Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-15T22:32:50.278Z Has data issue: false hasContentIssue false

18 - The Mirror Neuron System and Social Cognition

from Part IV - Action

Published online by Cambridge University Press:  26 September 2020

Jeffrey J. Lockman
Affiliation:
Tulane University, Louisiana
Catherine S. Tamis-LeMonda
Affiliation:
New York University
Get access

Summary

The ability to understand others’ actions and intentions is at the core of human social competence. Action understanding, what it means and how it develops, has received much attention in developmental research because it is viewed as one of the most fundamental abilities in early social-cognitive development. For example, there is a growing body of evidence linking early action understanding with later theory of mind (Brooks & Meltzoff, 2015; Charman et al., 2000; Wellman, Phillips, Dunphy-Lelii, & LaLonde, 2004), and to the development of communicative skills (e.g., Brooks & Meltzoff, 2008). Increasing evidence suggests that the mirror neuron system (MNS) is a key neural correlate of action understanding. In this chapter, we discuss the role the MNS is thought to play in the development of social cognitive skills in infancy. We also discuss the current challenges of measuring the MNS that are unique to work with infants, what such studies have found in both typical and atypical populations, and how this work can impact our understanding of development.

Type
Chapter
Information
The Cambridge Handbook of Infant Development
Brain, Behavior, and Cultural Context
, pp. 495 - 519
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arbib, M. A., & Mundhenk, T. N. (2005). Schizophrenia and the mirror system: An essay. Neuropsychologia, 43(2), 268280. https://doi.org/10.1016/J.NEUROPSYCHOLOGIA.2004.11.013Google Scholar
Avenanti, A., Paracampo, R., Annella, L., Tidoni, E., & Aglioti, S. M. (2018). Boosting and decreasing action prediction abilities through excitatory and inhibitory tDCS of inferior frontal cortex. Cerebral Cortex, 28(4), 12821296. https://doi.org/10.1093/cercor/bhx041CrossRefGoogle ScholarPubMed
Bernier, R., Aaronson, B., & McPartland, J. (2013). The role of imitation in the observed heterogeneity in EEG mu rhythm in autism and typical development. Brain and Cognition, 82(1), 6975. https://doi.org/10.1016/J.BANDC.2013.02.008Google Scholar
Bernier, R., Dawson, G., Webb, S., & Murias, M. (2007). EEG mu rhythm and imitation impairments in individuals with autism spectrum disorder. Brain and Cognition, 64(3), 228237. https://doi.org/10.1016/J.BANDC.2007.03.004Google Scholar
Bhat, A. N., Galloway, J. C., & Landa, R. J. (2012). Relation between early motor delay and later communication delay in infants at risk for Autism. Infant Behavior and Development, 35(4), 838846. https://doi.org/10.1016/J.INFBEH.2012.07.019CrossRefGoogle ScholarPubMed
Biondi, M., Boas, D. A., & Wilcox, T. (2016). On the other hand: Increased cortical activation to human versus mechanical hands in infants. NeuroImage, 141, 143153. https://doi.org/10.1016/J.NEUROIMAGE.2016.07.021CrossRefGoogle ScholarPubMed
Blakemore, S., & Decety, J. (2001). From the perception of action to the understanding of intention. Nature Reviews Neuroscience, 2(8), 561567. https://doi.org/10.1038/35086023CrossRefGoogle Scholar
