Skip to main content Accessibility help
Hostname: page-component-f7d5f74f5-dcd55 Total loading time: 0 Render date: 2023-10-03T14:52:57.836Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

19 - The Biological Basis of Intelligence

from Part IV - Biology of Intelligence

Published online by Cambridge University Press:  13 December 2019

Robert J. Sternberg
Cornell University, New York
Get access


Genetic studies provide a compelling story of gene influences on intelligence, and neuroimaging studies provide insights about relevant brain structure and function. Polygenetic scores based on DNA and brain connectivity patterns based on neuroimaging are beginning to show correlations with individual differences in intelligence. Imaging studies also provide insights on specific brain networks related to intelligence, especially the PFIT model. The concept of brain efficiency is now being explored at the network and the dendrite levels. As we push inexorably deeper into the brain from cortex to neurons to synapses, we are at the threshold of developing a molecular biology of intelligence based both on gene expression related to brain development and function, and on the cascades of neurobiological events at the neuron and synapse levels. As prediction advances and the biological mechanisms underlying intelligence are identified, a major step will be manipulation of those mechanisms to enhance intelligence. That is why the study of intelligence has never been more exciting or important.

Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Alavash, M., Lim, S. J., Thiel, C., Sehm, B., Deserno, L., & Obleser, J. (2018). Dopaminergic modulation of hemodynamic signal variability and the functional connectome during cognitive performance. Neuroimage, 172, 341356.
Barbey, A. K., Colom, R., Paul, E., Forbes, C., Krueger, F., Goldman, D., & Grafman, J. (2014a). Preservation of general intelligence following traumatic brain injury: Contributions of the Met66 brain-derived neurotrophic factor. PLoS One, 9(2).
Barbey, A. K., Colom, R., Paul, E. J., & Grafman, J. (2014b). Architecture of fluid intelligence and working memory revealed by lesion mapping. Brain Structure and Function, 219(2), 485494.
Barbey, A. K., Colom, R., Solomon, J., Krueger, F., Forbes, C., & Grafman, J. (2012). An integrative architecture for general intelligence and executive function revealed by lesion mapping. Brain, 135(Pt 4), 11541164.
Basten, U., Hilger, K., & Fiebach, C. J. (2015). Where smart brains are different: A quantitative meta-analysis of functional and structural brain imaging studies on intelligence. Intelligence, 51, 1027.
Basten, U., Stelzel, C., & Fiebach, C. J. (2013). Intelligence is differentially related to neural effort in the task-positive and the task-negative brain network. Intelligence, 41(5), 517528.
Biazoli, C. E. Jr., Salum, G. A., Pan, P. M., Zugman, A., Amaro, E. Jr., Rohde, L. A., et al. (2017). Commentary: Functional connectome fingerprint: Identifying individuals using patterns of brain connectivity. Frontiers in Human Neuroscience, 11, 47.
Carroll, J. B. (1993). Human cognitive abilities: A survey of factor-analytic studies. Cambridge, UK: Cambridge University Press.
Chalke, F. C., & Ertl, J. (1965). Evoked potentials and intelligence. Life Sciences, 4(13), 13191322.
Cole, M. W., Yarkoni, T., Repovs, G., Anticevic, A., & Braver, T. S. (2012). Global connectivity of prefrontal cortex predicts cognitive control and intelligence. Journal of Neuroscience, 32(26), 89888999.
Colom, R., Karama, S., Jung, R. E., & Haier, R. J. (2010). Human intelligence and brain networks. Dialogues in Clinical Neuroscience, 12(4), 489501.
Colom, R., & Roman, F. J. (2018). Enhancing intelligence: From the group to the individual. Journal of Intelligence, 6(11).
Davis, J. M., Searles, V. B., Anderson, N., Keeney, J., Raznahan, A., Horwood, L. J., et al. (2015). DUF1220 copy number is linearly associated with increased cognitive function as measured by total IQ and mathematical aptitude scores. Human Genetics, 134(1), 6775.
Deary, I. J., Strand, S., Smith, P., & Fernandes, C. (2007). Intelligence and educational achievement. Intelligence, 35(1), 1321.
