, M., Linton, S., Watson, P. & Main, C. (2011). Early identification and management of psychological risk factors (‘yellow flags’) in patients with low back pain: a reappraisal. Physical Therapy, 91, 737753.Google Scholar
Öst, L.-G. (2014). The efficacy of Acceptance and Commitment Therapy: an updated systematic review and meta-analysis. Behaviour Research and Therapy, 61, 105121.Google Scholar
Pincus, T. & McCracken, L. M. (2013). Psychological factors and treatment opportunities in low back pain. Best Practice & Research Clinical Rheumatology, 27(5), 625635.CrossRefGoogle ScholarPubMed
Pincus, T., Burton, A. K., Vogel, S. & Field, A. P. (2002). A systematic review of psychological factors as predictors of chronicity/disability in prospective cohorts of low back pain. Spine, 27, E109E120.Google Scholar
Pincus, T., Anwar, S., McCracken, L., et al. (2015). Delivering an optimised behavioural intervention (obi) to people with low back pain with high psychological risk: results and lessons learnt from a feasibility randomized controlled trial of contextual cognitive behavioural therapy (CCBT) vs. physiotherapy. BMC Musculoskeletal Disorders, 16, 147.Google Scholar
Richmond, H., Hall, A. M., Copsey, B., et al. (2015). the effectiveness of cognitive behavioural treatment for non-specific low back pain: a systematic review and meta-analysis. PLoS ONE, 10(8): e0134192. DOI:10.1371/journal.pone.0134192.Google Scholar
Straube, S., Harden, M., Schroder, H., et al. (2016). Back schools for the treatment of chronic low back pain: possibility of benefit but no convincing evidence after 47 years of research: systematic review and meta-analysis. Pain. 157(10), 21602172.Google Scholar
van Middelkoop, M., Rubinstein, S. M., Kuijpers, T., et al. (2010). A systematic review on the effectiveness of physical and rehabilitation interventions for chronic non-specific low back pain. European Spine Journal, 20, 1939.Google Scholar
Vos, T., Flaxman, A. D., Naghavi, M., Lozano, R. et al. (2012). Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet, 380, 21632196.Google Scholar
Vowles, K. E., McCracken, L. M. & O’Brien, J. Z. (2011). Acceptance and values-based action in chronic pain: a three-year follow-up analysis of treatment effectiveness and process. Behaviour Research and Therapy, 49(11), 748755.Google Scholar
Waddell, G. (1987). A new clinical model for the treatment of low back pain. Spine, 12, 622634.Google Scholar
Williams, A., Eccleston, C. & Morley, S. (2012). Psychological therapies for the management of chronic pain (excluding headache) in adults. Cochrane Database of Systematic Reviews, 11, CD007407.Google Scholar

References

Bliss (2016). Statistics. www.bliss.org.uk/pages/category/statistics (accessed 15 August 2016).Google Scholar
Cacciatore, J., Radestad, I. & Froen, F. J. (2008). Effects of contact with stillborn babies on maternal anxiety and depression. Birth, 35, 313320.Google Scholar
Cacciatore, J., Schnebly, S. & Froen, J. F. (2009). The effects of social support on maternal anxiety and depression after stillbirth. Health and Social Care in the Community, 17, 167176.Google Scholar
Carroll, M., Daly, D. & Begley, C. M. (2016). The prevalence of women’s emotional and physical health problems following a postpartum haemorrhage: a systematic review. BMC Pregnancy and Childbirth, 16, 261.Google Scholar
Carson, C., Redshaw, M., Gray, R. & Quigley, M. (2015). Risk of psychological distress in parents of preterm children in the first year: evidence from the UK Millennium Cohort Study. BMJ Open, 5, e007942.Google Scholar
Delahaije, D., Dirksen, D., Peeters, L. & Smits, L. (2014). Anxiety and depression following preeclampsia or hemolysis, elevated liver enzymes, and low platelets syndrome: a systematic review. Acta Obstetricia et Gynecologica Scandinavica, 92, 746761CrossRefGoogle Scholar
Eckerdal, P., Kollia, N., Loffblad, J., et al. (2016). Delineating the association between heavy postpartum haemorrhage and postpartum depression. PLoS ONE, 11(1), e0144274.Google Scholar
Elmir, R. & Schmied, V. (2016). A meta-ethnographic synthesis of fathers’ experiences of complicated births that are potentially traumatic. Midwifery, 32, 6674.Google Scholar
Eutrope, J., Thierry, A., Lemp, F., et al. (2014). Emotional reactions of mothers facing premature births: study of 100 mother-infant dyads 32 gestational weeks. PLoS One, 9, e104093.Google Scholar
Froen, J. F., Cacciatore, J., McClure, E. M., et al. (2011). Stillbirths: why they matter. Lancet, 377, 13531366.Google Scholar
Furuta, M., Sandall, J. & Bick, D. (2014). Women’s perceptions and experiences of severe maternal morbidity: a synthesis of qualitative studies using a meta-ethnographic approach. Midwifery, 30, 158169.Google Scholar
Grekin, R. & O’Hara, M. W. (2014). Prevalence and risk factors of postpartum posttraumatic stress disorder: a meta-analysis. Clinical Psychology Review, 34, 389401.Google Scholar
Heazell, A., Siassakos, D., Blencowe, H., et al. (2016). Stillbirths: economic and psychosocial consequences. Lancet, 387, 604616.Google Scholar
Hennegan, J. M., Henderson, J. & Redshaw, M. (2015). Contact with the baby following stillbirth and parental mental health and well-being: a systematic review. BMJ Open, 5.CrossRefGoogle ScholarPubMed
Hoedjes, M., Berks, D., Vogel, I., et al. (2011). Symptoms of posttraumatic stress disorder after preeclampsia. Journal of Psychosomatic Obstetrics & Gynaecology, 32, 126134.CrossRefGoogle ScholarPubMed
Knight, M., Tuffnell, D., Kenyon, S., et al. (eds) (2015). Saving Lives, Improving Mothers’ Care: Surveillance of Maternal Deaths in the UK 2011–13 and Lessons Learned to Inform Maternity Care from the UK and Ireland Confidential Enquiries Into Maternal Deaths and Morbidity 2009–13. Oxford: National Perinatal Epidemiology Unit, University of Oxford.Google Scholar
Redshaw, M., Hennegan, J. M. & Henderson, J. (2016). Impact of holding the baby following stillbirth on maternal mental health and well-being: findings from a national survey. BMJ Open, 6, e010996.CrossRefGoogle ScholarPubMed
Sentilhes, L., Gromez, A., Clavier, E., et al. (2011). Long-term psychological impact of severe postpartum haemorrhage. Acta Obstetrica Gynecologica Scandinavica, 90, 615620.Google Scholar
Snowdon, C., Elbourne, D., Forsey, M. & Alfirevic, Z. (2012). Information-hungry and disempowered: a qualitative study of women and their partners’ experiences of severe postpartum haemorrhage. Midwifery, 28, 791799.Google Scholar
Stramrood, C., Wessel, I., Doornbos, B., et al. (2011). Posttraumatic stress disorder following preeclampsia and PPROM: a prospective study with 15 months follow-up. Reproductive Sciences, 18, 645653.Google Scholar
Thombre, M. K., Talge, N. M. & Holzman, C. (2015). Association between pre-pregnancy depression/anxiety symptoms and hypertensive disorders of pregnancy. Journal of Women’s Health, 24, 228236.Google Scholar
Vigod, S. N., Villegas, L. & Dennis, C. L. (2010). Prevalence and risk factors for postpartum depression among women with preterm and low-birth-weight infants: a systematic review. BJOG, 117, 540550.Google Scholar
World Health Organization (2016). Stillbirths. www.who.int/maternal_child_adolescent/epidemiology/stillbirth/en/ (accessed 27 November 2016).Google Scholar

References

Altier, N., Malenfant, A., Forget, R., et al. (2002). Long-term adjustment in burn victims: a matched-control study. Psychological Medicine, 32, 677685.Google Scholar
Anderson, N. J., Bonauto, D. K. & Adams, D. (2011). Psychiatric diagnoses after hospitalization with work-related burn injuries in Washington State. Journal of Burn Care & Research, 32, 369378.Google Scholar
Bakker, A., Van der Heijden, P. G. M. & Van Son, M. J. M. (2013). Course of traumatic stress reactions in couples after a burn event to their young child. Health and Psychology, 32, 10761083.Google Scholar
Blakeney, P., Portman, S. & Rutan, R. (1990). Familial values as factors influencing long-term psychological adjustment of children after severe burn-injury. Journal of Burn Care and Rehabilitation, 11, 472475.Google Scholar
Bonanno, G. A. (2004). Loss, trauma, and human resilience: have we underestimated the human capacity to thrive after extremely aversive events? American Psychologist, 59, 2028.Google Scholar
Bradbury, E. (1996). Counselling People with Disfigurement. Leicester: BPS Books.Google Scholar
Cobb, S. (1976). Social support as a moderator of life stress. Psychosomatic Medicine, 38, 300314.Google Scholar
Esselman, P. C., Thombs, B. D., Magyar-Russell, G., et al. (2006). Burn rehabilitation: state of science. American Journal of Physical Medicine & Rehabilitation, 85, 383413.Google Scholar
Gupta, M. & Kumar, A. (2015). Study of dry thermal fatal burn prevalence with occupational work in Varanasi area; India. International Journal of Science and Research, 4, 13621365.Google Scholar
Heath, J, Williamson, H, Williams, L & Harcourt, D. (2018). Parent-perceived isolation and barriers to psychosocial support: a qualitative study to investigate how peer support might help parents of burn-injured children. Scars, Burns & Healing, 4. DOI: 10.1177/2059513118763801.Google Scholar
Malic, C. C., Karoo, R. O. S., Austin, O., et al. (2007). Burns inflicted by self or by others: an 11 year snapshot. Burns, 33, 9297.Google Scholar
Muangman, P., Sullivan, S. R., Wiechman, S., et al. (2005). Social support correlates with survival in patients with massive burn-injury. Journal of Burn Care & Rehabilitation, 26, 352356.Google Scholar
National Burn Care Review. (2001). Standards and strategy for burn care: a review of burn care in the British Isles. www.ibidb.org/downloads/cat_view/14-general-reports (accessed 25 April 2016).Google Scholar
Oaie, E, Piepenstock, E & Williams, L. (2018). Risk factors for peri-traumatic distress and appearance concerns in burn-injured inpatients identified by screening tool. Scars, Burns & Healing, 4. DOI: 10.1177/2059513118765294.Google Scholar
Palmu, R., Partonen, T., Suominen, K., et al. (2016). Functioning, disability, and social adaptation six months after burn injury. Journal of Burn Care & Research, 37, e234–243.Google Scholar
Phillips, C. & Rumsey, N. (2008). Considerations for the provision of psychosocial services for families following paediatric burn injury: a quantitative study. Burns, 34, 5662.Google Scholar
Phillips, C., Fussell, A. & Rumsey, N. (2007). Considerations for psychosocial support following burn injury: a family perspective. Burns, 33, 986994.Google Scholar
Potokar, T. & Price, P. (2012). Challenges in healthcare provision in resource-poor countries. In Rumsey, N. & Harcourt, D. (eds), The Oxford Handbook of the Psychology of Appearance (pp. 7178). Oxford: Oxford University Press.Google Scholar
Rimmer, R. B., Bay, R. C., Alam, N. B., et al. (2015). Measuring the burden of pediatric burn injury for parents and caregivers: informed burn center staff can help to lighten the load. Journal of Burn Care & Research, 36, 421427.Google Scholar
Rizzone, L. P., Stoddard, F. J., Murphy, J. M., et al. (1994). Posttraumatic stress disorder in mothers of children and adolescents with burns. Journal of Burn Care & Rehabilitation, 15, 158163.Google Scholar
Thombs, B., Bresnick, M. & Magyar-Russell, G. (2006). Depression in survivors of burn-injury: a systematic review. General Hospital Psychiatry, 28, 494502.Google Scholar
Wiechman, S. & Patterson, D. (2004). Psychosocial aspects of burn injuries. British Medical Journal, 329, 391393.Google Scholar
Young, A. E. (2004). The management of severe burns in children. Current Pediatric Reviews, 14, 202207.Google Scholar