Brian, J., Bryson, S. E., Garon, N., Roberts, W., Smith, I. M., Szatmari, P., & Zwaigenbaum, L. (2008). Clinical assessment of autism in high-risk 18-month-olds. Autism, 12(5), 433456. https://doi.org/10.1177/1362361308094500CrossRefGoogle ScholarPubMed
Bridgeman, B. (2005). Action planning supplements mirror systems in language evolution. Behavioral and Brain Sciences, 28(2), 129130. https://doi.org/10.1017/S0140525X0526003XGoogle Scholar
Brooks, R., & Meltzoff, A. N. (2008). Infant gaze following and pointing predict accelerated vocabulary growth through two years of age: A longitudinal, growth curve modeling study. Journal of Child Language, 35, 207220. https://doi.org/10.1017/S030500090700829XCrossRefGoogle ScholarPubMed
Brooks, R., (2015). Connecting the dots from infancy to childhood: A longitudinal study connecting gaze following, language, and explicit theory of mind. Journal of Experimental Child Psychology, 130, 6778. https://doi.org/10.1016/j.jecp.2014.09.010CrossRefGoogle ScholarPubMed
Cannon, E. N., Simpson, E. A., Fox, N. A., Vanderwert, R. E., Woodward, A. L., & Ferrari, P. F. (2016). Relations between infants’ emerging reach-grasp competence and event-related desynchronization in EEG. Developmental Science, 19(1), 5062. https://doi.org/10.1111/desc.12295Google Scholar
Cannon, E. N., Yoo, K. H., Vanderwert, R. E., Ferrari, P. F., Woodward, A. L., & Fox, N. A. (2014). Action experience, more than observation, influences mu rhythm desynchronization. PloS ONE, 9(3), e92002. https://doi.org/10.1371/journal.pone.0092002CrossRefGoogle ScholarPubMed
Caspers, S., Zilles, K., Laird, A. R., & Eickhoff, S. B. (2010). ALE meta-analysis of action observation and imitation in the human brain. NeuroImage, 50(3), 11481167. https://doi.org/10.1016/j.neuroimage.2009.12.112Google Scholar
Cattaneo, L., Sandrini, M., & Schwarzbach, J. (2010). State-dependent TMS reveals a hierarchical representation of observed acts in the temporal, parietal, and premotor cortices. Cerebral Cortex, 20(9), 22522258. https://doi.org/10.1093/cercor/bhp291Google Scholar
Cavallo, A., Lungu, O., Becchio, C., Ansuini, C., Rustichini, A., & Fadiga, L. (2015). When gaze opens the channel for communication: Integrative role of IFG and MPFC. NeuroImage, 119, 6369. https://doi.org/10.1016/j.neuroimage.2015.06.025Google Scholar
Charman, T., Baron-Cohen, S., Swettenham, J., Baird, G., Cox, A., & Drew, A. (2000). Testing joint attention, imitation, and play as infancy precursors to language and theory of mind. Cognitive Development, 15(4), 481498. https://doi.org/10.1016/S0885-2014(01)00037-5Google Scholar
Charman, T., Swettenham, J., Baron-Cohen, S., Cox, A., Baird, G., & Drew, A. (1997). Infants with autism: An investigation of empathy, pretend play, joint attention, and imitation. Developmental Psychology, 33(5), 781789. https://doi.org/10.1037/0012-1649.33.5.781CrossRefGoogle ScholarPubMed
Cochin, S., Barthelemy, C., Roux, S., & Martineau, J. (1999). Observation and execution of movement: Similarities demonstrated by quantified electroencephalography. European Journal of Neuroscience, 11(5), 18391842. https://doi.org/10.1046/j.1460-9568.1999.00598.xGoogle Scholar
Cossu, G., Boria, S., Copioli, C., Bracceschi, R., Giuberti, V., Santelli, E., & Gallese, V. (2012). Motor representation of actions in children with autism. PLoS ONE, 7(9), e44779. https://doi.org/10.1371/journal.pone.0044779Google Scholar