Dubois, J., Galdi, P., Paul, L. K., & Adolphs, R. (2018). A distributed brain network predicts general intelligence from resting-state human neuroimaging data. Philosophical Transactios of the Royal Society B.
Duncan, J., Emslie, H., Williams, P., Johnson, R., & Freer, C. (1996). Intelligence and the frontal lobe: The organization of goal-directed behavior. Cognitive Psychology, 30(3), 257303.
Nature (2017). Intelligence test (editorial). 545, 385386.
Ertl, J. P., & Schafer, E. W. (1969). Brain response correlates of psychometric intelligence. Nature, 223(204), 421422.
Euler, M. J., Weisend, M. P., Jung, R. E., Thoma, R. J., & Yeo, R. A. (2015). Reliable activation to novel stimuli predicts higher fluid intelligence. Neuroimage, 114, 311319.
Finn, E. S., Shen, X., Scheinost, D., Rosenberg, M. D., Huang, J., Chun, M. M., et al. (2015). Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity. Nature Neuroscience, 18(11), 16641671.
Genc, E., Fraenz, C., Schluter, C., Friedrich, P., Hossiep, R., Voelkle, M. C., et al. (2018). Diffusion markers of dendritic density and arborization in gray matter predict differences in intelligence. Nature Communications, 9(1), 1905.
Glascher, J., Rudrauf, D., Colom, R., Paul, L. K., Tranel, D., Damasio, H., & Adolphs, R. (2010). Distributed neural system for general intelligence revealed by lesion mapping. Proceedings of the National Academy of Sciences, 107(10), 47054709.
Glascher, J., Tranel, D., Paul, L. K., Rudrauf, D., Rorden, C., Hornaday, A., et al. (2009). Lesion mapping of cognitive abilities linked to intelligence. Neuron, 61(5), 681691.
Goriounova, N., Heyer, D. B., Wilbers, R., Verhoog, M. B., Giugliano, M., Verbist, C., et al. (2018). Large and fast human pyramidal neurons associate with intelligence. eLife, 7, e41714,
Green, S., Blackmon, K., Thesen, T., DuBois, J., Wang, X. Y., Halgren, E., & Devinsky, O. (2018). Parieto-frontal gyrification and working memory in healthy adults. Brain Imaging and Behavior, 12(2), 303308.
Guntupalli, J. S., Feilong, M., & Haxby, J. V. (2018). A computational model of shared fine-scale structure in the human connectome. PLoS Computational Biology, 14(4), e1006120.
Haier, R. J. (2009). Neuro-intelligence, neuro-metrics and the next phase of brain imaging studies. Intelligence, 37(2), 121123.
Haier, R. J. (2011). Biological basis of intelligence. In Sternberg, R. J. & Kaufman, A. S. (Eds.), Cambridge handbook of intelligence (pp. 351368). Cambridge, UK: Cambridge University Press.
Haier, R. J. (2014). Increased intelligence is a myth (so far). Frontiers in Systems Neuroscience, 8.
Haier, R. J. (2017). The neuroscience of intelligence. New York: Cambridge University Press.
Haier, R. J. (2018). A view from the brain. In Sternberg, R. J. (Ed.), The nature of human intelligence (pp. 167182). New York: Cambridge University Press.
Haier, R. J. (2019 in press). Biological approaches to intelligence. In Sternberg, R. J. (Ed.), Human intelligence: An introduction (pp. 139173). New York: Cambridge University Press.
Haier, R. J., Karama, S., Leyba, L., & Jung, R. E. (2009). MRI assessment of cortical thickness and functional activity changes in adolescent girls following three months of practice on a visual-spatial task. BMC Research Notes, 2.–0500-2–174
Haier, R. J., Siegel, B. V., Nuechterlein, K. H., Hazlett, E., Wu, J. C., Paek, J., et al. (1988). Cortical glucose metabolic-rate correlates of abstract reasoning and attention studied with positron emission tomography. Intelligence, 12(2), 199217.
Hearne, L. J., Mattingley, J. B., & Cocchi, L. (2016). Functional brain networks related to individual differences in human intelligence at rest. Scientific Reports, 6, 32328.
Hilger, K., Ekman, M., Fiebach, C. J., & Basten, U. (2017a). Efficient hubs in the intelligent brain: Nodal efficiency of hub regions in the salience network is associated with general intelligence. Intelligence, 60, 1025.
Hilger, K., Ekman, M., Fiebach, C. J., & Basten, U. (2017b). Intelligence is associated with the modular structure of intrinsic brain networks. Scientific Reports, 7(1), 16088.