References

American Cancer Society. (2016). Cancer Facts and Figures. Atlanta, GA: American Cancer Society.Google Scholar
Bluethmann, S., Mariotto, A. & Rowland, J. (2016). Anticipating the ‘Silver Tsunami’: prevalence trajectories and comorbidity burden among older cancer survivors in the United States. Cancer Epidemiology, Biomarkers & Prevention, 25, 10291036.Google Scholar
Demark-Wahnefried, W., Aziz, N. M., Rowland, J. H. & Pinto, B. M. (2005). Riding the crest of the teachable moment: promoting long-term health after the diagnosis of cancer. Journal of Clinical Oncology, 23(24), 58145830.Google Scholar
Demark-Wahnefried, W., Pinto, B. & Gritz, E. (2006). Promoting health and physical function among cancer survivors: potential for prevention and questions that remain. Journal of Clinical Oncology, 24, 51255131.Google Scholar
Earle, C. C. (2006). Failing to plan is planning to fail: improving the quality of care with survivorship care plans. Journal of Clinical Oncology, 24(32), 51125116.Google Scholar
Faguet, G. (2005). The War on Cancer: An Anatomy of Failure. Dordrecht: Springer.Google Scholar
Kolata, G. (2009). Forty years’ war: advances elusive in the drive to cure cancer. New York Times.Google Scholar
Mukherjee, S. (2010). The Emperor of all Maladies: A Biography of Cancer. New York: Simon and Schuster.Google Scholar
Stacey, F. G., James, E. L., Chapman, K., Courneya, K. S. & Lubans, D. R. (2015). A systematic review and meta-analysis of social cognitive theory-based physical activity and/or nutrition behavior change interventions for cancer survivors. Journal of Cancer Survivorship, 9(2), 305338.Google Scholar
Stewart, B. & Wild, C. (eds). (2014). World Cancer Report 2014. https://inovelthng.files.wordpress.com/2016/11/world-cancer-report.pdf (accessed 14 December 2016).Google Scholar
Weinstein, J. N., Collisson, E. A., Mills, G. B., et al. (2013). The Cancer Genome Atlas Pan-Cancer analysis project. [Commentary]. Nature Genetics, 45(10), 11131120. DOI: 10.1038/ng.2764.Google Scholar
Wilson, K., Senay, I., Durantini, M., et al. (2015). When it comes to lifestyle recommendations, more is sometimes less: a meta-analysis of theoretical assumptions underlying the effectiveness of interventions promoting multiple behavior domain change. Psychological Bulletin, 141(2), 474.Google Scholar
Yabroff, K., Lawrence, W., Clauser, S., Davis, W. & Brown, M. (2004). Burden of illness in cancer survivors: findings from a population-based national sample. Journal of the National Cancer Institute, 96(17), 1322.Google Scholar

References

American Cancer Society. (2016). Cancer facts and figures. www.cancer.org/research/cancerfactsstatistics/cancerfactsfigures2016/index (accessed 23 July 2016).Google Scholar
Bish, A., Ramirez, A., Burgess, C., et al. (2005). Understanding why women delay in seeking help for breast cancer symptoms. Journal of Psychosomatic Research, 58, 321326.Google Scholar
Brown, L. F. & Kroenke, K. (2009). Cancer-related fatigue and its associations with depression and anxiety: a systematic review. Psychosomatics, 50, 440447.Google Scholar
Christensen, S., Zachariae, R., Jensen, A. B., et al. (2009). Prevalence and risk of depressive symptoms 3–4 months post-surgery in a nationwide cohort study of Danish women treated for early stage breast-cancer. Breast Cancer Research and Treatment, 113, 339355.Google Scholar
de Boer, A. M., Taskila, T., Ojajärvi, A., et al. (2009). Cancer survivors and unemployment: a meta-analysis and meta-regression. JAMA, 301, 753762.Google Scholar
De Sanctis, V. L., Agolli, L., Visco, V., et al. (2014). Cytokines, fatigue, and cutaneous erythema in early stage breast cancer patients receiving adjuvant radiation therapy. BioMed Research International, 2014, 523568.Google Scholar
Duijts, S. F. A., Faber, M. M., Oldenburg, H. S. A., et al. (2011). Effectiveness of behavioral techniques and physical exercise on psychosocial functioning and health-related quality of life in breast cancer patients and survivors: a meta-analysis. Psycho-Oncology, 20, 115126.Google Scholar
Galway, K., Black, A., Cantwell, M., et al. (2012). Psychosocial interventions to improve quality of life and emotional wellbeing for recently diagnosed cancer patients. Cochrane Database of Systematic Reviews. http://onlinelibrary.wiley.com/doi/10.1002/14651858.CD007064.pub2/abstract (accessed 23 July 2016).Google Scholar
Hafslund, B. & Nortvedt, M. W. (2009). Mammography screening from the perspective of quality of life: a review of the literature. Scandinavian Journal of Caring Sciences, 23, 539548.Google Scholar
Henselmans, I., Helgeson, V. S., Seltman, H., et al. (2010). Identification and prediction of distress trajectories in the first year after a breast cancer diagnosis. Health and Psychology, 29, 160168.Google Scholar
Hulett, J. M., Armer, J. M., Stewart, B. R., et al. (2015). Perspectives of the breast cancer survivorship continuum: diagnosis through 30 months post-treatment. Journal of Personal Medicine, 5, 174190.Google Scholar
Hutchinson, A. D., Hosking, J. R., Kichenadasse, G., et al. (2012). Objective and subjective cognitive impairment following chemotherapy for cancer: a systematic review. Cancer Treatment Reviews, 38(7), 926934.Google Scholar
Independent UK Panel of Breast Cancer Screening. (2012). The benefits and harms of breast cancer screening: an independent review. Lancet, 380, 17781786.Google Scholar
Jacobsen, P. B. & Andrykowski, M. A. (2015). Tertiary prevention in cancer care: understanding and addressing the psychological dimensions of cancer during the active treatment period. American Psychologist, 70, 134145.Google Scholar
Jassim, G. A., Whitford, D. L., Hickey, A., et al. (2015). Psychological interventions for women with non-metastatic breast cancer. Cochrane Database of Systematic Reviews. http://onlinelibrary.wiley.com/doi/10.1002/14651858.CD008729.pub2/full (accessed 23 July 2016).Google Scholar
Koch, L., Bertram, H., Eberle, A., et al. (2014). Fear of recurrence in long-term breast cancer survivors: still an issue. Results on prevalence, determinants, and the association with quality of life and depression from the Cancer Survivorship – a multi-regional population-based study. Psycho-Oncology, 23, 547554.Google Scholar
Macleod, U., Mitchell, E. D., Burgess, C., et al. (2009). Risk factors for delayed presentation and referral of symptomatic cancer: evidence for common cancers. British Journal of Cancer, 101(S2), S92S101.Google Scholar
McNeely, M. L., Campbell, K., Ospina, M., et al. (2010). Exercise interventions for upper-limb dysfunction due to breast cancer treatment Cochrane Database of Systematic Reviews. http://onlinelibrary.wiley.com/doi/10.1002/14651858.CD005211.pub2/full (accessed 23 July 2016).Google Scholar
McPherson, K., Steel, C., & Dixon, J. M. (2000). Breast cancer: epidemiology, risk factors, and genetics. BMJ, 321(7261), 624628.Google Scholar
Mitchell, A. J., Chan, M., Bhatti, H., et al. (2011). Prevalence of depression, anxiety, and adjustment disorder in oncological, haematological, and palliative-care settings: a meta-analysis of 94 interview-based studies. Lancet Oncology, 12, 160174.Google Scholar
Nelson, H. D., Tyne, K., Naik, A., et al. (2009). Screening for breast cancer: an update for the U.S. Preventive Services Task Force. Annals of Internal Medicine, 151, 727737.Google Scholar
Parkin, D. M., Boyd, L., & Walker, L. C. (2011). The fraction of cancer attributable to lifestyle and environmental factors in the UK in 2010. British Journal of Cancer, 105(S2), S77S81.Google Scholar
Peate, M., Meiser, B., Hickey, M., et al. (2009). The fertility-related concerns, needs and preferences of younger women with breast cancer: a systematic review. Breast Cancer Research and Treatment, 116, 215223.Google Scholar
Rayan, A. & Dadoul, A. (2015). Decrease the length of hospital stay in depressed cancer patients: nurses should be involved. American Journal of Nursing Research, 3, 47.Google Scholar
Sanjida, S., Janda, M., Kissane, D., et al. (2016). A systematic review and meta-analysis of prescribing practices of antidepressants in cancer patients. Psycho-Oncology. http://onlinelibrary.wiley.com/doi/10.1002/pon.4048/abstract (accessed 23 July 2016).Google Scholar
Stein, K. D., Syrjala, K. L. & Andrykowski, M. A. (2008). Physical and psychological long-term and late effects of cancer. Cancer, 112(S11), 25772592.Google Scholar
Torre, L. A., Bray, F., Siegel, R. L., et al. (2015). Global cancer statistics, 2012. CA: A Cancer Journal for Clinicians, 65, 87108.Google Scholar
Trask, P. C. (2004). Assessment of depression in cancer patients. Journal of the National Cancer Institute: Monographs, 2004, 8092.Google Scholar
Turnbull, C. & Hodgson, S. (2005). Genetic predisposition to cancer. Clinical Medicine, 5, 491498.Google Scholar
Wardle, J., Robb, K., Vernon, S., et al. (2015). Screening for prevention and early diagnosis of cancer. American Psychologist, 70, 119133.Google Scholar
Wasteson, E., Brenne, E., Higginson, I. J., et al. (2009). Depression assessment and classification in palliative cancer patients: a systematic literature review. Palliative Medicine, 23, 739753Google Scholar
WHO (2014). WHO position paper on mammography screening. www.who.int/cancer/publications/mammography_screening/en/ (accessed 23 July 2016).Google Scholar