Cuevas, K., Cannon, E. N., Yoo, K. H., & Fox, N. A. (2014). The infant EEG mu rhythm: Methodological considerations and best practices. Developmental Review, 34(1), 2643. https://doi.org/10.1016/j.dr.2013.12.001CrossRefGoogle ScholarPubMed
Dapretto, M., Davies, M. S., Pfeifer, J. H., Scott, A. A., Sigman, M., Bookheimer, S. Y., & Iacoboni, M. (2006). Understanding emotions in others: Mirror neuron dysfunction in children with autism spectrum disorders. Nature Neuroscience, 9(1), 2830. https://doi.org/10.1038/nn1611Google Scholar
de Klerk, C. C. J. M., Johnson, M. H., Heyes, C. M., & Southgate, V. (2015). Baby steps: Investigating the development of perceptual-motor couplings in infancy. Developmental Science, 18(2), 270280. https://doi.org/10.1111/desc.12226Google Scholar
de Klerk, C. C. J. M., Southgate, V., & Csibra, G. (2016). Predictive action tracking without motor experience in 8-month-old infants. Brain and Cognition, 109, 131139. https://doi.org/10.1016/j.bandc.2016.09.010Google Scholar
Debnath, R., Salo, V. C., Buzzell, G. A., Yoo, K. H., & Fox, N. A. (2019). Mu rhythm desynchronization is specific to action execution and observation: Evidence from time-frequency and connectivity analysis. NeuroImage, 184, 496507. https://doi.org/10.1016/j.neuroimage.2018.09.053Google Scholar
di Pellegrino, G., Fadiga, L., Fogassi, L., Gallese, V., & Rizzolatti, G. (1992). Understanding motor events: A neurophysiological study. Experimental Brain Research, 91(1), 176180. https://doi.org/10.1007/BF00230027Google Scholar
Dumas, G., Soussignan, R., Hugueville, L., Martinerie, J., & Nadel, J. (2014). Revisiting mu suppression in autism spectrum disorder. Brain Research, 1585, 108119. https://doi.org/10.1016/J.BRAINRES.2014.08.035Google Scholar
Engel, A. K., Maye, A., Kurthen, M., & König, P. (2013). Where’s the action? The pragmatic turn in cognitive science. Trends in Cognitive Sciences, 17(5), 202209. https://doi.org/10.1016/j.tics.2013.03.006Google Scholar
Fan, Y. -T., Decety, J., Yang, C. -Y., Liu, J. -L., & Cheng, Y. (2010). Unbroken mirror neurons in autism spectrum disorders. Journal of Child Psychology and Psychiatry, 51(9), 981988. https://doi.org/10.1111/j.1469-7610.2010.02269.xGoogle Scholar
Ferrari, P. F., Gerbella, M., Coudé, G., & Rozzi, S. (2017). Two different mirror neuron networks: The sensorimotor (hand) and limbic (face) pathways. Neuroscience, 358(45), 300315. https://doi.org/10.1016/j.neuroscience.2017.06.052Google Scholar
Ferrari, P. F., Tramacere, A., Simpson, E. A., & Iriki, A. (2013). Mirror neurons through the lens of epigenetics. Trends in Cognitive Sciences, 17(9), 450457. https://doi.org/10.1016/j.tics.2013.07.003Google Scholar
Filippi, C. A., Cannon, E. N., Fox, N. A., Thorpe, S. G., Ferrari, P. F., & Woodward, A. L. (2016). Motor system activation predicts goal imitation in 7-month-old infants. Psychological Science, 27(5), 675684. https://doi.org/10.1177/0956797616632231Google Scholar
Foglia, L., & Wilson, R. A. (2013). Embodied cognition. WIREs Cognitive Science, 4(3), 319325. https://doi.org/10.1002/wcs.1226Google Scholar
Fox, N. A., Bakermans-Kranenburg, M. J., Yoo, K. H., Bowman, L. C., Cannon, E. N., Vanderwert, R. E., … van IJzendoorn, M. H. (2016). Assessing human mirror activity with EEG mu rhythm: A meta-analysis. Psychological Bulletin, 142(3), 291313. https://doi.org/10.1037/bul0000031Google Scholar
Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain, 119(2), 593609. https://doi.org/10.1093/brain/119.2.593Google Scholar
Gallese, V., & Goldman, A. (1998). Mirror neurons and the simulation theory of mind-reading. Trends in Cognitive Sciences, 2(12), 493501. https://doi.org/10.1016/S1364-6613(98)01262-5Google Scholar
Gallese, V., Keysers, C., & Rizzolatti, G. (2004). A unifying view of the basis of social cognition. Trends in Cognitive Sciences, 8(9), 396403. https://doi.org/10.1016/j.tics.2004.07.002Google Scholar
Gernsbacher, M. A., Sauer, E. A., Geye, H. M., Schweigert, E. K., & Goldsmith, H. H. (2008). Infant and toddler oral- and manual-motor skills predict later speech fluency in Autism. Journal of Child Psychology and Psychiatry, 49(1), 4350. https://doi.org/10.1111/j.1469-7610.2007.01820.xGoogle Scholar
Green, D., Li, Q., Lockman, J. J., & Gredebäck, G. (2016). Culture influences action understanding in infancy: Prediction of actions performed with chopsticks and spoons in Chinese and Swedish infants. Child Development, 87(3), 736746. https://doi.org/10.1111/cdev.12500Google Scholar
Grossmann, T., Johnson, M. H., Lloyd-Fox, S., Blasi, A., Deligianni, F., Elwell, C., & Csibra, G. (2008). Early cortical specialization for face-to-face communication in human infants. Proceedings. Biological Sciences, 275(1653), 28032811. https://doi.org/10.1098/rspb.2008.0986Google ScholarPubMed
Hamilton, A. F. (2013). Reflecting on the mirror neuron system in autism: A systematic review of current theories. Developmental Cognitive Neuroscience, 3, 91105. https://doi.org/10.1016/J.DCN.2012.09.008Google Scholar
Hari, R. (2006). Action–perception connection and the cortical mu rhythm. Progress in Brain Research, 159, 253260. https://doi.org/10.1016/S0079-6123(06)59017-XGoogle Scholar
Heyes, C. (2010). Where do mirror neurons come from? Neuroscience & Biobehavioral Reviews, 34(4), 575583. https://doi.org/10.1016/j.neubiorev.2009.11.007Google Scholar
Heyes, C. (2013). A new approach to mirror neurons: Developmental history, system-level theory and intervention experiments. Cortex, 49(10), 29462948. https://doi.org/10.1016/j.cortex.2013.07.002Google Scholar
Hickok, G. (2009). Eight problems for the mirror neuron theory of action understanding in monkeys and humans. Journal of Cognitive Neuroscience, 21(7), 12291243. https://doi.org/10.1162/jocn.2009.21189Google Scholar
Hobson, H. M., & Bishop, D. V. M. (2016). Mu suppression: A good measure of the human mirror neuron system? Cortex, 82, 290310. https://doi.org/10.1016/j.cortex.2016.03.019CrossRefGoogle ScholarPubMed
Iacoboni, M. (2009). Imitation, empathy, and mirror neurons. Annual Review of Psychology, 60(1), 653670. https://doi.org/10.1146/annurev.psych.60.110707.163604CrossRefGoogle ScholarPubMed
Ichikawa, H., Kanazawa, S., Yamaguchi, M. K., & Kakigi, R. (2010). Infant brain activity while viewing facial movement of point-light displays as measured by near-infrared spectroscopy (NIRS). Neuroscience Letters, 482(2), 9094. https://doi.org/10.1016/J.NEULET.2010.06.086Google Scholar
Iverson, J. M., & Wozniak, R. H. (2007). Variation in vocal-motor development in infant siblings of children with Autism. Journal of Autism and Developmental Disorders, 37(1), 158170. https://doi.org/10.1007/s10803-006-0339-zGoogle Scholar