Hill, W. D., Davies, G., van de Lagemaat, L. N., Christoforou, A., Marioni, R. E., Fernandes, C. P., et al. (2014). Human cognitive ability is influenced by genetic variation in components of postsynaptic signalling complexes assembled by NMDA receptors and MAGUK proteins. Translational Psychiatry, 4, e341.
Hunt, E. B. (2011). Human intelligence. Cambridge, UK: Cambridge University Press.
Jensen, A. R. (1998). The g factor: The science of mental ability. Westport, CT: Praeger.
Jensen, A. R. (2006). Clocking the mind: Mental chronometry and individual differences. New York: Elsevier.
Johnson, W., te Nijenhuis, J., & Bouchard, T. J. (2008). Still just 1 g: Consistent results from five test batteries. Intelligence, 36(1), 8195.
Jung, R. E., Brooks, W. M., Yeo, R. A., Chiulli, S. J., Weers, D. C., & Sibbitt, W. L. (1999). Biochemical markers of intelligence: A proton MR spectroscopy study of normal human brain. Proceedings of the Royal Society B: Biological Sciences, 266(1426), 13751379.
Jung, R. E., Gasparovic, C., Chavez, R. S., Caprihan, A., Barrow, R., & Yeo, R. A. (2009). Imaging intelligence with proton magnetic resonance spectroscopy. Intelligence, 37(2), 192198.
Jung, R. E., & Haier, R. J. (2007). The parieto-frontal integration theory (P-FIT) of intelligence: Converging neuroimaging evidence. Behavioral and Brain Sciences, 30(2), 135154; discussion 154187.
Jung, R. E., Haier, R. J., Yeo, R. A., Rowland, L. M., Petropoulos, H., Levine, A. S., et al. (2005). Sex differences in N-acetylaspartate correlates of general intelligence: An H-1-MRS study of normal human brain. Neuroimage, 26(3), 965972.
Krapohl, E., Patel, H., Newhouse, S., Curtis, C. J., von Stumm, S., Dale, P. S., et al. (2018). Multi-polygenic score approach to trait prediction. Molecular Psychiatry, 23(5), 13681374.
Kruschwitz, J. D., Waller, L., Daedelow, L. S., Walter, H., & Veer, I. M. (2018). General, crystallized and fluid intelligence are not associated with functional global network efficiency: A replication study with the human connectome project 1200 data set. Neuroimage.
Langer, N., Pedroni, A., Gianotti, L. R., Hanggi, J., Knoch, D., & Jancke, L. (2012). Functional brain network efficiency predicts intelligence. Human Brain Mapping, 33(6), 13931406.
Lashley, K. S. (1964). Brain mechanisms and intelligence. New York: Hafner.
Li, Y., Liu, Y., Li, J., Qin, W., Li, K. C., Yu, C. S., et al. (2009). Brain anatomical network and intelligence. PLoS Computational Biology, 5(5).
Liao, X., Vasilakos, A. V., & He, Y. (2017). Small-world human brain networks: Perspectives and challenges. Neuroscience and Biobehavioral Reviews, 77, 286300.
Liu, J., Liao, X., Xia, M., & He, Y. (2018). Chronnectome fingerprinting: Identifying individuals and predicting higher cognitive functions using dynamic brain connectivity patterns. Human Brain Mapping, 39(2), 902915.
Neubauer, A. C., & Fink, A. (2003). Fluid intelligence and neural efficiency: Effects of task complexity and sex. Personality and Individual Differences, 35(4), 811827.
Neubauer, A. C., & Fink, A. (2008). Intelligence and neural efficiency: A review and new data. International Journal of Psychophysiology, 69(3), 168169.
Neubauer, A. C., & Fink, A. (2009). Intelligence and neural efficiency: Measures of brain activation versus measures of functional connectivity in the brain. Intelligence, 37(2), 223229.
Nikolaidis, A., Baniqued, P. L., Kranz, M. B., Scavuzzo, C. J., Barbey, A. K., Kramer, A. F., et al. (2017). Multivariate associations of fluid intelligence and NAA. Cerebral Cortex, 27(4), 26072616.
Paul, E. J., Larsen, R. J., Nikolaidis, A., Ward, N., Hillman, C. H., Cohena, N. J., et al. (2016). Dissociable brain biomarkers of fluid intelligence. Neuroimage, 137, 201211.
Plomin, R., & von Stumm, S. (2018). The new genetics of intelligence. Nature Reviews Genetics, 19(3), 148159.
Poldrack, R. A. (2015). Is “efficiency” a useful concept in cognitive neuroscience? Developmental Cognitive Neuroscience, 11, 1217.
Ponsoda, V., Martinez, K., Pineda-Pardo, J. A., Abad, F. J., Olea, J., Roman, F. J., et al. (2017). Structural brain connectivity and cognitive ability differences: A multivariate distance matrix regression analysis. Human Brain Mapping, 38(2), 803816.