References

Alberg, A. J., Brock, M. V., Ford, J. G., Samet, J. M. & Spivack, S. D. (2013). Epidemiology of lung cancer. Chest, 143(5 Suppl.), e1Se29S.Google Scholar
Arrieta, O., Angulo, L. P., Núñez-Valencia, C., et al. (2013). Smoking cessation interventions within the context of low-dose computed tomography lung cancer screening: a systematic review. Lung Cancer, 98, 9198.Google Scholar
Chen, S.-C.,. Chiou, S.-C., Yu, C.-J., et al. (2016). The unmet supportive care needs: what advanced lung cancer patients’ caregivers need and related factors. Supportive Care in Cancer, 24, 29993009.Google Scholar
Choi, S. U. & Ryu, E. (2016). Effects of symptom clusters and depression on the quality of life in patients with advanced lung cancer. European Journal of Cancer Care. DOI: 10.1111/ecc.12508.Google Scholar
Dougall, A. L., Swanson, J. N., Kyutoku, Y., Belani, C. P. & Baum, A. (2017). Posttraumatic symptoms, quality of life, and survival among lung cancer patients. Journal of Applied Biobehavioral Research, 22, e12065. DOI: 10.1111/jabr.12065.Google Scholar
Ferlay, J., Soerjomataram, I., Ervik, M., et al. (2013). GLOBOCAN 2012 v1.0, Cancer incidence and mortality worldwide: IARC CancerBase No. 11. Lyon: International Agency for Research on Cancer. http://globocan.iarc.fr (accessed 8 August 2016).Google Scholar
Graves, K. D., Arnold, S. M., Love, C. L., et al. (2007). Distress screening in a multidisciplinary lung cancer clinic: prevalence and predictors of clinically significant distress. Lung Cancer, 55, 215224.Google Scholar
Katki, H. A., Kovalchik, S. A., Berg, C. D., Cheung, L. C. & Chaturvedi, A. K. (2016). Development and validation of risk models to select ever-smokers for CT lung cancer screening. Journal of the American Medical Association, 315, 23002311.Google Scholar
Kenzik, K. M., Ganz, P. A., Martin, M. Y., et al. (2015). How much do cancer-related symptoms contribute to health-related quality of life in lung and colorectal cancer patients? A report from the Cancer Care Outcomes Research and Surveillance (CanCORS) Consortium. Cancer, 121, 28312839.Google Scholar
King, J. D., Eickhoff, J., Traynor, A. & Campbell, T. C. (2016). Integrated onco-palliative care associated with prolonged survival compared to standard care for patients with advanced lung cancer: a retrospective review. Journal of Pain and Symptom Management, 51, 10271032.Google Scholar
Linden, W., Vodermaier, A., Mackenzie, R. & Greig, D. (2012). Anxiety and depression after cancer diagnosis: prevalence rates by cancer type, gender, and age. Journal of Affective Disorders, 141, 343351.Google Scholar
Lo, C., Zimmermann, C., Rydall, A., et al. (2010). Longitudinal study of depressive symptoms in patients with metastatic gastrointestinal and lung cancer. Journal of Clinical Oncology, 28, 30843089.Google Scholar
National Lung Screening Trial Research Team, Aberle, D. R., Adams, , et al. (2011). Reduced lung-cancer mortality with low-dose computed tomographic screening. New England Journal of Medicine, 365, 395409.Google Scholar
Nipp, R. D., El-Jawahri, A., Fishbein, J. N., et al. (2016). The relationship between coping strategies, quality of life, and mood in patients with incurable cancer. Cancer, 122, 21102116.Google Scholar
Ost, D. E., Yeung, S.-C. J., Tanoue, L. T. & Gould, M. K. (2013). Clinical and organizational factors in the initial evaluation of patients with lung cancer diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest, 143(5 Suppl.), e121Se141S.Google Scholar
Piñeiro, B., Simmons, V. N., Palmer, A. M., Correa, J. B. & Brandon, T. H. (2016). Smoking cessation interventions within the context of low-dose computed tomography lung cancer screening: a systematic review. Lung Cancer, 98, 9198.Google Scholar
Polanski, J., Jankowska-Polanska, B., Rosinczuk, J., Chabowski, M. & Szymanska-Chabowska, A. (2016). Quality of life of patients with lung cancer. OncoTargets and Therapy, 9, 10231028.Google Scholar
Porter, L. S., Keefe, F. J., Garst, J., et al. (2011). Caregiver-assisted coping skills training for lung cancer: results of a randomized clinical trial. Journal of Pain and Symptom Management, 41, 113.Google Scholar
Simoff, M. J., Lally, B., Slade, M. G., et al. (2013). Symptom management in patients with lung cancer: diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest, 143(5 Suppl.), e455Se497S.Google Scholar
Thornton, A. A., Owen, J. E., Kernstine, K., et al. (2012). Predictors of finding benefit after lung cancer diagnosis. Psycho-Oncology, 21, 365373.Google Scholar
United States Department of Health and Human Services (USDHHS). (2004). The Health Consequences of Smoking: A Report of the Surgeon General. Atlanta, GA: US Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health.Google Scholar
Yun, Y. H., Kim, Y. A., Sim, J. A., et al. (2016). Prognostic value of quality of life score in disease-free survivors of surgically-treated lung cancer. BMC Cancer, 16, 505. DOI: 10.1186/s12885-016-2504-x.Google Scholar

References

Adsul, P., Wray, R., Spradling, K., et al. (2015). Systematic review of decision aids for newly diagnosed patients with prostate cancer making treatment decisions. Journal of Urology, 194(5), 12471252.Google Scholar
American Cancer Society (2016). Cancer Facts and Figures 2016. Atlanta, GA: American Cancer Society, Inc.Google Scholar
Chambers, S. K., Pinnock, C., Lepore, S. J., Hughes, S., & O’Connell, D. L. (2011). A systematic review of psychosocial interventions for men with prostate cancer and their partners. Patient Education and Counseling, 85(2), e75–88.Google Scholar
Ferlay, J., Soerjomataram, I., Dikshit, R., et al. (2015). Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. International Journal of Cancer, 136(5), E359–386.Google Scholar
Fizazi, K., Scher, H. I., Miller, K., et al. (2014). Effect of enzalutamide on time to first skeletal-related event, pain, and quality of life in men with castration-resistant prostate cancer: results from the randomised, phase 3 AFFIRM trial. Lancet Oncology, 15(10), 11471156.Google Scholar
Han, P. K., Kobrin, S., Breen, N., et al. (2013). National evidence on the use of shared decision making in prostate-specific antigen screening. Annals of Family Medicine, 11(4), 306314.Google Scholar
Heidenreich, A., Bellmunt, J., Bolla, M., et al. (2011). EAU guidelines on prostate cancer. Part 1: screening, diagnosis, and treatment of clinically localised disease. European Urology, 59(1), 6171.Google Scholar
Kim, S. P., Gross, C. P., Nguyen, P. L., et al. (2014). Perceptions of active surveillance and treatment recommendations for low-risk prostate cancer: results from a national survey of radiation oncologists and urologists. Medical Care, 52(7), 579585.Google Scholar
Lepore, S. J., Helgeson, V. S., Eton, D. T. & Schulz, R. (2003). Improving quality of life in men with prostate cancer: a randomized controlled trial of group education interventions. Health and Psychology, 22(5), 443452.Google Scholar
Lepore, S. J., Nair, R. G., Davis, S. N., et al. (2016). Patient and physician factors associated with undisclosed prostate cancer screening in a sample of predominantly immigrant black men. Journal of Immigrant and Minority Health. Epub ahead of print.Google Scholar
Marcus, A. C., Diefenbach, M. A., Stanton, A. L., et al. (2013). Cancer patient and survivor research from the cancer information service research consortium: a preview of three large randomized trials and initial lessons learned. Journal of Health Communications, 18(5), 543562.Google Scholar
Parahoo, K., McDonough, S., McCaughan, E., et al. (2015). Psychosocial interventions for men with prostate cancer: a Cochrane systematic review. BJU International, 116(2), 174183.Google Scholar
Resnick, M. J. & Penson, D. F. (2012). Quality of life with advanced metastatic prostate cancer. Urologic Clinics of North America, 39(4), 505515.Google Scholar
Sidana, A., Hernandez, D. J., Feng, Z., et al. (2012). Treatment decision-making for localized prostate cancer: what younger men choose and why. Prostate, 72(1), 5864.Google Scholar
Steginga, S. K., Ferguson, M., Clutton, S., Gardiner, R. A. & Nicol, D. (2008). Early decision and psychosocial support intervention for men with localised prostate cancer: an integrated approach. Supportive Care in Cancer, 16(7), 821829.Google Scholar
Volk, R. J., Hawley, S. T., Kneuper, S., et al. (2007). Trials of decision aids for prostate cancer screening: a systematic review. American Journal of Preventive Medicine, 33(5), 428434.Google Scholar

References

Andersen, P. A., Buller, D. B., Walkosz, B. J. et al. (2016). Environmental variables associated with vacationers’ sun protection at warm weather resorts in North America. Environmental Research, 146, 200206.Google Scholar
Australian Institute of Health and Welfare (2016). Skin Cancer in Australia. Canberra: AIHW.Google Scholar
Autier, P., Boniol, M. & Doré, J.F. (2007). Sunscreen use and increased duration of intentional sun exposure: still a burning issue. International Journal of Cancer, 121(1), 15.Google Scholar
Chang, C., Murzaku, E. C., Penn, L. et al. (2014). More skin, more sun, more tan, more melanoma. American Journal of Public Health, 104(11), e92–99.Google Scholar
Cust, A. E., Jenkins, M. A., Goumas, C. et al. (2011). Early-life sun exposure and risk of melanoma before age 40 years. Cancer Causes and Control, 22(6), 885897.Google Scholar
Dixon, H. G., Warne, C. D., Scully, M. L. et al. (2011). Does the portrayal of tanning in Australian women’s magazines relate to real women’s tanning beliefs and behavior? Health Education & Behavior, 38(2), 132142.Google Scholar
Dobbinson, S. J., Jamsen, K., Dixon, H. G., et al. (2014). Assessing population-wide behaviour change: concordance of 10-year trends in self-reported and observed sun protection. International Journal of Public Health, 59(1), 157166.Google Scholar
Dobbinson, S. J., White, V., Wakefield, M. A., et al. (2009). Adolescents’ use of purpose built shade in secondary schools: cluster randomised controlled trial. BMJ, 338, b95.Google Scholar
Dobbinson, S., Wakefield, M., Hill, D. et al. (2008). Prevalence and determinants of Australian adolescents’ and adults’ weekend sun protection and sunburn, summer 2003–2004. Journal of the American Academy of Dermatology, 59(4), 602614.Google Scholar
Fransen, M., Karahalios, A., Sharma, N., et al. (2012). Non-melanoma skin cancer in Australia. Medical Journal of Australia, 197(10), 565568.Google Scholar
Friedman, B., English, J. C. & Ferris, L.K. (2015). Indoor tanning, skin cancer and the young female patient: a review of the literature. Journal of Pediatric & Adolescent Gynecology, 28(4), 275283.Google Scholar
Gies, P., Roy, C. & Udelhofen, P. (2004). Solar and ultraviolet radiation. In Hill, D., Elwood, J. M. & English, D. R. (eds), Prevention of Skin Cancer (pp. 2154). Dordrecht: Kluwer Academic Publishers.Google Scholar
Glanz, K., Buller, D. B. & Saraiya, M. (2007). Reducing ultraviolet radiation exposure among outdoor workers: state of the evidence and recommendations. Environmental Health, 6 ,22.Google Scholar
Glanz, K., Yaroch, A. L., Dancel, M. et al. (2008.). Measures of sun exposure and sun protection practices for behavioral and epidemiologic research. Archives of Dermatology, 144(2), 217222.Google Scholar
Global Burden of Disease Cancer Collaboration, Fitzmaurice, C., Dicker, D., et al. (2015). The global burden of cancer 2013. JAMA Oncology 1(4), 505527Google Scholar
Gordon, L., Youl, P. H., Elwood, M., et al. (2007). Diagnosis and management costs of suspicious skin lesions from a population-based melanoma screening programme. Journal of Medical Screening, 14(2), 98102.Google Scholar
Guy, G. P. & Ekwueme, D. U. (2011). Years of potential life lost and indirect costs of melanoma and non-melanoma skin cancer: a systematic review of the literature. Pharmacoeconomics, 29(10), 863874.Google Scholar
Haque, T., Rahman, K. M., Thurston, D. E., et al. (2015). Topical therapies for skin cancer and actinic keratosis. European Journal of Pharmaceutical Sciences, 77, 279289.Google Scholar
Hill, D. J., Dobbinson, S. J. & Makin, J. (2009). Interventions to lower ultraviolet radiation exposure: education, legislation and public policy. In: ASCO 2009 Education Book. Arlington, VA: ASCO.Google Scholar
Hill, D. & Boulter, J. (1996). Sun protection behaviour: determinants and trends. Cancer Forum, 20, 204211.Google Scholar
Hill, D., Rassaby, J. & Gardner, G. (1984). Determinants of intentions to take precautions against skin cancer. Community Health Studiesiesies, 8(1), 3344.Google Scholar
Jackson, K. M. & Aiken, L. S. (2000). A psychosocial model of sun protection and sunbathing in young women: the impact of health beliefs, attitudes, norms, and self-efficacy for sun protection. Health and Psychology, 19(5), 469478.Google Scholar
Joel Hillhouse, G. C., Thompson, J. K., Jacobsen, P. B. et al. (2009). Investigating the role of appearance-based factors in predicting sunbathing and tanning salon use. Journal of Behavioral Medicine, 32(6), 532544.Google Scholar
Lorenc, T., Jamal, F. & Cooper, C. (2013). Resource provision and environmental change for the prevention of skin cancer: systematic review of qualitative evidence from high-income countries. Health Promotion International, 28(3), 345356.Google Scholar
Mayer, J. A., Woodruff, S. I., Slymen, D. J., et al. (2011). Adolescents’ use of indoor tanning: a large-scale evaluation of psychosocial, environmental, and policy-level correlates. American Journal of Public Health, 101(5), 930938.Google Scholar
Noar, S. M., Myrick, J. G., Zeitany, A., et al. (2015). Testing a social cognitive theory-based model of indoor tanning: implications for skin cancer prevention messages. Health Communications, 30(2), 164174.Google Scholar
Norval, M., Lucas, R. M., Cullen, A. P., et al. (2011). The human health effects of ozone depletion and interactions with climate change. Photochemical & Photobiological Sciences, 10(2), 199225.Google Scholar
Olsen, C. M., Wilson, L. F., Green, A. C., et al. (2015). Cancers in Australia attributable to exposure to solar ultraviolet radiation and prevented by regular sunscreen use. Australian and New Zealand Journal of Public Health, 39(5), 471476.Google Scholar
Potente, S., Coppa, K., Williams, A., et al. (2011). Legally brown: using ethnographic methods to understand sun protection attitudes and behaviours among young Australians ‘I didn’t mean to get burnt – it just happened!’. Health Education Research, 26(1), 3952.Google Scholar
Radiotis, G., Roberts, N., Czajkowska, A., Khanna, M. & Korner, A. (2014). Nonmelanoma skin cancer: disease-specific quality-of-life concerns and distress. Oncology Nursing Forum, 41(1), 5765.Google Scholar
Sandhu, P. K., Elder, R., Patel, M., et al. (2016). Community-wide interventions to prevent skin cancer: two community guide systematic reviews. American Journal of Preventive Medicine, 51(4), 531539.Google Scholar
Saraiya, M., Glanz, K., Briss, P. A., et al. (2004). Interventions to prevent skin cancer by reducing exposure to ultraviolet radiation: a systematic review. American Journal of Preventive Medicine, 27(5), 422466.Google Scholar
Shoveller, J. A. & Lovato, C. Y. (2001). Measuring self-reported sunburn: challenges and recommendations. Chronic Diseases in Canada, 22(3–4), 8398.Google Scholar
Sinclair, C., Makin, J., Tang, A., et al. (2014). The role of public health advocacy in achieving an outright ban on commercial tanning beds in Australia. American Journal of Public Health, 104(2), e7–9.Google Scholar
Sneyd, M. J. & Cox, B. (2013). A comparison of trends in melanoma mortality in New Zealand and Australia: the two countries with the highest melanoma incidence and mortality in the world. BMC Cancer, 13, 372.Google Scholar
Starfelt Sutton, L. C. & White, K.M. (2016). Predicting sun-protective intentions and behaviours using the theory of planned behaviour: a systematic review and meta-analysis. Psychology and Health, 31(11), 12721292.Google Scholar
Street, T. D. & Thomas, D. L. (2015). Employee factors associated with interest in improving sun protection in an Australian mining workforce. Health Promotion Journal of Australia, 26(1), 3338.Google Scholar
Tripp, M. K., Watson, M., Balk, S. J. et al. (2016). State of the science on prevention and screening to reduce melanoma incidence and mortality: the time is now. CA: A Cancer Journal for Clinicians. DOI: 10.3322/caac.21352.Google Scholar
Ugurel, S., Röhmel, J., Ascierto, P. A., et al. (2016). Survival of patients with advanced metastatic melanoma: the impact of novel therapies. European Journal of Cancer, 53, 125134.Google Scholar
Vuong, K., Armstrong, B. K., Weiderpass, E., et al. (2016). Development and external validation of a melanoma risk prediction model based on self-assessed risk factors. JAMA Dermatology, 152(8), 889896.Google Scholar
Wallingford, S. C., Iannacone, M. R., Youlden, D. R., et al. (2015). Comparison of melanoma incidence and trends among youth under 25 years in Australia and England, 1990–2010. International Journal of Cancer, 137(9), 22272233.Google Scholar
Watts, C. G., Cust, A. E., Menzies, S. W., et al. (2015). Specialized surveillance for individuals at high risk for melanoma: a cost analysis of a high-risk clinic. JAMA Dermatology, 151(2), 178186.Google Scholar
Wernli, K. J., Henrikson, N. B., Morrison, C. C., et al. (2016). Screening for skin cancer in adults: updated evidence report and systematic review for the US Preventive Services Task Force. JAMA, 316(4), 436447.Google Scholar
World Health Organization (2016). Ultraviolet radiation and the Intersun programme: UV Index. www.who.int/uv/intersunprogramme/activities/uv_index/en/ (accessed 3 September 2016).Google Scholar