Lepage, J. -F., & Théoret, H. (2006). EEG evidence for the presence of an action observation-execution matching system in children. European Journal of Neuroscience, 23(9), 25052510. https://doi.org/10.1111/j.1460-9568.2006.04769.xGoogle Scholar
Li, G., Lin, W., Gilmore, J. H., & Shen, D. (2015). Spatial patterns, longitudinal development, and hemispheric asymmetries of cortical thickness in infants from birth to 2 years of age. Journal of Neuroscience, 35(24), 91509162. https://doi.org/10.1523/JNEUROSCI.4107–14.2015Google Scholar
Li, G., Nie, J., Wang, L., Shi, F., Lin, W., Gilmore, J. H., & Shen, D. (2013). Mapping region-specific longitudinal cortical surface expansion from birth to 2 years of age. Cerebral Cortex, 23(11), 27242733. https://doi.org/10.1093/cercor/bhs265Google Scholar
Libertus, K., Joh, A. S., & Needham, A. W. (2016). Motor training at 3 months affects object exploration 12 months later. Developmental Science, 19(6), 10581066. https://doi.org/10.1111/desc.12370Google Scholar
Libertus, K., Sheperd, K. A., Ross, S. W., & Landa, R. J. (2014). Limited fine motor and grasping skills in 6-month-old infants at high risk for Autism. Child Development, 85(6), 22182231. https://doi.org/10.1111/cdev.12262Google Scholar
Lloyd-Fox, S., Blasi, A., Volein, A., Everdell, N., Elwell, C. E., & Johnson, M. H. (2009). Social perception in infancy: A near infrared spectroscopy study. Child Development, 80(4), 986999. https://doi.org/10.1111/j.1467-8624.2009.01312.xGoogle Scholar
Lloyd-Fox, S., Wu, R., Richards, J. E., Elwell, C. E., & Johnson, M. H. (2015). Cortical activation to action perception is associated with action production abilities in young infants. Cerebral Cortex, 25(2), 289297. https://doi.org/10.1093/cercor/bht207Google Scholar
MacDonald, M., Lord, C., & Ulrich, D. (2013). The relationship of motor skills and adaptive behavior skills in young children with autism spectrum disorders. Research in Autism Spectrum Disorders, 7(11), 13831390. https://doi.org/10.1016/J.RASD.2013.07.020Google Scholar
Manshanden, I., de Munck, J. C., Simon, N. R., & Lopes da Silva, F. H. (2002). Source localization of MEG sleep spindles and the relation to sources of alpha band rhythms. Clinical Neurophysiology, 113(12), 19371947. https://doi.org/10.1016/S1388-2457(02)00304-8Google Scholar
Marshall, P. J., Bar-Haim, Y., & Fox, N. A. (2002). Development of the EEG from 5 months to 4 years of age. Clinical Neurophysiology, 113(8), 11991208. https://doi.org/10.1016/j.cogpsych.2012.08.001Google Scholar
Marshall, P. J., & Meltzoff, A. N. (2011). Neural mirroring systems: Exploring the EEG mu rhythm in human infancy. Developmental Cognitive Neuroscience, 1(2), 110123. https://doi.org/10.1016/j.dcn.2010.09.001Google Scholar
Marshall, P. J., (2014). Neural mirroring mechanisms and imitation in human infants. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1644), 2013062020130620. https://doi.org/10.1098/rstb.2013.0620Google Scholar
Martineau, J., Cochin, S., Magne, R., & Barthelemy, C. (2008). Impaired cortical activation in autistic children: Is the mirror neuron system involved? International Journal of Psychophysiology, 68(1), 3540. https://doi.org/10.1016/J.IJPSYCHO.2008.01.002Google Scholar
McDonald, N. M., & Perdue, K. L. (2018, April 1). The infant brain in the social world: Moving toward interactive social neuroscience with functional near-infrared spectroscopy. Neuroscience and Biobehavioral Reviews, 87, 3849. https://doi.org/10.1016/j.neubiorev.2018.01.007Google Scholar
Meltzoff, A. N. (2007). “Like me”: A foundation for social cognition. Developmental Science, 10(1), 126134. https://doi.org/10.1111/j.1467-7687.2007.00574.xGoogle Scholar
Meltzoff, A. N., & Gopnik, A. (1993). The role of imitation in understanding persons and developing a theory of mind. In Baron-Cohen, S., Tager-Flusberg, H., & Cohen, D. J. (Eds.), Understanding other minds: Perspectives from Autism (pp. 335366). New York, NY: Oxford University Press.Google Scholar
Mizuhara, H., & Inui, T. (2011). Is mu rhythm an index of the human mirror neuron system? A study of simultaneous fMRI and EEG. In Wang, R. & Gu, F. (Eds.), Advances in cognitive neurodynamics (II): Proceedings of the Second International Conference on Cognitive Neurodynamics (pp. 123127). Dordrecht: Springer Science & Business Media. https://doi.org/10.1007/978-90-481-9695-1_19Google Scholar
Molenberghs, P., Cunnington, R., & Mattingley, J. B. (2012). Brain regions with mirror properties: A meta-analysis of 125 human fMRI studies. Neuroscience & Biobehavioral Reviews, 36(1), 341349. https://doi.org/10.1016/J.NEUBIOREV.2011.07.004Google Scholar
Morales, S., Bowman, L. C., Velnoskey, K. R., Fox, N. A., & Redcay, E. (2019). An fMRI study of action observation and action execution in childhood. Developmental Cognitive Neuroscience, 37. https://doi.org/10.1016/j.dcn.2019.100655Google Scholar
Mukamel, R., Ekstrom, A. D., Kaplan, J., Iacoboni, M., & Fried, I. (2010). Single-neuron responses in humans during execution and observation of actions. Current Biology, 20(8), 750756. https://doi.org/10.1016/j.cub.2010.02.045Google Scholar
Muthukumaraswamy, S. D., Johnson, B. W., & McNair, N. A. (2004). Mu rhythm modulation during observation of an object-directed grasp. Cognitive Brain Research, 19(2), 195201. https://doi.org/10.1016/j.cogbrainres.2003.12.001Google Scholar
Ng, R., Brown, T. T., Erhart, M., Järvinen, A. M., Korenberg, J. R., Bellugi, U., & Halgren, E. (2016). Morphological differences in the mirror neuron system in Williams syndrome. Social Neuroscience, 11(3), 277288. https://doi.org/10.1080/17470919.2015.1070746Google Scholar
Nyström, P. (2008). The infant mirror neuron system studied with high density EEG. Social Neuroscience, 3(3–4), 334347. https://doi.org/10.1080/17470910701563665Google Scholar
Nyström, P., Ljunghammar, T., Rosander, K., & von Hofsten, C. (2011). Using mu rhythm desynchronization to measure mirror neuron activity in infants. Developmental Science, 14(2), 327335. https://doi.org/10.1111/j.1467-7687.2010.00979.xGoogle Scholar
Oberman, L. M., Hubbard, E. M., McCleery, J. P., Altschuler, E. L., Ramachandran, V. S., & Pineda, J. A. (2005). EEG evidence for mirror neuron dysfunction in autism spectrum disorders. Cognitive Brain Research, 24(2), 190198. https://doi.org/10.1016/J.COGBRAINRES.2005.01.014Google Scholar
Oberman, L. M., Ramachandran, V. S., & Pineda, J. A. (2008). Modulation of mu suppression in children with autism spectrum disorders in response to familiar or unfamiliar stimuli: The mirror neuron hypothesis. Neuropsychologia, 46(5), 15581565. https://doi.org/10.1016/J.NEUROPSYCHOLOGIA.2008.01.010Google Scholar
Orgs, G., Dombrowski, J. -H., Heil, M., & Jansen-Osmann, P. (2008). Expertise in dance modulates alphabeta event-related desynchronization during action observation. European Journal of Neuroscience, 27(12), 33803384. https://doi.org/10.1111/j.1460-9568.2008.06271.xGoogle Scholar