Rietveld, C. A., Esko, T., Davies, G., Pers, T. H., Turley, P., Benyamin, B., et al. (2014). Common genetic variants associated with cognitive performance identified using the proxy-phenotype method. Proceedings of the National Academy of Sciences, 111(38), 1379013794.
Rietveld, C. A., Medland, S. E., Derringer, J., Yang, J., Esko, T., Martin, N. W., et al. (2013). GWAS of 126,559 individuals identifies genetic variants associated with educational attainment. Science, 340(6139), 14671471.
Roth, B., Becker, N., Romeyke, S., Schafer, S., Domnick, F., & Spinath, F. M. (2015). Intelligence and school grades: A meta-analysis. Intelligence, 53, 118137.
Ryman, S. G., Yeo, R. A., Witkiewitz, K., Vakhtin, A. A., van den Heuvel, M., de Reus, M., et al. (2016). Fronto-parietal gray matter and white matter efficiency differentially predict intelligence in males and females. Human Brain Mapping, 37(11), 40064016.
Santarnecchi, E., Emmendorfer, A., & Pascual-Leone, A. (2017a). Dissecting the parieto-frontal correlates of fluid intelligence: A comprehensive ALE meta-analysis study. Intelligence, 63, 928.
Santarnecchi, E., Emmendorfer, A., Tadayon, S., Rossi, S., Rossi, A., & Pascual-Leone, A. (2017b). Network connectivity correlates of variability in fluid intelligence performance. Intelligence, 65, 3547.
Santarnecchi, E., Galli, G., Polizzotto, N. R., Rossi, A., & Rossi, S. (2014). Efficiency of weak brain connections support general cognitive functioning. Human Brain Mapping, 35(9), 45664582.
Santarnecchi, E., & Rossi, S. (2016). Advances in the neuroscience of intelligence: From brain connectivity to brain perturbation. Spanish Journal of Psychology, 19.
Schafer, E. W. (1982). Neural adaptability: A biological determinant of behavioral intelligence. International Journal of Neuroscience, 17(3), 183191.
Selzam, S., Krapohl, E., von Stumm, S., O’Reilly, P. F., Rimfeld, K., Kovas, Y., et al. (2018). Predicting educational achievement from DNA. Molecular Psychiatry, 23(1), 161.
Shehzad, Z., Kelly, C., Reiss, P. T., Cameron Craddock, R., Emerson, J. W., McMahon, K., et al. (2014). A multivariate distance-based analytic framework for connectome-wide association studies. Neuroimage, 93(Pt. 1), 7494.
Sniekers, S., Stringer, S., Watanabe, K., Jansen, P. R., Coleman, J. R. I., Krapohl, E., et al. (2017). Genome-wide association meta-analysis of 78,308 individuals identifies new loci and genes influencing human intelligence. Nature Genetics, 49(7), 11071112.
Song, M., Liu, Y., Zhou, Y., Wang, K., Yu, C. S., & Jiang, T. Z. (2009). Default network and intelligence difference. IEEE Transactions on Autonomous Mental Development, 1(2), 101109.
Thompson, R., Crinella, F. M., & Yu, J. (1990). Brain mechanisms in problem solving and intelligence: A survey of the rat brain. New York: Plenum Press.
Vakhtin, A. A., Ryman, S. G., Flores, R. A., & Jung, R. E. (2014). Functional brain networks contributing to the parieto-frontal integration theory of intelligence. Neuroimage, 103, 349354.
Valizadeh, S. A., Liem, F., Merillat, S., Hanggi, J., & Jancke, L. (2018). Identification of individual subjects on the basis of their brain anatomical features. Scientific Reports, 8(1), 5611.
van den Heuvel, M. P., & Sporns, O. (2011). Rich-club organization of the human connectome. Journal of Neuroscience, 31(44), 1577515786.
van den Heuvel, M. P., Stam, C. J., Kahn, R. S., & Pol, H. E. H. (2009). Efficiency of functional brain networks and intellectual performance. Journal of Neuroscience, 29(23), 76197624.
Wang, J. X., Kurth-Nelson, Z., Kumaran, D., Tirumala, D., Soyer, H., Leibo, J. Z., et al. (2018). Prefrontal cortex as a meta-reinforcement learning system. Nature Neuroscience, 21, 860868.
Zhao, M., Kong, L., & Qu, H. (2014). A systems biology approach to identify intelligence quotient score-related genomic regions, and pathways relevant to potential therapeutic treatments. Scientific Reports, 4, 4176.

Save book to Kindle

To save this book to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats