Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-29T17:43:12.366Z Has data issue: false hasContentIssue false

6 - Genetic Bases of Intelligence

from Part II - Development of Intelligence

Published online by Cambridge University Press:  13 December 2019

Robert J. Sternberg
Affiliation:
Cornell University, New York
Get access

Summary

Considering the continuing interest of the scientific community and the public in the genetic bases of intelligence, in this chapter we highlight three facets of the numerous studies in this broad area: (1) the trajectory of studies that have sought to elucidate the etiology of intelligence; (2) the relevance of the selected phenotype; and (3) the consequence of the chosen genetic mechanism. The use of three main approaches to the study of the genetic bases of intelligence (the linkage studies focused on heritability of the phenotypic trait, hypothesis-driven candidate region and gene studies, and genome-wide association studies) has resulted in a list of about 150 genes apparently associated with intelligence, but the discrepancy between the heritability estimates obtained in quantitative versus molecular genetic studies persists. One explanation of this discrepancy relates to the heterogeneity of the phenotypes often used in quantitative versus molecular genetic studies. The other states that, in addition to the genetic mechanism sampled by genome-wide association studies (i.e., the common variance-based mechanism), there may be other genetic mechanisms that influence individual differences in intelligence, in particular, epigenetic mechanisms. Their consideration may become a course-changing innovation for understanding the genetic bases of intelligence and providing a window onto the diversity of human abilities.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, G. E., DeLong, M. R., & Strick, P. L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience, 9, 357381. https://doi.org/10.1146/annurev.ne.09.030186.002041Google Scholar
Amir, R. E., Van den Veyver, I. B., Wan, M., Tran, C. Q., Francke, U., & Zoghbi, H. Y. (1999). Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nature Genetics, 23, 185188.CrossRefGoogle ScholarPubMed
Anokhin, K. V., & Rose, S. P. (1991). Learning-induced increase of immediate early gene messenger RNA in the chick forebrain. European Journal of Neuroscience, 3, 162167.CrossRefGoogle ScholarPubMed
Arshavsky, Y. I. (2014). Alzheimer disease and cellular mechanisms of memory storage. Journal of Neuropathology and Experimental Neurology, 73, 192205. https://doi.org/10.1097/NEN.0000000000000043Google Scholar
Ba, Y., Yu, H., Liu, F., Geng, X., Zhu, C., Zhu, Q., et al. (2011). Relationship of folate, vitamin B12 and methylation of insulin-like growth factor-II in maternal and cord blood. European Journal of Clinical Nutrition, 65, 480485. https://doi.org/10.1038/ejcn.2010.294Google Scholar
Barnett, J. H., Scoriels, L., & Munafò, M. R. (2008). Meta-analysis of the cognitive effects of the Catechol-O-Methyltransferase gene Val158/108Met polymorphism. Biological Psychiatry, 64, 137144. https://doi.org/10.1016/j.biopsych.2008.01.005Google Scholar
Benyamin, B., Pourcain, B., Davis, O. S., Davies, G., Hansell, N. K., Brion, M. J., et al. (2014). Childhood intelligence is heritable, highly polygenic and associated with FNBP1L. Molecular Psychiatry, 19, 253258. https://doi.org/10.1038/mp.2012.184CrossRefGoogle ScholarPubMed
Bhate, V., Deshpande, S., Bhat, D., Joshi, N., Ladkat, R., Watve, S., et al. (2008). Vitamin B12 status of pregnant Indian women and cognitive function in their 9-year-old children. Food and Nutrition Bulletin, 29, 249254. https://doi.org/10.1177/156482650802900401Google Scholar
Bird, A. P. (1986). CpG-rich islands and the function of DNA methylation. Nature, 321, 209213.Google Scholar
Bird, A. P. (2002). DNA methylation patterns and epigenetic memory. Genes and Development, 16, 621.CrossRefGoogle ScholarPubMed
Blalock, E. M., Geddes, J. W., Chen, K. C., Porter, N. M., Markesbery, W. R., et al. (2004). Incipient Alzheimer’s disease: Microarray correlation analyses reveal major transcriptional and tumor suppressor responses. Proceedings of the National Academy of Sciences, 101, 21732178. https://doi.org/10.1073/pnas.0308512100Google Scholar