References

Anderson, L. & Taylor, R. S. (2014). Cardiac rehabilitation for people with heart disease: an overview of Cochrane systematic reviews. Cochrane Database of Systematic Reviews, 12, CD011273.Google Scholar
Ayerbe, L., Ayis, S., Wolfe, C. D. & Rudd, A. G. (2013). Natural history, predictors and outcomes of depression after stroke: systematic review and meta-analysis. British Journal of Psychiatry, 202(1), 1421.CrossRefGoogle ScholarPubMed
BACPR. (2012). BACPR standards and core components for cardiovascular disease prevention and rehabilitation. www.bacpr.com/resources/46C_BACPR_Standards_and_Core_Components_2012.pdf.Google Scholar
Boehm, J. K. & Kubzansky, L. D. (2012). The heart’s content: the association between positive psychological well-being and cardiovascular health. Psychological Bulletin, 138(4), 655691.Google Scholar
Byrne, M., Doherty, S., Fridlund, B. G., et al. (2016). Sexual counselling for sexual problems in patients with cardiovascular disease. Cochrane Database of Systematic Reviews, 2, CD010988.Google Scholar
Chida, Y. & Steptoe, A. (2008). Positive psychological well-being and mortality: a quantitative review of prospective observational studies. Psychosomatic Medicine, 70(7), 741756.Google Scholar
Cunningham, M. A., Swanson, V., O’Carroll, R. E. & Holdsworth, R. J. (2012). Randomized clinical trial of a brief psychological intervention to increase walking in patients with intermittent claudication. British Journal of Surgery, 99(1), 4956.Google Scholar
Dalal, H. M., Doherty, P. & Taylor, R. S. (2015). Cardiac rehabilitation. BMJ, 351. https://doi.org/10.1136/bmj.h5000.Google Scholar
DuBois, C. M., Lopez, O. V., Beale, E. E., et al. (2015). Relationships between positive psychological constructs and health outcomes in patients with cardiovascular disease: a systematic review. International Journal of Cardiology, 195, 265280.Google Scholar
Edmondson, D., Richardson, S., Falzon, L., et al. (2012). Posttraumatic stress disorder prevalence and risk of recurrence in acute coronary syndrome patients: a meta-analytic review. PLoS One, 7(6), e38915.Google Scholar
Everson-Rose, S. A. & Lewis, T. T. (2005). Psychosocial factors and cardiovascular diseases. Annual Review of Public Health, 26, 469500.Google Scholar
Fransson, E. I., Nyberg, S. T., Heikkila, K., et al. (2015). Job strain and the risk of stroke: an individual-participant data meta-analysis. Stroke, 46(2), 557559.Google Scholar
Hackett, M. L. & Pickles, K. (2014). Part I: frequency of depression after stroke: an updated systematic review and meta-analysis of observational studies. International Journal of Stroke, 9(8), 10171025.Google Scholar
Holt-Lunstad, J., Smith, T. B. & Layton, J. B. (2010). Social relationships and mortality risk: a meta-analytic review. PLoS Medicine, 7(7), e1000316.Google Scholar
Jiang, W. (2015). Emotional triggering of cardiac dysfunction: the present and future. Current Cardiology Reports, 17(10), 91.Google Scholar
Johnston, M., Bonetti, D., Joice, S., et al. (2007). Recovery from disability after stroke as a target for a behavioural intervention: results of a randomized controlled trial. Disability and Rehabilitation, 29(14), 11171127.Google Scholar
Kalra, L., Evans, A., Perez, I., et al. (2004). Training carers of stroke patients: randomised controlled trial. BMJ, 328(7448), 1099.Google Scholar
Kaplan, G. A. & Keil, J. E. (1993). Socioeconomic factors and cardiovascular disease: a review of the literature. Circulation, 88(4 Pt 1), 19731998.Google Scholar
Kivimaki, M., Nyberg, S. T., Batty, G. D., et al. (2012). Job strain as a risk factor for coronary heart disease: a collaborative meta-analysis of individual participant data. Lancet, 380(9852), 14911497.Google Scholar
Kronish, I. M. & Ye, S. (2013). Adherence to cardiovascular medications: lessons learned and future directions. Progress in Cardiovascular Diseases, 55(6), 590600.Google Scholar
Lee, S., Colditz, G. A., Berkman, L. F. & Kawachi, I. (2003). Caregiving and risk of coronary heart disease in U.S. women: a prospective study. American Journal of Preventive Medicine, 24(2), 113119.Google Scholar
Molloy, G. J., Johnston, D. W. & Witham, M. D. (2005). Family caregiving and congestive heart failure: review and analysis. European Journal of Heart Failure, 7(4), 592603.Google Scholar
Molloy, G. J., Stamatakis, E., Randall, G. & Hamer, M. (2009). Marital status, gender and cardiovascular mortality: behavioural, psychological distress and metabolic explanations. Social Science and Medicine, 69(2), 223228.Google Scholar
Naderi, S. H., Bestwick, J. P. & Wald, D. S. (2012). Adherence to drugs that prevent cardiovascular disease: meta-analysis on 376,162 patients. American Journal of Medicine, 125(9), 882887.Google Scholar
Nicholson, A., Kuper, H. & Hemingway, H. (2006). Depression as an aetiologic and prognostic factor in coronary heart disease: a meta-analysis of 6362 events among 146 538 participants in 54 observational studies. European Heart Journal, 27(23), 27632774.Google Scholar
Nieuwlaat, R., Wilczynski, N., Navarro, T., et al. (2014). Interventions for enhancing medication adherence. Cochrane Database of Systematic Reviews, 11, CD000011.Google Scholar
O’Neil, A., Sanderson, K. & Oldenburg, B. (2010). Depression as a predictor of work resumption following myocardial infarction (MI): a review of recent research evidence. Health and Quality of Life Outcomes, 8, 95.Google Scholar
O’Reilly, D., Rosato, M. & Maguire, A. (2015). Caregiving reduces mortality risk for most caregivers: a census-based record linkage study. International Journal of Epidemiology, 44(6), 19591969.Google Scholar
Pittman, D. G., Chen, W., Bowlin, S. J. & Foody, J. M. (2011). Adherence to statins, subsequent healthcare costs, and cardiovascular hospitalizations. American Journal of Cardiology, 107(11), 16621666.Google Scholar
Randall, G., Molloy, G. J. & Steptoe, A. (2009). The impact of an acute cardiac event on the partners of patients: a systematic review. Health Psychology Review, 3(1), 184.Google Scholar
Robles, T. F., Slatcher, R. B., Trombello, J. M. & McGinn, M. M. (2014). Marital quality and health: a meta-analytic review. Psychological Bulletin, 140(1), 140187.Google Scholar
Roger, V. L. (2013). Epidemiology of heart failure. Circulation Research, 113(6), 646659.Google Scholar
Rozanski, A. (2014). Behavioral cardiology: current advances and future directions. Journal of the American College of Cardiology, 64(1), 100110.Google Scholar
Rutledge, T., Reis, V. A., Linke, S. E., Greenberg, B. H. & Mills, P. J. (2006). Depression in heart failure: a meta-analytic review of prevalence, intervention effects, and associations with clinical outcomes. Journal of the American College of Cardiology, 48(8), 15271537.Google Scholar
Sin, N. L. (2016). The protective role of positive well-being in cardiovascular disease: review of current evidence, mechanisms, and clinical implications. Current Cardiology Reports, 18(11), 106.Google Scholar
Sin, N. L., Moskowitz, J. T. & Whooley, M. A. (2015). Positive affect and health behaviors across 5 years in patients with coronary heart disease: the heart and soul study. Psychosomatic Medicine, 77(9), 10581066.Google Scholar
Smyth, A., O’Donnell, M., Lamelas, P., et al. (2016). Physical activity and anger or emotional upset as triggers of acute myocardial infarction: the INTERHEART Study. Circulation, 134(15), 10591067.Google Scholar
Steinke, E. E., Jaarsma, T., Barnason, S. A., et al. (2013). Sexual counselling for individuals with cardiovascular disease and their partners: a consensus document from the American Heart Association and the ESC Council on Cardiovascular Nursing and Allied Professions (CCNAP). European Heart Journal, 34(41), 32173235.Google Scholar
Steptoe, A. & Molloy, G. J. (2007). Personality and heart disease. Heart, 93(7), 783784.Google Scholar
Suls, J. & Bunde, J. (2005). Anger, anxiety, and depression as risk factors for cardiovascular disease: the problems and implications of overlapping affective dispositions. Psychological Bulletin, 131(2), 260300.Google Scholar
Thombs, B. D., Bass, E. B., Ford, D. E., et al. (2006). Prevalence of depression in survivors of acute myocardial infarction. Journal of General Internal Medicine, 21(1), 3038.Google Scholar
Treger, I., Shames, J., Giaquinto, S. & Ring, H. (2007). Return to work in stroke patients. Disability and Rehabilitation, 29(17), 13971403.Google Scholar
Valtorta, N. K., Kanaan, M., Gilbody, S., Ronzi, S. & Hanratty, B. (2016). Loneliness and social isolation as risk factors for coronary heart disease and stroke: systematic review and meta-analysis of longitudinal observational studies. Heart, 102(13), 10091016.Google Scholar
Vrijens, B., Vincze, G., Kristanto, P., Urquhart, J. & Burnier, M. (2008). Adherence to prescribed antihypertensive drug treatments: longitudinal study of electronically compiled dosing histories. BMJ, 336(7653), 11141117.Google Scholar
Whalley, B., Rees, K., Davies, P., et al. (2011). Psychological interventions for coronary heart disease. Cochrane Database of Systematic Reviews, 8, CD002902.Google Scholar
WHO. (2016). Cardiovascular diseases (CVDs). World Health Organization Fact Sheet. www.who.int/mediacentre/factsheets/fs317/en/Google Scholar