Boyes, J., & Bird, A. P. (1992). Repression of genes by DNA methylation depends on CpG density and promoter strength: Evidence for involvement of a methyl-CpG binding protein. EMBO Journal, 11, 327333.CrossRefGoogle ScholarPubMed
Bredy, T. W., & Barad, M. (2008). The histone deacetylase inhibitor valproic acid enhances acquisition, extinction, and reconsolidation of conditioned fear. Learning and Memory, 15, 3945. https://doi.org/10.1101/lm.801108CrossRefGoogle ScholarPubMed
Brennan, P. A., Hancock, D., & Keverne, E. B. (1992). The expression of the immediate-early genes c-fos, egr-1 and c-jun in the accessory olfactory bulb during the formation of an olfactory memory in mice. Neuroscience, 49, 277284.Google Scholar
Burgaleta, M., MacDonald, P. A., Martínez, K., Román, F. J., Álvarez-Linera, J., González, A. R., et al. (2014). Subcortical regional morphology correlates with fluid and spatial intelligence. Human Brain Mapping, 35, 19571968. https://doi.org/10.1002/hbm.22305Google Scholar
Butcher, L. M., Kennedy, J. K., & Plomin, R. (2006). Generalist genes and cognitive neuroscience. Current Opinion in Neurobiology, 16, 145151.Google Scholar
Butcher, L. M., Meaburn, E., Knight, J., Sham, P. C., Schalkwyk, L. C., Craig, I. W., et al. (2005). SNPs, microarrays, and pooled DNA: Identification of four loci associated with mild mental impairment in a sample of 6,000 children. Human Molecular Genetics, 14, 13151325.Google Scholar
Caramaschi, D., Sharp, G. C., Nohr, E. A., Berryman, K., Lewis, S. J., Davey Smith, G., et al. (2017). Exploring a causal role of DNA methylation in the relationship between maternal vitamin B12 during pregnancy and child’s IQ at age 8, cognitive performance and educational attainment: A two-step Mendelian randomization study. Human Molecular Genetics, 26, 30013013. https://doi.org/10.1093/hmg/ddx164Google Scholar
Chen, Z-x., & Riggs, A. D. (2011). DNA methylation and demethylation in mammals. Journal of Biological Chemistry, 286, 1834718353. https://doi.org/10.1074/jbc.R110.205286CrossRefGoogle ScholarPubMed
Chen, Z. J., & Pikaard, C. S. (1997). Epigenetic silencing of RNA polymerase I transcription: A role for DNA methylation and histone modification in nucleolar dominance. Genes and Development, 11, 21242136.Google Scholar
Costa, R. M., Honjo, T., & Silva, A. J. (2003). Learning and memory deficits in Notch mutant mice. Current Biology, 13(15), 13481354.Google Scholar
Dagnas, M., & Mons, N. (2013). Region- and age-specific patterns of histone acetylation related to spatial and cued learning in the water maze. Hippocampus, 23, 581591. https://doi.org/10.1002/hipo.22116Google Scholar
Davies, G., Armstrong, N., Bis, J. C., Bressler, J., Chouraki, V., Giddaluru, S., et al. (2015). Genetic contributions to variation in general cognitive function: A meta-analysis of genome-wide association studies in the CHARGE consortium (N=53 949). Molecular Psychiatry, 20, 183192. https://doi.org/10.1038/mp.2014.188Google Scholar
Davies, G., Lam, M., Harris, S. E., Trampush, J. W., Luciano, M., Hill, W. D., et al. (2018). Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function. Nature Communications, 9(1), 2098. https://doi.org/10.1038/s41467-018-04362-xGoogle Scholar
Davies, G., Marioni, R. E., Liewald, D. C., Hill, W. D., Hagenaars, S. P., Harris, S. E., et al. (2016). Genome-wide association study of cognitive functions and educational attainment in UK Biobank (N=112 151). Molecular Psychiatry, 21, 758767. https://doi.org/10.1038/mp.2016.45Google Scholar
Davies, G., Tenesa, A., Payton, A., Yang, J., Harris, S. E., Liewald, D., et al. (2011). Genome-wide association studies establish that human intelligence is highly heritable and polygenic. Molecular Psychiatry, 16, 9961005. https://doi.org/10.1038/mp.2011.85Google Scholar
Davis, O. S., Butcher, L. M., Docherty, S. J., Meaburn, E. L., Curtis, C. J., Simpson, M. A., et al. (2010). A three-stage genome-wide association study of general cognitive ability: Hunting the small effects. Behavior Genetics, 40, 759767.CrossRefGoogle ScholarPubMed