References

Afari, N. & Buchwald, D. (2003). Chronic fatigue syndrome: a review. The American Journal of Psychiatry, 160, 221236.Google Scholar
Cairns, R. & Hotopf, M. (2005). Review article: the prognosis of chronic fatigue syndrome. Occupational Medicine, 55, 2031.Google Scholar
Castell, B., Kazantzis, N. & Moss-Morris, R. (2011). Cognitive behavioural therapy and graded exercise for chronic fatigue syndrome: a meta-analysis. Clinical Psychology: Science and Practice, 18, 311324.Google Scholar
Chalder, T., Goldsmith, K., White, P., Sharpe, M. & Pickles, A. (2015). Rehabilitative therapies for chronic fatigue syndrome: a secondary mediation analysis of the PACE trial. Lancet Psychiatry, 2, (2), 141152.Google Scholar
Cleare, A. J. & Wessely, S. C. (1996). Chronic fatigue syndrome: a stress disorder? British Journal of Hospital Medicine, 55, 571574.Google Scholar
Deale, A. & Wessely, S. (2001). Patients’ perceptions of medical care in chronic fatigue syndrome. Social Science and Medicine, 52, 18591864.Google Scholar
Fukuda, K., Straus, S., Hickie, I., et al. (1994). The chronic fatigue syndrome: a comprehensive approach to its definition and study. Annals of Internal Medicine, 121, 953959.Google Scholar
Hatcher, S. & House, A. (2003). Life events, difficulties and dilemmas in the onset of chronic fatigue syndrome: a case-control study. Psychological Medicine, 33, 11851192.Google Scholar
Larun, L., Brurberg, K. G., Odgaard-Jensen, J. & Price, J.R. (2016). Exercise therapy for chronic fatigue syndrome. Cochrane Database of Systematic Reviews, 6, CD003200. DOI: 10.1002/14651858.CD003200.pub5.Google Scholar
Petrie, K., Moss-Morris, R. & Weinman, J. (1995). Catastophic beliefs and their implications in chronic fatigue syndrome. Journal of Psychosomatic Research, 39, 3137.Google Scholar
Price, J., Mitchell, E., Tidy, E. & Hunot, V. (2008). Cognitive behaviour therapy for chronic fatigue syndrome in adults. Cochrane Database of Systematic Reviews, 3. CD001027. DOI: 10.1002/14651858.CD001027.pub2.Google Scholar
Prins, J. B., van der Meer, J. W. & Bleijenberg, G. (2006). Chronic fatigue syndrome. Lancet, 367, 346355.Google Scholar
Reid, S., Chalder, T., Cleare, A., Hotopf, M. & Wessely, S. (2004). Chronic fatigue syndrome. Clinical Evidence, 11, 13.Google Scholar
Rimes, K. A. & Chalder, T. (2005). Treatments for chronic fatigue syndrome. Occupational Medicine, 55, 3239.Google Scholar
Sharpe, M., Arcard, L. C., Banatvala, J. E., et al. (1991). A report: chronic fatigue syndrome – guidelines for research. Journal of the Royal Society of Medicine, 84, 118121.Google Scholar
Stahl, D., Rimes, K. & Chalder, T. (2014). Mechanisms of change underlying the efficacy of cognitive behaviour therapy for chronic fatigue syndrome in a specialist clinic: a mediation analysis. Psychological Medicine, 44, 13311344.Google Scholar
Van Houdenhove, B., Neerinckx, E., Onghena, P. et al. (2002). Daily hassles reported by chronic fatigue syndrome and fibromyalgia patients in tertiary care: a controlled quantitative and qualitative study. Psychotherapy and Psychosomatics, 71, 207213.Google Scholar
Wessely, S. (1995). The epidemiology of chronic fatigue syndrome. Epidemiologic Reviews, 17, 139151.Google Scholar
Wessely, S., David, A., Butler, S. & Chalder, T. (1991). The cognitive behavioural management of the postviral fatigue syndrome. In Jenkins, R. & Mowbray, J. (eds), The Postviral Syndrome (ME) (pp. 297334). Chichester: Wiley.Google Scholar
Wessely, S., Hotopf, M. & Sharpe, M. (1998). Chronic Fatigue and its Syndromes. New York: Oxford University Press.Google Scholar
White, P., Goldsmith, K., Johnson, A., et al. (2011). Comparison of adaptive pacing therapy, cognitive behaviour therapy, graded exercise therapy, and specialist medical care for chronic fatigue syndrome (PACE): a randomised trial. Lancet, 377, 823836.Google Scholar
White, P., Goldsmith, K., Johnson, A., Chalder, T. & Sharpe, M. (2013). Recovery from chronic fatigue syndrome after treatments given in the PACE trial. Psychological Medicine, 43(10), 22272235.Google Scholar
Wilson, A., Hickie, I., Lloyd, A., et al. (1994). Longitudinal study of outcome of chronic fatigue syndrome. British Medical Journal, 308, 756759.Google Scholar

References

Agle, D. P., Baum, G. L., Chester, E. H. & Wendt, M. (1973). Multidiscipline treatment of chronic pulmonary insufficiency: 1. Psychologic aspects of rehabilitation. Psychosomatic Medicine, 35, 4149.Google Scholar
Atkins, C. J., Kaplan, R. M., Timms, R. M., Reinsch, S. & Lofback, K. (1984). Behavioral exercise programs in the management of chronic obstructive pulmonary disease. Journal of Consulting and Clinical Psychology, 52, 591603.Google Scholar
Bartlett, Y. K., Sheeran, P. & Hawley, M. S. (2014). Effective behaviour change techniques in smoking cessation interventions for people with chronic obstructive pulmonary disease: a meta-analysis. British Journal of Health Psychology, 19, 181203.Google Scholar
Cleutjens, F. A. H. M., Franssen, F. M. E., Spruit, M. A., et al. (2017). Domain-specific cognitive impairment in patients with COPD and control subjects. International Journal of COPD, 12, 111.Google Scholar
GOLD (Global initiative for chronic Obstructive Lung Disease) (2017). Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease. Bethesda, MD: NIH,.Google Scholar
Guyatt, G. H., Berman, L. B., Townsend, M., et al. (1987). A measure of quality of life for clinical trials in chronic lung disease. Thorax, 42, 773778.Google Scholar
Hill, K., Vogiatzis, I. & Burtin, C. (2013). The importance of pulmonary rehabilitation, other than exercise training, in COPD. European Respiratory Review, 22, 405413.Google Scholar
Jones, P. W., Quirk, F. H., Baveystock, C. M. & Littlejohns, P. A. (1992). Self-complete measure of health status for chronic airflow limitation. American Review of Respiratory Disease, 145, 13211327.Google Scholar
Jonkman, N. H., Schuurmans, M. J., Groenwold, R. H. H., Hoes, A. W. & Trappenburg, J. C. A. (2016). Identifying components of self-management interventions that improve health-related quality of life in chronically ill patients: systematic review and meta-regression analysis. Patient Education and Counseling, 99, 10781098.Google Scholar
Kaptein, A. A., Scharloo, M., Fischer, M. J., et al. (2009). 50 years of psychological research on patients with COPD: road to ruin or highway to heaven? Respiratory Medicine, 103, 311.Google Scholar
Kaptein, A. A., Scharloo, M., Fischer, M. J., et al. (2008). Illness perceptions and COPD: an emerging field for COPD patient management. Journal of Asthma, 45, 625629.Google Scholar
Kaptein, A. A., Fischer, M. J. & Scharloo, M. (2014). Self-management in patients with COPD: theoretical context, content, outcomes, and integration into clinical care. International Journal of COPD, 9, 907917.Google Scholar
Kaptein, A. A., Meulenberg, F. & Smyth, J. M. (2015). A breath of fresh air: images of respiratory illness in novels, poems, films, music and paintings. Journal of Health Psychology, 20, 246258.Google Scholar
Kinsman, R. A., Yaroush, R. A., Fernandez, E., et al. (1983). Symptoms and experiences in chronic bronchitis and emphysema. Chest, 83, 755761.Google Scholar
Levinson, A. H. (2017). Where the U.S. tobacco epidemic still rages: most remaining smokers have lower socioeconomic status. Journal of Health Care for the Poor and Underserved, 28, 100107.Google Scholar
Luthy, C., Cedraschi, C., Pasquina, P., et al. (2013). Perception of chronic respiratory impairment in patients’ drawings. Journal of Rehabilitation Medicine, 45, 694700.Google Scholar
McCarthy, B., Casey, D., Devane, D., et al. (2015). Pulmonary rehabilitation for chronic obstructive pulmonary disease. Cochrane Database of Systematic Reviews, 2, CD003793.Google Scholar
Nici, L., Donner, C., Wouters, E., et al. (2006). ATS/ERS statement on pulmonary rehabilitation. American Journal of Respiratory and Critical Care Medicine, 173, 13901413.Google Scholar
Peytremann-Bridevaux, I., Staeger, P., Brideveaux, P. O., Ghali, W. A. & Burnand, B. (2008). Effectiveness of chronic obstructive pulmonary disease-management programs: systematic review and meta-analysis. American Journal of Medicine, 121, 433443.Google Scholar
Ringbaek, T. J. & Lange, P. (2014). Trends in long-term oxygen therapy for COPD in Denmark. Respiratory Medicine, 108, 511516.Google Scholar
Scharloo, M. & Kaptein, A. A. (2003). Chronic obstructive pulmonary disease: a behavioural medicine approach. In Llewelyn, S. & Kennedy, P. (eds), Handbook of Clinical Health Psychology (pp. 155179). Chichester: Wiley.Google Scholar
Schou, L., Østergaard, B., Rasmussen, L. S., Rydahl-Hansen, S. & Phanareth, K. (2012). Cognitive dysfunction in patients with chronic obstructive pulmonary disease: a systematic review. Respiratory Medicine, 106, 10711081.Google Scholar
Vaske, I., Thöne, M. F., Kühl, K., et al. (2015). For better or for worse: a longitudinal study on dyadic coping and quality of life among couples with a partner suffering from COPD. Journal of Behavioral Medicine, 38, 851862.Google Scholar
Webb, M. W. & Lawton, A. H. (1961). Basic personality traits characteristic of patients with primary obstructive pulmonary emphysema. Journal of the American Geriatrics Society, 9, 590610.Google Scholar

References

Alappattu, M. J. & Bishop, M. D. (2011). Psychological factors in chronic pelvic pain in women: relevance and application of the fear-avoidance model of pain. Physical Therapy, 91, 15421550.Google Scholar
As-Sanie, S., Clevenger, L. A., Geisser, M. E., et al. (2014). History of abuse and its relationship to pain experience and depression in women. American Journal of Obstetrics & Gynecology. 210(4):317.e1–8. DOI: 10.1016/j.ajog.2013.12.048.Google Scholar
Ballweg, M. L. (2004). Impact of endometriosis on women’s health: comparative historical data show that the earlier the onset, the more severe the disease. Best Practice & Research Clinical Obstetrics & Gynaecology, 18, 201218.Google Scholar
Bawa, F. L., Mercer, S. W., Atherton, R. J., et al. (2015). Does mindfulness improve outcomes in patients with chronic pain? Systematic review and meta-analysis. British Journal of General Practice, 65, e387–400.Google Scholar
Berkley, K. J., Rapkin, A. J. & Papka, R. E. (2005). The pains of endometriosis. Science, 308(5728), 15871589.Google Scholar
Bryant, C., Cockburn, R., Plante, A. F., et al. (2016). The psychological profile of women presenting to a multidisciplinary clinic for chronic pelvic pain: high levels of psychological dysfunction and implications for practice. Journal of Pain Research, 9, 10491056.Google Scholar
Carey, E. T. & As-Sanie, S. (2016). New developments in the pharmacotherapy of neuropathic chronic pelvic pain. Future Science OA, 2(4). DOI: 10.4155/fsoa-2016-0048.Google Scholar
De Graaff, A. A., Van Lankveld, J., Smits, L. J., et al. (2016). Dyspareunia and depressive symptoms are associated with impaired sexual functioning in women with endometriosis, whereas sexual functioning in their male partners is not affected. Human Reproduction, 31(11), 25772586.Google Scholar
Dunne, F. (2011). Depression and pain: is there a common pathway? British Journal of Medical Practitioners, 4.Google Scholar
Fenton, B. W. (2007). Limbic associated pelvic pain: a hypothesis to explain the diagnostic relationships and features of patients with chronic pelvic pain. Medical Hypotheses, 69(2), 282286.Google Scholar
Greene, R. S. P., Cleary, S. D., Ballweg, M. L. & Sinaii, N. (2009). Diagnostic experience among 4,334 women reporting surgically diagnosed endometriosis. Fertility and Sterility, 91, 3239.Google Scholar
Heim, C., Ehlert, U., Hanker, J. P. et al. (1998). Abuse-related posttraumatic stress disorder and alterations of the of the hypothalamic-pituitary-adrenal axis in women with chronic pelvic pain. Psychosomatic Medicine, 60(3), 309318.Google Scholar
Howard, F. M. (2003). The role of laparoscopy in the chronic pelvic pain patient. Clinical Obstetrics and Gynecology, 46(4), 749766.Google Scholar
Kaya, S., Hermans, L., Willems, T., et al. (2013). Central sensitization in urogynecological chronic pelvic pain: a systematic literature review. Pain Physician Journal, 16(4), 291308.Google Scholar
Latthe, P., Mignini, L., Gray, R., Hills, R. & Khan, K. (2006). Factors predisposing women to chronic pelvic pain: systematic review. BMJ, 332(7544), 749755.Google Scholar
Leserman, J., Zolnoun, D., Meltzer-Brody, S., et al. (2006). Identification of diagnostic subtypes of chronic pelvic pain and how subtypes differ in health status and trauma history. American Journal of Obstetrics & Gynecology, 195(2), 554560; discussion 560–561.Google Scholar
Meltzer-Brody, S., Leserman, J., Zolnoun, D., et al. (2007). Trauma and posttraumatic stress disorder in women with chronic pelvic pain. Obstetrics & Gynecology, 109(4), 902908.Google Scholar
Miller-Matero, L. R., Saulino, C., Clark, S., et al. (2016). When treating the pain is not enough: a multidisciplinary approach for chronic pelvic pain. Archives of Women’s Mental Health, 19(2), 349354. DOI: 10.1007/s00737-015-0537-9.Google Scholar
Peters, A. A., Van Dorst, E., Jellis, B., et al. (1991). A randomized clinical trial to compare two different approaches in women with chronic pelvic pain. Obstetrics & Gynecology, 77, 740744.Google Scholar
Romao, A. P., Gorayeb, R., Romao, G. S. & Poli-Neto, O. B. (2009). High levels of anxiety and depression have a negative effect on quality of life. International Journal of Clinical Practice, 63(5), 707711. DOI: 10.1111/j.1742-1241.2009.02034.x.Google Scholar
Simoens, S., Dunselman, G., Dirksen, C., et al. (2012). The burden of endometriosis: costs and quality of life of women with endometriosis and treated in referral centres. Human Reproduction, 27, 12921299.Google Scholar
Tirlapur, S. A., Kuhrt, K., Chaliha, C., et al (2013). The ‘evil twin syndrome’ in chronic pelvic pain: a systematic review of prevalence studies of bladder pain syndrome and endometriosis. International Journal of Surgery, 11(3), 233237. DOI: 10.1016/j.ijsu.2013.02.003.Google Scholar
Williams, A. C., Eccleston, C. & Morley, S. (2012). Psychological therapies for the management of chronic pain (excluding headache) in adults. Cochrane Database of Systematic Reviews, 11, CD007407.Google Scholar
Zondervan, K. T., Yudkin, P. L., Vessey, M. P., et al. (2001). Chronic pelvic pain in the community–symptoms, investigations, and diagnoses. American Journal of Obstetrics & Gynecology, 184(6), 11491155.Google Scholar

References

Bell, J. C., Raynes-Greenow, C., Turner, R., et al. (2016). School performance for children with cleft lip and palate: a population-based study. Child: Care, Health, and Development. Epub ahead of print.Google Scholar
Berry, L. A., Witt, P. D., Marsh, J. L., Pilgram, T. K. & Eder, R. A. (1997). Personality attributions based on speech samples of children with repaired cleft palates. Cleft Palate Craniofacial Journal, 34, 385389.Google Scholar
Broder, H. L., Smith, F. B. & Strauss, R. P. (1994). Effects of visible and invisible orofacial defects on self-perception and adjustment across developmental eras and gender. Cleft Palate-Craniofacial Journal, 31, 429436.Google Scholar
Chapman, K. L. (2011). The relationship between early reading skills and speech and language performance in young children with cleft lip and palate. Cleft Palate Craniofacial Journal, 48(3), 301311.Google Scholar
Conrad, A. L., McCoy, T. E., DeVolder, I., Richman, L. C. & Nopoulos, P. (2014). Reading in subjects with an oral cleft: speech, hearing and neuropsychological skills. Neuropsychology, 28(3), 415422.Google Scholar
Coy, K., Speltz, M. L., Jones, K., Hill, S. & Omnell, M. L. (2000). Do psychosocial variables predict the physical growth of infants with orofacial clefts? Journal of Developmental & Behavioral Pediatrics, 21, 198206.Google Scholar
Feragen, K. B. & Borge, A. I. (2010). Peer harassment and satisfaction with appearance in children with and without a facial difference. Body Image, 7(2), 97105.Google Scholar
Hutchinson, K., Wellman, M. A., Noe, D. A. & Kahn, A. (2011). The psychosocial effects of cleft lip and palate in non-Anglo populations: a cross-cultural meta-analysis. Cleft Palate Craniofacial Journal, 48(5), 497508.Google Scholar
Lee, A., Gibbon, F. E. & Spivey, K. (2016). Children’s attitudes toward peers with unintelligible speech associated with cleft lip and/or palate. Cleft Palate Craniofacial Journal. Epub ahead of print.Google Scholar
Mai, C. T., Cassell, C. H., Meyer, R. E., et al. (2014). Birth defects data from population-based birth defects surveillance programs in the United States, 2007 to 2011: highlighting orofacial clefts. Birth Defects Research Part A: Clinical and Molecular Teratology, 100(11), 895904.Google Scholar
Montirosso, R., Fedeli, C., Murray, L., et al. (2012). The role of negative maternal affective states and infant temperament in early interactions between infants with cleft lip and their mothers. Journal of Pediatric Psychology, 37, 241250.Google Scholar
Murray, J. C. (2002). Gene/environment causes of cleft lip and/or palate. Clinical Genetics, 61(4), 248256.Google Scholar
Murray, L., Hentges, F., Hill, J., et al. (2008). The effect of cleft lip and palate, and the timing of lip repair on mother–infant interactions on infant development. Journal of Child Psychology and Psychiatry, 49, 115123.Google Scholar
Nidey, N., Moreno Uribe, L. M., Marazita, M. M. & Wehby, G. L. (2016). Psychosocial well-being of parents of children with oral clefts. Child: Care, Health, and Development, 42(1), 4250.Google Scholar
Queiroz Herkrath, A. P., Herkrath, F. J., Rebelo, M. A. & Vettore, M. V. (2015). Measurement of health-related and oral health-related quality of life among individuals with nonsyndromic orofacial clefts: a systematic review and meta-analysis. Cleft Palate Craniofacial Journal, 52(2), 157172.Google Scholar
Richman, L. C., McCoy, T. E., Conrad, A. L. & Nopoulos, P. C. (2012). Neuropsychological, behavioral, and academic sequelae of cleft: early developmental, school age, and adolescent/young adult outcomes. Cleft Palate Craniofacial Journal, 49(4), 387396.Google Scholar
Roberts, R. M., Mathias, J. L. & Wheaton, P. (2012). Cognitive functioning in children and adults with nonsyndromal cleft lip and/or palate: a meta-analysis. Journal of Pediatric Psychology, 37(7), 786797.Google Scholar
Ruff, R. R., Sischo, L. & Broder, H. (2016). Resiliency and socioemotional functioning in youth receiving surgery for orofacial anomalies. Community Dentistry and Oral Epidemiology, 44(4), 371380.Google Scholar
Sischo, L., Clouston, S. A., Phillips, C. & Broder, H. L. (2016). Caregiver responses to early cleft palate care: a mixed method approach. Health and Psychology, 35(5), 474482.Google Scholar
Speltz, M. L., Endriga, M. C., Fisher, P. A. & Mason, C. A. (1997). Early predictors of attachment in infants with cleft lip and/or palate. Child Development, 68, 1225.Google Scholar
Speltz, M. L., Endriga, M. C., Hill, S., et al. (2000). Cognitive and psychomotor development of infants with orofacial clefts. Journal of Pediatric Psychology, 25, 185190.Google Scholar
Wehby, G. L., Collett, B., Barron, S., et al. (2014). Academic achievement of children and adolescents with oral clefts. Pediatrics, 133(5), 785792.Google Scholar

References

Cohen, S. (2004). Social relationships and health. American Psychologist, 59, 676684.Google Scholar
Cohen, S., Alper, C. M., Doyle, W. J., Treanor, J. J. & Turner, R. B. (2006). Positive emotional style predicts resistance to illness after experimental exposure to rhinovirus or influenza A virus. Psychosomatic Medicine, 68, 809815.Google Scholar
Cohen, S., Doyle, W. J. & Skoner, D. P. (1999). Psychological stress, cytokine production, and severity of upper respiratory illness. Psychosomatic Medicine, 61, 175180.Google Scholar
Cohen, S., Doyle, W. J., Skoner, D. P., Rabin, B. S. & Gwaltney, J. M. (1997). Social ties and susceptibility to the common cold. Journal of the American Medical Association, 277, 19401944.Google Scholar
Cohen, S., Doyle, W. J., Turner, R. B., Alper, C. M. & Skoner, D. P. (2003). Emotional style and susceptibility to the common cold. Psychosomatic Medicine, 65, 652657.Google Scholar
Cohen, S., Frank, E., Doyle, W. J., et al. (1998). Types of stressors that increase susceptibility to the common cold in healthy adults. Health and Psychology, 17, 214223.Google Scholar
Cohen, S., Janicki-Deverts, D., Doyle, W. J., et al. (2012). Chronic stress, glucocorticoid receptor resistance, inflammation, and disease risk. Proceedings of the National Academy of Sciences, 109, 59955999.Google Scholar
Cohen, S., Tyrrell, D. A. & Smith, A. P. (1991). Psychological stress and susceptibility to the common cold. New England Journal of Medicine, 325, 606612.Google Scholar
Cohen, S. & Williamson, G. M. (1991). Stress and infectious disease in humans. Psychological Bulletin, 109, 524.Google Scholar
Glaser, R., Rice, J., Sheridan, J., et al. (1987). Stress-related immune suppression: health implications. Brain, Behavior, and Immunity, 1, 720.Google Scholar
Graham, N. M., Douglas, R. M. & Ryan, P. (1986). Stress and acute respiratory infection. American Journal of Epidemiology, 124, 389401.Google Scholar
Marsland, A. L., Cohen, S., Rabin, B. S. & Manuck, S. B. (2006). Trait positive affect and antibody response to hepatitis B vaccination. Brain, Behavior, and Immunity, 20, 261269.Google Scholar
Pedersen, A., Zachariae, R. & Bovbjerg, D. H. (2010). Influence of psychological stress on upper respiratory infection: a meta-analysis of prospective studies. Psychosomatic Medicine, 72, 823832.Google Scholar
Pressman, S. D. & Cohen, S. (2005). Does positive affect influence health? Psychological Bulletin, 131, 925971.Google Scholar
Steptoe, A., Wardle, J. & Marmot, M. (2005). Positive affect and health-related neuroendocrine, cardiovascular, and inflammatory processes. Proceedings of the National Academy of Sciences, 102, 65086512.Google Scholar
Takkouche, B., Regueira, C. & Gestal-Otero, J. J. (2001). A cohort study of stress and the common cold. Epidemiology, 12, 345349.Google Scholar
Turner-Cobb, J. M. & Steptoe, A. (1996). Psychosocial stress and susceptibility to upper respiratory tract illness in an adult population sample. Psychosomatic Medicine, 58, 404412.Google Scholar

References

Albus, C. (2010). Psychological and social factors in coronary heart disease. Annals of Medicine, 42(7), 487494.Google Scholar
Angus, N., Patience, F., MacLean, E., et al. (2012). Cardiac misconceptions in healthcare workers. European Journal of Cardiovascular Nursing, 11(4), 396401.Google Scholar
Barth, J., Schneider, S. & von Kanel, R. (2010). Lack of social support in the etiology and the prognosis of coronary heart disease: a systematic review and meta-analysis. Psychosomatic Medicine, 72(3), 229238.Google Scholar
Broadbent, E., Petrie, K. J., Ellis, C. J., Ying, J. & Gamble, G. (2004). A picture of health: myocardial infarction patients drawings of their hearts and subsequent disability: a longitudinal study. Journal of Psychosomatic Research, 57(6), 583587. DOI: 10.1016/j.jpsychores.2004.03.014.Google Scholar
Cooper, A. F., Weinman, J., Hankins, M., Jackson, G. & Horne, R. (2007). Assessing patients’ beliefs about cardiac rehabilitation as a basis for predicting attendance after acute myocardial infarction. Heart, 93(1), 5358. DOI: 10.1136/hrt.2005.081299.Google Scholar
Dale, L. P., Whittaker, R., Jiang, Y., et al. (2015). Text message and internet support for coronary heart disease self-management: results from the text4heart randomized controlled trial, Journal of Medical Internet Research, 17(10). DOI: 10.2196/jmir.4944.Google Scholar
De Ridder, D. T. D. & De Wit, J. B. F. (2006). Self-regulation in health behavior: concepts, theories, and central issues. In De Ridder, D. T. D. & De Wit, J. B. F. (eds) Self-Regulation in Health Behavior (pp. 124). Chichester: Wiley.Google Scholar
de Waure, C., Lauret, G.-J., Ricciardi, W., et al. (2013). Lifestyle interventions in patients with coronary heart disease: a systematic review. American Journal of Preventive Medicine, 45(2), 207216. DOI: 10.1016/j.amepre.2013.03.020.Google Scholar
Dupre, M. E., George, L. K., Liu, G. & Peterson, E. D. (2012). The cumulative effect of unemployment on risks for acute myocardial infarction., Archives of Internal Medicine, 172(22), 1731–7. DOI: 10.1001/2013.jamainternmed.447.Google Scholar
Figueiras, M. J., Maroco, J., Monteiro, R. & Caeiro, R. (2015). Cardiac misconceptions among healthy adults: implications for the promotion of health in the community. Ciência & Saúde Coletiva, 20(3), 841850. DOI: 10.1590/1413-81232015203.10932014.Google Scholar
Figueiras, M. J., Maroco, J., Monteiro, R., Caeiro, R. & Dias Neto, D. (2016). Randomized controlled trial of an intervention to change cardiac misconceptions in myocardial infarction patients. Psychology, Health & Medicine, February, 1–11. DOI: 10.1080/13548506.2016.1153677.Google Scholar
Foxwell, R., Morley, C. & Frizelle, D. (2013). Illness perceptions, mood and quality of life: a systematic review of coronary heart disease patients. Journal of Psychosomatic Research, 75(3), 211222. DOI: 10.1016/j.jpsychores.2013.05.003.Google Scholar
Furze, G. (2007). Cardiac misconceptions: a problem in need of treatment? Risk Management, 5(1), 1315.Google Scholar
Furze, G., Lewin, R. J. P., Murberg, T., Bull, P. & Thompson, D. R. (2005). Does it matter what patients think? The relationship between changes in patients’ beliefs about angina and their psychological and functional status. Journal of Psychosomatic Research, 59(5), 323329. DOI: 10.1016/j.jpsychores.2005.06.071.Google Scholar
Glozier, N., Tofler, G. H., Colquhoun, D. M., et al. (2013). Psychosocial risk factors for coronary heart disease., The Medical Journal of Australia, 199(3), 179180. DOI: 10.5694/mja13.10440.Google Scholar
Goldston, K. & Baillie, A. J. (2008). Depression and coronary heart disease: A review of the epidemiological evidence, explanatory mechanisms and management approaches, Clinical Psychology Review, 28(2), 289307. DOI: 10.1016/j.cpr.2007.05.005.Google Scholar
Goulding, L., Furze, G. & Birks, Y. (2010). Randomized controlled trials of interventions to change maladaptive illness beliefs in people with coronary heart disease: systematic review. Journal of Advanced Nursing, 66(5), 946961. DOI: 10.1111/j.1365-2648.2010.05306.x.Google Scholar
Heran, B. S., Chen, J. M. H., Ebrahim, S., et al. (2011). Exercise-based cardiac rehabilitation for coronary heart disease, The Cochrane Library. DOI: 10.1002/14651858.CD001800.pub2.Google Scholar
Hirani, S. P., Pugsley, W. B. & Newman, S. P. (2006). Illness representations of coronary artery disease: an empirical examination of the Illness Perceptions Questionnaire (IPQ) in patients undergoing surgery, angioplasty and medication. British Journal of Health Psychology, 11, 199220. DOI: 10.1348/135910705X53443.Google Scholar
Jackson, C., Eliasson, L., Barber, N. & Weinman, J. (2014). Applying COM-B to medication adherence, Bulletin of the European Health Psychology Society (EHP), 16(1), 717.Google Scholar
Khawaja, I. S., Westermeyer, J. J., Gajwani, P. & Feinstein, R. E. (2009). Depression and coronary artery disease: the association, mechanisms, and therapeutic implications., Psychiatry (Edgmont (Pa. : Township)), 6(1), 3851. DOI: 10.1016/j.tics.2014.02.011.Google Scholar
Kidd, T., Poole, L., Leigh, E., et al. (2016). Health-related personal control predicts depression symptoms and quality of life but not health behaviour following coronary artery bypass graft surgery. Journal of Behavioral Medicine, 39(1), 120127. DOI: 10.1007/s10865-015-9677-7.Google Scholar
Laba, T. L., Bleasel, J., Brien, J. A., et al. (2013). Strategies to improve adherence to medications for cardiovascular diseases in socioeconomically disadvantaged populations: a systematic review. International Journal of Cardiology, 167(6), 24302440.Google Scholar
László, K. D., Ahnve, S., Hallqvist, J., Ahlbom, A. & Janszky, I. (2010). Job strain predicts recurrent events after a first acute myocardial infarction: The Stockholm Heart Epidemiology Program. Journal of Internal Medicine, 267(6), 599611. DOI: 10.1111/j.1365-2796.2009.02196.x.Google Scholar
Lau-Walker, M. (2006). Predicting self-efficacy using illness perception components: a patient survey., British Journal of Health Psychology, 11, 643661. DOI: 10.1348/135910705X72802.Google Scholar
Leventhal, H., Brissette, I. & Leventhal, E. A. (2003). The common-sense model of self-regulation of health and illness. In Cameron, L. D. & Leventhal, H. (eds), The Self-Regulation of Health and Illness Behaviour (pp. 4265). London: Routledge.Google Scholar
Lin, Y.-P. (2012). Coronary heart disease beliefs and misconceptions among cardiac patients and people with chronic illness. Open Journal of Nursing, 2(1), 17. DOI: 10.4236/ojn.2012.21001.Google Scholar
Lin, Y.-P., Furze, G., Spilsbury, K. & Lewin, R. J. P. (2008). Cardiac misconceptions: comparisons among nurses, nursing students and people with heart disease in Taiwan. Journal of Advanced Nursing, 64(3), 251–60. DOI: 10.1111/j.1365-2648.2008.04802.x.Google Scholar
Linden, W., Phillips, M. J. & Leclerc, J. (2007). Psychological treatment of cardiac patients: a meta-analysis. European Heart Journal, 28(24), 29722984. DOI: 10.1093/eurheartj/ehm504.Google Scholar
Lundin, A., Falkstedt, D., Lundberg, I. & Hemmingsson, T. (2014). Unemployment and coronary heart disease among middle-aged men in Sweden: 39 243 men followed for 8 years. Occupational and Environmental Medicine, 71(3), 183188. DOI: 10.1136/oemed-2013-101721.Google Scholar
Maas, A. H. E. M. & Appelman, Y. E. A. (2010). Gender differences in coronary heart disease. Netherlands Heart Journal, 18(12), 598603. DOI: 10.1007/s12471-010-0841-y.Google Scholar
Marma, A. K. & Lloyd-Jones, D. M. (2009). Systematic examination of the updated Framingham heart study general cardiovascular risk profile. Circulation, 120(5), 384390. DOI: 10.1161/CIRCULATIONAHA.108.835470.Google Scholar
McAndrew, L. M., Mora, P. A., Quigley, K. S., Leventhal, E. A. & Leventhal, H. (2014). Using the common sense model of self-regulation to understand the relationship between symptom reporting and trait negative affect. International Journal of Behavioral Medicine. DOI: 10.1007/s12529-013-9372-4.Google Scholar
Michie, S., Abraham, C., Whittington, C., McAteer, J. & Gupta, S. (2009). Effective techniques in healthy eating and physical activity interventions: a meta-regression, Health and Psychology, 28(6), 690701. DOI: 10.1037/a0016136.Google Scholar
Michie, S., van Stralen, M. M. & West, R. (2011). The behaviour change wheel: a new method for characterising and designing behaviour change interventions., Implementation Science, 6(1), 42. DOI: 10.1186/1748-5908-6-42.Google Scholar
Morgan, K., Villiers-Tuthill, A., Barker, M. & McGee, H. (2014). The contribution of illness perception to psychological distress in heart failure patients. BMC Psychology, 2(1), 50. DOI: 10.1186/s40359-014-0050-3.Google Scholar
Moser, D. K., Dracup, K., Evangelista, L. S., et al. (2011). Comparison of prevalence of symptoms of depression, anxiety and hostility in elderly heart failure, myocardial infarction and coronary artery bypass graft patients, Heart & Lung, 39(5), 378385. DOI: 10.1016/j.hrtlng.2009.10.017.Comparison.Google Scholar
Moss-Morris, R., Weinman, J., Petrie, K., et al. (2002). The Revised Illness Perception Questionnaire (IPQ-R). Psychology and Health, 17(1), 116. DOI: 10.1080/08870440290001494.Google Scholar
Mozaffarian, D., Benjamin, E. J., Go, A. S., et al. (2015). Heart disease and stroke statistics: 2015 update. A report from the American Heart Association, Circulation. DOI: 10.1161/CIR.0000000000000152.Google Scholar
O’Neil, A. (2013). The relationship between coronary heart disease (CHD) and major depressive disorder (MDD): key mechanisms and the role of quality of life, Europe’s Journal of Psychology, 9(1), 163184. DOI: 10.5964/ejop.v9i1.466.Google Scholar
Petrie, K. J. & Weinman, J. (2012). Patients’ perceptions of their illness: the dynamo of volition in health care, Current Directions in Psychological Science, 21(1), 6065. DOI: 10.1177/0963721411429456.Google Scholar
Reid, J., Ski, C. F. & Thompson, D. R. (2013). Psychological interventions for patients with coronary heart disease and their partners: a systematic review. PLoS ONE, 8(9). DOI: 10.1371/journal.pone.0073459.Google Scholar
Reynolds, L., Broadbent, E., Ellis, C. J., Gamble, G. & Petrie, K. J. (2007). Patients’ drawings illustrate psychological and functional status in heart failure. Journal of Psychosomatic Research, 63(5), 525532. DOI: 10.1016/j.jpsychores.2007.03.007.Google Scholar
Roest, A. M., Martens, E. J., de Jonge, P. & Denollet, J. (2010). Anxiety and risk of incident coronary heart disease. a meta-analysis. Journal of the American College of Cardiology, 56(1), 3846. DOI: 10.1016/j.jacc.2010.03.034.Google Scholar
Santo, K., Chalmers, J., Chow, C. K. & Redfern, J. (2016). m-health in coronary disease preventive care. Journal of Cardiology and Therapy, 2(6), 18.Google Scholar
Steptoe, A. & Kivimaki, M. (2013). Stress and cardiovascular disease: an update on current knowledge, Annual Review of Public Health, 34, 337354. DOI: 10.1146/annurev-publhealth-031912-114452.Google Scholar
Valtorta, N. K., Kanaan, M., Gilbody, S., Ronzi, S. & Hanratty, B. (2016). Loneliness and social isolation as risk factors for coronary heart disease and stroke: systematic review and meta-analysis of longitudinal observational studies. Heart (British Cardiac Society). DOI: 10.1136/heartjnl-2015-308790.Google Scholar
Whalley, B., Thompson, D. & Taylor, R. (2014). Psychological interventions for coronary heart disease: Cochrane systematic review and meta-analysis. International Journal of Behavioral Medicine, 21(1), 109121. DOI: 10.1007/s12529-012-9282-x.Google Scholar
World Health Organization (2011). Global Atlas on Cardiovascular Disease Prevention and Control. Geneva: World Health Organization.Google Scholar
Wulsin, L. (2013). Psychological challenges of coping with coronary artery disease. In Dornelas, E. A. (ed.), Stress Proof the Heart: Behavioral Interventions for Cardiac Patients (pp. 924). New York: Springer.Google Scholar