Day, J. J., Childs, D., Guzman-Karlsson, M. C., Kibe, M., & Moulden, J. (2013). DNA methylation regulates associative reward learning. Nature Neuroscience, 16, 14451452.Google Scholar
Deary, I. J., Harris, S. E., & Hill, W. D. (2019). What genome-wide association studies reveal about the association between intelligence and physical health, illness, and mortality. Current Opinion in Psychology, 27, 612. https://doi.org/10.1016/j.copsyc.2018.07.005Google Scholar
Deserno, L., Huys, Q. J. M., Boehme, R., Buchert, R., Heinze, H.-J., Grace, A. A., et al. (2015). Ventral striatal dopamine reflects behavioral and neural signatures of model-based control during sequential decision making. Proceedings of the National Academy of Sciences, 112(5), 15951600. https://doi.org/10.1073/pnas.1417219112Google Scholar
Doupe, A. J., & Kuhl, P. K. (1999). Birdsong and human speech: Common themes and mechanisms. Annual Review of Neuroscience, 22, 567631. https://doi.org/10.1146/annurev.neuro.22.1.567Google Scholar
Du, Y., Ninga, Y., Wena, Y., Liua, L., Lianga, X., Lia, P., et al. (2018). A genome-wide pathway enrichment analysis identifies brain region related biological pathways associated with intelligence. Psychiatry Research, 268, 238242. https://doi.org/10.1016/j.psychres.2018.07.029Google Scholar
Eden, S., Hashimshony, T., Keshet, I., Cedar, H., & Thorne, A. W. (1998). DNA methylation models histone acetylation. Nature, 394, 842. https://doi.org/10.1038/29680Google Scholar
Feng, J., Zhou, Y., Campbell, S. L., Le, T., Li, E., Sweatt, J. D., et al. (2010). Dnmt1 and Dnmt3a are required for the maintenance of DNA methylation and synaptic function in adult forebrain neurons. Nature Neuroscience, 13, 423430.Google Scholar
Galton, F. (1869). Hereditary genius: An inquiry into its laws and consequences. London: Macmillan and Co.Google Scholar
Gardner, H. (2006). Multiple intelligences: New horizons in theory and practice. New York: Basic Books.Google Scholar
Girirajan, S. (2017). Missing heritability and where to find it. Genome Biology, 18, 89. https://doi.org/10.1186/s13059-017-1227-xGoogle Scholar
Glenn, C. C., Deng, G., Michaelis, R. C., Tarleton, J., Phelan, M. C., Surh, L., et al. (2000). DNA methylation analysis with respect to prenatal diagnosis of the Angelman and Prader-Willi syndromes and imprinting. Prenatal Diagnosis, 20, 300306.Google Scholar
Gold, W. A., Krishnarajy, R., Ellaway, C., & Christodoulou, J. (2018). Rett syndrome: A genetic update and clinical review focusing on comorbidities. ACS Chemical Neuroscience, 9, 167176. https://doi.org/10.1021/acschemneuro.7b00346CrossRefGoogle ScholarPubMed
Gomes, M. V. M., Toffoli, L. V., Arruda, D. W., Soldera, L. M., Pelosi, G. G., Neves-Souza, R. D., et al. (2012). Age-related changes in the global DNA methylation profile of leukocytes are linked to nutrition but are not associated with the MTHFR C677T genotype or to functional capacities. PLoS One, 7, e52570. https://doi.org/10.1371/journal.pone.0052570Google Scholar
Gould, S. J. (1981). The mismeasure of man. New York: Norton.Google Scholar
Grazioplene, R. G., Ryman, S. G., Gray, J. R., Rustichini, A., Jung, R. E., & DeYoung, C. G. (2015). Subcortical intelligence: Caudate volume predicts IQ in healthy adults. Human Brain Mapping, 36, 14071416. https://doi.org/10.1002/hbm.22710Google Scholar
Grigorenko, E. L., Compton, D., Fuchs, L., Wagner, R., Wilcutt, E., Fletcher, J. M. (2019) Understanding, educating, and supporting children with specific learning disabilities: 50 years of science and practice. American Psychologist. https://doi.org/10.1002/cad.20290CrossRefGoogle Scholar
Heyn, H., Li, N., Ferreira, H. J., Moran, S., Pisano, D. G., Gomez, A., et al. (2012). Distinct DNA methylomes of newborns and centenarians. Proceedings of the National Academy of Sciences, 109, 1052210527. https://doi.org/10.1073/pnas.1120658109Google Scholar
Hill, W. D., Harris, S. E., & Deary, I. J. (2019). What genome-wide association studies reveal about the association between intelligence and mental health. Current Opinion in Psychology, 27, 2530. https://doi.org/10.1016/j.copsyc.2018.07.007Google Scholar
Hill, W. D., Marioni, R. E., Maghzian, O., Ritchie, S. J., Hagenaars, S. P., McIntosh, A. M., et al. (2018). A combined analysis of genetically correlated traits identifies 187 loci and a role for neurogenesis and myelination in intelligence. Molecular Psychiatry, 24, 169181. https://doi.org/10.1038/s41380-017-0001-5Google Scholar
Hoekstra, R. A., Bartels, M., van Leeuwen, M., & Boomsma, D. I. (2009). Genetic architecture of verbal abilities in children and adolescents. Developmental Science, 12, 10411053. https://doi.org/10.1111/j.1467-7687.2009.00843.xGoogle Scholar
Holm, V. A., Cassidy, S. B., Butler, M. G., Hanchett, J. M., Greenswag, L. R., Whitman, B. Y., & Greenberg, F. (1993). Prader-Willi syndrome: Consensus diagnostic criteria. Pediatrics, 91, 398402.Google Scholar
Hsieh, C. L. (1994). Dependence of transcriptional repression on CpG methylation density. Molecular and Cellular Biology, 14(8), 54875494.Google Scholar
Ianov, L., Riva, A., Kumar, A., & Foster, T. C. (2017). DNA methylation of synaptic genes in the prefrontal cortex is associated with aging and age-related cognitive impairment. Frontiers in Aging Neuroscience, 9, 249. https://doi.org/10.3389/fnagi.2017.00249Google Scholar
Illingworth, R. S., & Bird, A. P. (2009). CpG islands – “A rough guide.” FEBS Letters, 583, 17131720. https://doi.org/10.1016/j.febslet.2009.04.012CrossRefGoogle Scholar
International Multiple Sclerosis Genetics Consortium. (2013). MANBA, CXCR5, SOX8, RPS6KB1 and ZBTB46 are genetic risk loci for multiple sclerosis. Brain, 136, 17781782. https://doi.org/10.1093/brain/awt101CrossRefGoogle Scholar
Jones, M. J., Goodman, S. J., & Kobor, M. S. (2015). DNA methylation and healthy human aging. Aging Cell, 14, 924932. https://doi.org/10.1111/acel.12349Google Scholar
Jones, P. L., Veenstra, G. J., Wade, P. A., Vermaak, D., Kass, S. U., Landsberger, N., et al. (1998). Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nature Genetics, 19, 187191. https://doi.org/10.1038/561Google Scholar
Kaminski, J. A., Schlagenhauf, F., Rapp, M., Awasthi, S., Ruggeri, B., Deserno, L., et al. (2018). Epigenetic variance in dopamine D2 receptor: A marker of IQ malleability? Translational Psychiatry, 8, 169.https://doi.org/10.1038/s41398-018-0222-7Google Scholar
Karama, S., Bastin, M. E., Murray, C., Royle, N. A., Penke, L., Muñoz Maniega, S., et al. (2013). Childhood cognitive ability accounts for associations between cognitive ability and brain cortical thickness in old age. Molecular Psychiatry, 19, 555559. https://doi.org/10.1038/mp.2013.64Google Scholar
Kelly, T. K., Ahmadiantehrani, S., Blattler, A., & London, S. E. (2018). Epigenetic regulation of transcriptional plasticity associated with developmental song learning. Proceedings of the Royal Society B: Biological Sciences, 285. https://doi.org/10.1098/rspb.2018.0160Google ScholarPubMed
Kirkpatrick, R. M., McGue, M., Iacono, W. G., Miller, M. B., & Basu, S. (2014). Results of a “GWAS Plus”: General cognitive ability is substantially heritable and massively polygenic. PLoS One, 9(11), e112390. https://doi.org/10.1371/journal.pone.0112390Google Scholar
Kohli, R. M., & Zhang, Y. (2013). TET enzymes, TDG and the dynamics of DNA demethylation. Nature, 502, 472479. https://doi.org/10.1038/nature12750Google Scholar
Laan, L. A., Haeringen, A., & Brouwer, O. F. (1999). Angelman syndrome: A review of clinical and genetic aspects. Clinical Neurology and Neurosurgery, 101, 161170.Google Scholar
Lee, D. Y., Hayes, J. J., Pruss, D., & Wolffe, A. P. (1993). A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell, 72, 7384.Google Scholar
Lencz, T., Knowles, E., Davies, G., Guha, S., Liewald, D. C., Starr, J. M., et al. (2014). Molecular genetic evidence for overlap between general cognitive ability and risk for schizophrenia: A report from the Cognitive Genomics ConsorTium (COGENT). Molecular Psychiatry, 19, 168174. https://doi.org/10.1038/mp.2013.166Google Scholar
Levenson, J. M., O’Riordan, K. J., Brown, K. D., Trinh, M. A., Molfese, D. L., & Sweatt, J. D. (2004). Regulation of histone acetylation during memory formation in the hippocampus. Journal of Biological Chemistry, 279, 4054540559.CrossRefGoogle ScholarPubMed
Lonsdale, J., Thomas, J., Salvatore, M., Phillips, R., Lo, E., Shad, S., et al. (2013). The Genotype-Tissue Expression (GTEx) project. Nature Genetics, 45, 580585. https://doi.org/10.1038/ng.2653Google Scholar
Lubin, F. D., Roth, T. L., & Sweatt, J. D. (2008). Epigenetic regulation of bdnf gene transcription in the consolidation of fear memory. Journal of Neuroscience, 28, 1057610586.Google Scholar
MacDonald, P. A., Ganjavi, H., Collins, D. L., Evans, A. C., & Karama, S. (2014). Investigating the relation between striatal volume and IQ. Brain Imaging and Behavior, 8, 5259. https://doi.org/10.1007/s11682-013-9242-3Google Scholar
Mackey, A. P., Miller Singley, A. T., & Bunge, S. A. (2013). Intensive reasoning training alters patterns of brain connectivity at rest. Journal of Neuroscience, 33, 47964803. https://doi.org/10.1523/JNEUROSCI.4141-12.2013Google Scholar
Mackintosh, N. (2011). IQ and human intelligence. Oxford: Oxford University Press.Google Scholar
Mandelman, S. D., & Grigorenko, E. L. (2012). BDNF Val66Met and cognition: All, none, or some? A meta-analysis of the genetic association. Genes, Brain and Behavior, 11, 127136. https://doi.org/10.1111/j.1601-183X.2011.00738.xGoogle Scholar
Manolio, T. A., Collins, F. S., Cox, N. J., Goldstein, D. B., Hindorff, L. A., Hunter, D. J., et al. (2009). Finding the missing heritability of complex diseases. Nature, 461(7265), 747753.Google Scholar
Marioni, R. E., McRae, A. F., Bressler, J., Colicino, E., Hannon, E., Li, S., et al. (2018). Meta-analysis of epigenome-wide association studies of cognitive abilities. Molecular Psychiatry, 23(11), 21332144. https://doi.org/10.1038/s41380-017-0008-yGoogle Scholar
McGue, M., & Christensen, K. (2001). The heritability of cognitive functioning in very old adults: Evidence from Danish twins aged 75 years and older. Psychology and Aging, 16, 272280. https://doi.org/10.1037//0882–7974.16.2.272Google Scholar
McGue, M., & Christensen, K. (2002). The heritability of level and rate-of-change in cognitive functioning in Danish twins aged 70 years and older. Experimental Aging Research, 28, 435451. https://doi.org/10.1080/03610730290080416Google Scholar
McKay, J. A., Groom, A., Potter, C., Coneyworth, L. J., Ford, D., Mathers, J. C., et al. (2012). Genetic and non-genetic influences during pregnancy on infant global and site specific DNA methylation: Role for golate gene variants and vitamin B12. PLoS One, 7, e33290. https://doi.org/10.1371/journal.pone.0033290CrossRefGoogle ScholarPubMed
Miller, C. A., & Sweatt, J. D. (2007). Covalent modification of DNA regulates memory formation. Neuron, 53, 857869. https://dx.doi.org/10.1016/j.neuron.2007.02.022CrossRefGoogle ScholarPubMed
Nativio, R., Donahue, G., Berson, A., Lan, Y. M., Amlie-Wolf, A., Tuzer, F., et al. (2018). Dysregulation of the epigenetic landscape of normal aging in Alzheimer’s disease. Nature Neuroscience, 21, 497505. https://doi.org/10.1038/s41593-018-0101-9Google Scholar
Neubert, F.-X., Mars, R. B., Sallet, J., & Rushworth, M. F. S. (2015). Connectivity reveals relationship of brain areas for reward-guided learning and decision making in human and monkey frontal cortex. Proceedings of the National Academy of Sciences, 112, E2695E2704. https://doi.org/10.1073/pnas.1410767112Google Scholar
Oberauer, K., Süβ, H.-M., Wilhelm, O., & Wittmann, W. W. (2008). Which working memory functions predict intelligence? Intelligence, 36, 641652. https://doi.org/10.1016/j.intell.2008.01.007Google Scholar
Oliveira, A. M. M., Hemstedt, T. J., & Bading, H. (2012). Rescue of aging-associated decline in Dnmt3a2 expression restores cognitive abilities. Nature Neuroscience, 15, 11111113.Google Scholar
Oliveira, A. M. M., Hemstedt, T. J., Freitag, H. E., & Bading, H. (2015). Dnmt3a2: A hub for enhancing cognitive functions. Molecular Psychiatry, 21, 11301136. https://doi.org/10.1038/mp.2015.175Google Scholar
Penner, M. R., Roth, T. L., Chawla, M. K., Hoang, L. T., Roth, E. D., Lubin, F. D., et al. (2011). Age-related changes in Arc transcription and DNA methylation within the hippocampus. Neurobiology of Aging, 32, 21982210. https://doi.org/10.1016/j.neurobiolaging.2010.01.009Google Scholar
Plomin, R., & von Stumm, S. (2018). The new genetics of intelligence. Nature Reviews Genetics, 19, 148159. https://doi.org/10.1038/nrg.2017.104Google Scholar
Presente, A., Boyles, R. S., Serway, C. N., de Belle, J. S., & Andres, A. J. (2004). Notch is required for long-term memory in Drosophila. Proceedings of the National Academy of Sciences, 101(6), 17641768. https://doi.org/10.1073/pnas.0308259100Google Scholar
Ptashne, M. (2007). On the use of the word “epigenetic.” Current Biology, 17(7), R233236. https://doi.org/10.1016/j.cub.2007.02.030Google Scholar
Reolon, G. K., Maurmann, N., Werenicz, A., Garcia, V. A., Schroder, N., Wood, M. A., et al. (2011). Posttraining systemic administration of the histone deacetylase inhibitor sodium butyrate ameliorates aging-related memory decline in rats. Behavioural Brain Research, 221(1), 329332. https://doi.org/10.1016/j.bbr.2011.03.033Google Scholar
Rimfeld, K., Shakeshaft, N. G., Malanchini, M., Rodic, M., Selzam, S., Schofield, K., et al. (2017). Phenotypic and genetic evidence for a unifactorial structure of spatial abilities. Proceedings of the National Academy of Sciences, 114, 27772782. https://doi.org/10.1073/pnas.1607883114Google Scholar
Rogowski, K., van Dijk, J., Magiera, M. M., Bosc, C., Deloulme, J.-C., Bosson, A., et al. (2010). A family of protein-deglutamylating enzymes associated with neurodegeneration. Cell, 143, 564578. https://doi.org/10.1016/j.cell.2010.10.014Google Scholar
Roth, C., Magnus, P., Schjolberg, S., Stoltenberg, C., Suren, P., McKeague, I. W., et al. (2011). Folic acid supplements in pregnancy and severe language delay in children. Journal of the American Medical Association, 306, 15661573.Google Scholar
Rush, E. C., Katre, P., & Yajnik, C. S. (2014). Vitamin B12: One carbon metabolism, fetal growth and programming for chronic disease. European Journal of Clinical Nutrition, 68, 27.Google Scholar
Sakakibara, E., Takizawa, R., Kawakubo, Y., Kuwabara, H., Kono, T., Hamada, K., et al. (2018). Genetic influences on prefrontal activation during a verbal fluency task in children: A twin study using near‐infrared spectroscopy. Brain and Behavior, 8, e00980. https://doi.org/10.1002/brb3.980Google Scholar
Sauce, B., & Matzel, L. D. (2018). The paradox of intelligence: Heritability and malleability coexist in hidden gene-environment interplay. Psychological Bulletin, 144, 2647. https://doi.org/10.1037/bul0000131Google Scholar
Savage, J. E., Jansen, P. R., Stringer, S., Watanabe, K., Bryois, J., de Leeuw, C. A., et al. (2018). Genome-wide association meta-analysis in 269,867 individuals identifies new genetic and functional links to intelligence. Nature Genetics, 50, 912919. https://doi.org/10.1038/s41588-018-0152-6Google Scholar
Schiepers, O. J. G., van Boxtel, M. P. J., de Groot, R. H. M., Jolles, J., Kok, F. J., Verhoef, P., et al. (2011). DNA methylation and cognitive functioning in healthy older adults. British Journal of Nutrition, 107, 744748. https://doi.org/10.1017/S0007114511003576Google Scholar
Schlagenhauf, F., Rapp, M. A., Huys, Q. J. M., Beck, A., Wüstenberg, T., Deserno, L., et al. (2013). Ventral striatal prediction error signaling is associated with dopamine synthesis capacity and fluid intelligence. Human Brain Mapping, 34, 14901499. https://doi.org/10.1002/hbm.22000Google Scholar
Schott, B. H., Minuzzi, L., Krebs, R. M., Elmenhorst, D., Lang, M., Winz, O. H., et al. (2008). Mesolimbic functional magnetic resonance imaging activations during reward anticipation correlate with reward-related ventral striatal dopamine release. Journal of Neuroscience, 28, 1431114319. https://doi.org/10.1523/jneurosci.2058-08.2008CrossRefGoogle ScholarPubMed
Shah, S., McRae, A. F., Marioni, R. E., Harris, S. E., Gibson, J., Henders, A. K., et al. (2014). Genetic and environmental exposures constrain epigenetic drift over the human life course. Genome Research, 24, 17251733. https://doi.org/10.1101/gr.176933.114Google Scholar
Shlyueva, D., Stampfel, G., & Stark, A. (2014). Transcriptional enhancers: From properties to genome-wide predictions. Nature Reviews Genetics, 15, 272286. https://doi.org/10.1038/nrg3682Google Scholar
Sinn, D. I., Kim, S. J., Chu, K., Jung, K. H., Lee, S. T., Song, E. C., et al. (2007). Valproic acid-mediated neuroprotection in intracerebral hemorrhage via histone deacetylase inhibition and transcriptional activation. Neurobiology of Disease, 26, 464472. https://doi.org/10.1016/j.nbd.2007.02.006Google Scholar
Smith, A. K., Kilaru, V., Klengel, T., Mercer, K. B., Bradley, B., Conneely, K. N., et al. (2015). DNA extracted from saliva for methylation studies of psychiatric traits: Evidence for tissue specificity and relatedness to brain. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 168B, 3644.Google Scholar
Sniekers, S., Stringer, S., Watanabe, K., Jansen, P. R., Coleman, J. R. I., Krapohl, E., et al. (2017). Genome-wide association meta-analysis of 78,308 individuals identifies new loci and genes influencing human intelligence. Nature Genetics, 49, 11071112. https://doi.org/10.1038/ng.3869Google Scholar
Spengler, M., Gottschling, J., Hahn, E., Tucker-Drob, E. M., Harzer, C., & Spinath, F. M. (2018). Does the heritability of cognitive abilities vary as a function of parental education? Evidence from a German twin sample. PLoS One, 13, 115. https://doi.org/10.1371/journal.pone.0196597Google Scholar
Starnawska, A., Tan, Q., McGue, M., Mors, O., Borglum, A. D., Christensen, K., et al. (2017). Epigenome-wide association study of cognitive functioning in middle-aged monozygotic twins. Frontiers in Aging Neuroscience, 9, 413. https://doi.org/10.3389/fnagi.2017.00413Google Scholar
Stefanko, D. P., Barrett, R. M., Ly, A. R., Reolon, G. K., & Wood, M. A. (2009). Modulation of long-term memory for object recognition via HDAC inhibition. Proceedings of the National Academy of Sciences, 106, 94479452. https://doi.org/10.1073/pnas.0903964106Google Scholar
Sternberg, R. J. (2003). Wisdom, intelligence, and creativity synthesized. New York: Cambridge University Press.Google Scholar
Surén, P., Roth, C., Bresnahan, M., Haugen, M., Hornig, M., Hirtz, D., et al. (2013). Association between maternal use of folic acid supplements and risk of autism spectrum disorders in children. Journal of the American Medical Association, 309, 570577. https://doi.org/10.1001/jama.2012.155925Google Scholar
Trampush, J. W., Yang, M. L. Z., Yu, J., Knowles, E., Davies, G., Liewald, D. C., et al. (2017). GWAS meta-analysis reveals novel loci and genetic correlates for general cognitive function: A report from the COGENT consortium. Molecular Psychiatry, 22, 336345. https://doi.org/10.1038/mp.2016.244Google Scholar
Ursini, G., Bollati, V., Fazio, L., Porcelli, A., Iacovelli, L., Catalani, A., et al. (2011). Stress-related methylation of the catechol-O-methyltransferase Val 158 allele predicts human prefrontal cognition and activity. Journal of Neuroscience, 31, 66926698. https://doi.org/10.1523/JNEUROSCI.6631-10.2011Google Scholar
Vaessen, T., Hernaus, D., Myin-Germeys, I., & van Amelsvoort, T. (2015). The dopaminergic response to acute stress in health and psychopathology: A systematic review. Neuroscience and Biobehavioral Reviews, 56, 241251. https://doi.org/10.1016/j.neubiorev.2015.07.008Google Scholar
Van Der Maas, H. L. J., Dolan, C. V., Grasman, R. P. P. P., Wicherts, J. M., Huizenga, H. M., & Raijmakers, M. E. J. (2006). A dynamical model of general intelligence: The positive manifold of intelligence by mutualism. Psychological Review, 113, 842861.Google Scholar
Vecsey, C. G., Hawk, J. D., Lattal, K. M., Stein, J. M., Fabian, S. A., Attner, M. A., et al. (2007). Histone deacetylase inhibitors enhance memory and synaptic plasticity via CREB:CBP-dependent transcriptional activation. Journal of Neuroscience, 27, 61286140. https://doi.org/10.1523/JNEUROSCI.0296-07.2007Google Scholar
Vernes, S. C., Newbury, D. F., Abrahams, B. S., Winchester, L., Nicod, J., Groszer, M., et al. (2008). A functional genetic link between distinct developmental language disorders. New England Journal of Medicine, 359(22), 23372345. https://doi.org/10.1056/NEJMoa0802828Google Scholar
Vettese-Dadey, M., Grant, P. A., Hebbes, T. R., Crane- Robinson, C., Allis, C. D., & Workman, J. L. (1996). Acetylation of histone H4 plays a primary role in enhancing transcription factor binding to nucleosomal DNA in vitro. EMBO Journal, 15(10), 25082518.Google Scholar
Villamor, E., Rifas-Shiman, S. L., Gillman, M. W., & Oken, E. (2012). Maternal intake of methyl-donor nutrients and child cognition at 3 years of age. Paediatric and Perinatal Epidemiology, 26, 328335. https://doi.org/10.1111/j.1365-3016.2012.01264.xGoogle Scholar
Vitolo, J. M., Thiriet, C., & Hayes, J. J. (2000). The H3-H4 N-terminal tail domains are the primary mediators of transcription factor IIIA access to 5S DNA within a nucleosome. Molecular and Cellular Biology, 20(6), 21672175.Google Scholar
von Stumm, S., & Plomin, R. (2015). Socioeconomic status and the growth of intelligence from infancy through adolescence. Intelligence, 48, 3036. https://doi.org/10.1016/j.intell.2014.10.002Google Scholar
Vukojevic, V., Kolassa, I. T., Fastenrath, M., Gschwind, L., Spalek, K., Milnik, A., et al. (2014). Epigenetic modification of the glucocorticoid receptor gene is linked to traumatic memory and post-traumatic stress disorder risk in genocide survivors. Journal of Neuroscience, 34, 1027410284. https://doi.org/10.1523/JNEUROSCI.1526-14.2014Google Scholar
Walton, E., Hass, J., Liu, J., Roffman, J. L., Bernardoni, F., Roessner, V., et al. (2016). Correspondence of DNA methylation between blood and brain tissue and its application to schizophrenia research. Schizophrenia Bulletin, 42, 406414. https://doi.org/10.1093/schbul/sbv074Google Scholar
Walton, E., Liu, J. Y., Hass, J., White, T., Scholz, M., Roessner, V., et al. (2014). MB-COMT promoter DNA methylation is associated with working-memory processing in schizophrenia patients and healthy controls. Epigenetics, 9, 11011107. https://doi.org/10.4161/epi.29223Google Scholar
Wang, Z., Zang, C., Rosenfeld, J. A., Schones, D. E., Barski, A., Cuddapah, S., et al. (2008). Combinatorial patterns of histone acetylations and methylations in the human genome. Nature Genetics, 40, 897903.Google Scholar
Weaving, L. S., Ellaway, C. J., Gecz, J., & Christodoulou, J. (2005). Rett syndrome: Clinical review and genetic update. Journal of Medical Genetics, 42, 17. https://doi.org/10.1136/jmg.2004.027730Google Scholar
Weissberger, G. H., Nation, D. A., Nguyen, C. P., Bondi, M. W., & Han, S. D. (2018). Meta-analysis of cognitive ability differences by apolipoprotein e genotype in young humans. Neuroscience and Biobehavioral Reviews, 94, 4958.Google Scholar
Whitehouse, A. J., Bishop, D. V. M., Ang, Q. W., Pennell, C. E., & Fisher, S. E. (2011). CNTNAP2 variants affect early language development in the general population. Genes, Brain and Behavior, 10, 451456.Google Scholar
Winick-Ng, W., & Rylett, R. J. (2018). Into the fourth dimension: Dysregulation of genome architecture in aging and Alzheimer’s disease. Frontiers in Molecular Neuroscience, 11. https://doi.org/10.3389/fnmol.2018.00060Google Scholar
Wu, L., Sun, T., Kobayashi, K., Gao, P., & Griffin, J. D. (2002). Identification of a family of mastermind-like transcriptional coactivators for mammalian notch receptors. Molecular and Cellular Biology, 22(21), 76887700.Google Scholar
Xie, W., & Ren, B. (2013). Enhancing pluripotency and lineage specification. Science, 341, 245247. https://doi.org/10.1126/science.1236254Google Scholar
Yang, A. W., Sachs, A. J., & Nystuen, A. M. (2015). Deletion of Inpp5a causes ataxia and cerebellar degeneration in mice. Neurogenetics, 16(4), 277285. https://doi.org/10.1007/s10048-015-0450-4Google Scholar
Yang, J., Benyamin, B., McEvoy, B. P., Gordon, S., Henders, A. K., Nyholt, D. R., et al. (2010). Common SNPs explain a large proportion of the heritability for human height. Nature Genetics, 42, 565569. https://doi.org/10.1038/ng.608CrossRefGoogle ScholarPubMed
Zhang, R.-R., Cui, Q.-Y., Murai, K., Lim, Y. C., Smith, Z. D., Jin, S., et al. (2013). Tet1 regulates adult hippocampal neurogenesis and cognition. Cell Stem Cell, 13, 237245. https://doi.org/10.1016/j.stem.2013.05.006Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×