References

Bluebond-Langner, M. (1991). Living with cystic fibrosis: a family affair. In Morgan, J. D. (ed.) Young People and Death (pp. 4662). Philadelphia, PA: Charles Press.Google Scholar
Bobadilla, J. L., Macek, M. Jr., Fine, J. P. & Farrell, P. M. (2002). Cystic fibrosis: a worldwide analysis of CFTR mutations – correlation with incidence data and application to screening. Human Mutation, 19, 575606.Google Scholar
Brodlie, M., Haq, I. J., Roberts, K. & Elborn, J. S. (2015). Targeted therapies to improve CFTR function in cystic fibrosis. Genome Medicine, 7,(101).Google Scholar
Bush, A., Bilton, D. & Hodson, M. E. (eds) (2015). Hodson and Geddes’ Cystic fibrosis (4th edn). London: Taylor & Francis.Google Scholar
Castellani, C., Massie, J., Sontag, M. & Southern, K. W. (2016). Newborn screening for cystic fibrosis. Lancet Respiratory Medicine, 4,(8), 653661.Google Scholar
Conway, S., Balfour-Lynn, I. M., De Rijcke, K., et al. (2014). European cystic fibrosis standards of care: framework for the Cystic Fibrosis Centre. Journal of Cystic Fibrosis, 13,S3S22.Google Scholar
Dodge, J. A., Lewis, P. A., Stanton, M. & Wilsher, J. (2007). Cystic fibrosis mortality and survival in the UK: 1947–2003. European Respiratory Journal, 29(3), 522526.Google Scholar
Ernst, M. M., Johnson, M. C. & Stark, L. J., (2011). Developmental and psychosocial issues in cystic fibrosis. Pediatric Clinics of North America, 58(4), 865885.Google Scholar
FitzSimmons, S. C. (1993). The changing epidemiology of cystic fibrosis. Journal of Pediatrics, 122, 19.Google Scholar
Glasscoe, C. & Smith, J. A. (2011). Unravelling the complexities in parenting a child with cystic fibrosis: an interpretative phenomenological analysis. Clinical Child Psychology & Psychiatry, 16(2), 279298.Google Scholar
Goldbeck, L., Fidika, A., Herle, M., Quittner, A. L. (2014). Psychological interventions for individuals with cystic fibrosis and their families. Cochrane Database of Systematic Reviews, 6, CD003148.Google Scholar
Havermans, T., Tack, J., Vertommen, A., Proesmans, M. & de Boeck, K. (2015). Breaking bad news, the diagnosis of cystic fibrosis in childhood. Journal of Cystic Fibrosis, 14, 540546.Google Scholar
Janicke, D. M., Mitchell, M. J. & Stark, L. J. (2005). Family functioning in school-age children with cystic fibrosis: an observational assessment of family interactions in the mealtime environment. Journal of Pediatric Psychology, 30(2), 179186.Google Scholar
Kerem, B., Rommens, J. M., Buchanan, J. A., et al. (1989). Identification of the cystic fibrosis gene: genetic analysis. Science, 145, 10731080.Google Scholar
Koocher, G. P., McGrath, M. L. & Gudas, L. J. (1990). Typologies of nonadherence in cystic fibrosis. Developmental and Behavioural Pediatrics, 11, 353358.Google Scholar
Patterson, J. M., McCubbin, H. I. & Warwick, W. J. (1990). The impact of family functioning on health changes in children with cystic fibrosis. Social Science and Medicine, 31, 159164.Google Scholar
Pearson, D. A., Pumariega, A. J. & Seilheimer, D. K. (1991). The development of psychiatric symptomatology in patients with cystic fibrosis. Journal of the American Academy of Child and Adolescent Psychiatry, 30, 290297.Google Scholar
Quittner, A. L., Goldbeck, L., Abbott, J., et al. (2014). Prevalence of depression and anxiety in patients with cystic fibrosis and parent caregivers: results of the International Depression Epidemiological Study across nine countries Thorax, 69, 10901097.Google Scholar
Quittner, A. L., Abbott, J., Georgiopoulos, A. M., et al. (2015). Cystic Fibrosis Foundation and European Cystic Fibrosis Society consensus statements for screening and treating depression and anxiety. Thorax. DOI: 10.1136/thoraxjnl-2015-207488.Google Scholar
Quon, B. S., Bentham, W. D., Unutzer, J., et al. (2015). Prevalence of symptoms of depression and anxiety in adults with cystic fibrosis based on the PHQ-9 and GAD-7 screening questionnaires. Psychosomatics, 56, 345353.Google Scholar
Schechter, M. S. & Gutierrez, H. H. (2010). Improving the quality of care for patients with cystic fibrosis. Current Opinion in Pediatrics, 22, 296301.Google Scholar
Simmons, R. J. & Goldberg, S. (2001). Infants and preschool children. In Bluebond-Langner, M., Lask, B. & Angst, D. B. (eds), Psychosocial Aspects of Cystic Fibrosis (pp. 110–24). London: Arnold.Google Scholar
Stark, L. J., Millar, S. T., Plienes, A. J. & Drabman, R. S. (1987). Behavioral contracting to increase chest physiotherapy: a study of a young cystic fibrosis patient. Behavior Modification, 11, 7586.Google Scholar
Stark, L. J., Bowen, A. M., Tyc, V. L., Evans, S. & Passero, M. A. (1990). A behavioral approach to increasing calorie consumption in children with cystic fibrosis. Journal of Pediatric Psychology, 15, 309326.Google Scholar
Tsui, L.-C. (1990). Population analysis of the major mutation in cystic fibrosis (Editorial). Human Genetic, 85, 391392.Google Scholar
Wilson, J., Fosson, A., Kanga, J. F. & D’Angelo, S. L. (1996). Homeostatic interactions: a longitudinal study of biological and family variables in children with cystic fibrosis. Journal of Family Therapy, 18, 123139.Google Scholar

References

American Psychiatric Association (2013). Diagnostic and Statistical Manual of Mental Disorders (5th edn). Arlington, VA: American Psychiatric Publishing.Google Scholar
Bahar-Fuchs, A., Clare, L. & Woods, B. (2013). Cognitive training and cognitive rehabilitation for mild to moderate Alzheimer’s disease and vascular dementia. Cochrane Database of Systematic Reviews, 6, CD003260.Google Scholar
Department of Health. (2009). Living Well With Dementia: A National Dementia Strategy. London; Department of Health.Google Scholar
Guerreiro, R. J., Gustafson, D. R. and Hardy, J. (2012). The genetic architecture of Alzheimer’s disease: beyond APP, PSENs and APOE. Neurobiology of Aging, 33, 437456.Google Scholar
Hsieh, S., Schubert, S., Hoon, C., Mioshi, E. & Hodges, J. R. (2013). Validation of the Addenbrooke’s Cognitive Examination III in frontotemporal dementia and Alzheimer’s disease. Dementia and Geriatric Cognitive Disorders, 36, 242250.Google Scholar
Jack, C. R., Knopman, D. S., Jagust, W. J., et al. (2010). Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurology, 9, 119128.Google Scholar
Jack, C. R., Wiste, H. J., Weigand, S. D., et al (2015). Age, sex, and APOE ε4 effects on memory, brain structure, and β-amyloid across the adult life span. JAMA Neurology, 16..Google Scholar
National Institute for Health and Clinical Excellence. (2006). Dementia: Supporting People with Dementia and Their Carers in Health and Social Care. NICE Guideline CG42. London: NICE.Google Scholar
O’Brien, J. T., Burns, A. & BAP Dementia Consensus Group. (2015). Clinical practice with anti-dementia drugs: a revised (second) consensus statement from the British Association for Psychopharmacology. Journal of Psychopharmacology, 25, 9971019.Google Scholar
Office for National Statistics. (2014). National Population Projections: 2014-based Statistical BulletinGoogle Scholar
Solomon, A., Mangialashe, F., Richard, E., et al. (2014). Advances in the prevention of Alzheimer’s disease and dementia. Journal of Internal Medicine, 275, 229250.Google Scholar
Wisniewski, T. & Goni, F. (2015). Immunotherapeutic approaches for Alzheimer’s disease. Neuron, 85, 11621176.Google Scholar

References

Amiel, S., Beveridge, S., Bradley, C., et al. (2002). Training in flexible, intensive insulin management to enable dietary freedom in people with type 1 diabetes: dose adjustment for normal eating (DAFNE) randomised controlled trial. BMJ, 325, 746749.Google Scholar
Anderbro, T., Gonder-Frederick, L., Bolinder, J., et al. (2015). Fear of hypoglycaemia: relationship to hypoglycemic risk and psychological factors. Acta Diabetologica, 52, 581589.Google Scholar
Anderson, R. M. & Funnell, M. M. (2010). Patient empowerment: myths and misconceptions. Patient Education and Counseling, 79, 277282.Google Scholar
Barnard, K. D. & Oliver, N. (2015). Technological advancement in the treatment of diabetes: ignoring psychosocial impact at our peril. Diabetes Technology and Therapeutics, 17, 149151.Google Scholar
Barnard, K. D., Skinner, T. C. & Peveler, R. (2006). The prevalence of co-morbid depression in adults with Type 1 diabetes: systematic literature review. Diabetic Medicine, 23, 445448.Google Scholar
Bradley, C. & Speight, J. (2002). Patient perceptions of diabetes and diabetes therapy: assessing quality of life. Diabetes/Metabolism Research and Reviews, 18, S64S69.Google Scholar
Cameron, F. J., Skinner, T. C., De Beaufort, C. E., et al. (2008). Are family factors universally related to metabolic outcomes in adolescents with type 1 diabetes? Diabetic Medicine, 25, 463468.Google Scholar
Cameron, L. D., Young, M. J. & Wiebe, D. J. (2007). Maternal trait anxiety and diabetes control in adolescents with type 1 diabetes. Journal of Pediatric Psychology, 32, 733744.Google Scholar
Cohen, D. M., Lumley, M. A.,