Overton, W. F. (2006). Developmental psychology: Philosophy, concepts, methodology. In Damon, W. I. & Lerner, R. M. (Eds.), Handbook of child psychology. Vol. 1: Theoretical models of human development (6th ed., pp. 1888). Hoboken, NJ: John Wiley & Sons. https://doi.org/10.1002/9780470147658.chpsy0102Google Scholar
Paulus, M. (2012). Action mirroring and action understanding: An ideomotor and attentional account. Psychological Research, 76(6), 760767. https://doi.org/10.1007/s00426-011-0385-9Google Scholar
Pfurtscheller, G., Neuper, C., Andrew, C., & Edlinger, G. (1997). Foot and hand area mu rhythms. International Journal of Psychophysiology, 26(1–3), 121135. https://doi.org/10.1016/S0167-8760(97)00760-5Google Scholar
Piaget, J. (1952). The origins of intelligence in children. New York, NY: Norton.CrossRefGoogle Scholar
Pineda, J. A. (2005). The functional significance of mu rhythms: Translating “seeing” and “hearing” into “doing.” Brain Research Reviews, 50(1), 5768. https://doi.org/10.1016/j.brainresrev.2005.04.005Google Scholar
Raymaekers, R., Wiersema, J. R., & Roeyers, H. (2009). EEG study of the mirror neuron system in children with high functioning autism. Brain Research, 1304, 113121. https://doi.org/10.1016/J.BRAINRES.2009.09.068CrossRefGoogle ScholarPubMed
Rayson, H., Bonaiuto, J. J., Ferrari, P. F., & Murray, L. (2016). Mu desynchronization during observation and execution of facial expressions in 30-month-old children. Developmental Cognitive Neuroscience, 19, 279287. https://doi.org/10.1016/j.dcn.2016.05.003Google Scholar
Reid, V. M., Striano, T., & Iacoboni, M. (2011). Neural correlates of dyadic interaction during infancy. Developmental Cognitive Neuroscience, 1(2), 124130. https://doi.org/10.1016/j.dcn.2011.01.001Google Scholar
Reynolds, J. E., Billington, J., Kerrigan, S., Williams, J., Elliott, C., Winsor, A. M., … Licari, M. K. (2017). Mirror neuron system activation in children with developmental coordination disorder: A replication functional MRI study. Research in Developmental Disabilities, 84, 1627. https://doi.org/10.1016/J.RIDD.2017.11.012Google Scholar
Rizzolatti, G., & Arbib, M. A. (1998). Language within our grasp. Trends in Neurosciences, 21(5), 188194.CrossRefGoogle ScholarPubMed
Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169192. https://doi.org/10.1146/annurev.neuro.27.070203.144230Google Scholar
Rizzolatti, G., Fadiga, L., Gallese, V., & Fogassi, L. (1996). Premotor cortex and the recognition of motor actions. Cognitive Brain Research, 3(2), 131141. https://doi.org/10.1016/0926-6410(95)00038-0Google Scholar
Rizzolatti, G., Fogassi, L., & Gallese, V. (2001). Neurophysiological mechanisms underlying the understanding and imitation of action. Nature Reviews Neuroscience, 2(9), 661670. https://doi.org/10.1038/35090060Google Scholar
Rogers, S. J., Hepburn, S. L., Stackhouse, T., & Wehner, E. (2003). Imitation performance in toddlers with Autism and those with other developmental disorders. Journal of Child Psychology and Psychiatry, 44(5), 763781. https://doi.org/10.1111/1469–7610.00162Google Scholar
Ruysschaert, L., Warreyn, P., Wiersema, J. R., Metin, B., & Roeyers, H. (2013). Neural mirroring during the observation of live and video actions in infants. Clinical Neurophysiology, 124(9), 17651770. https://doi.org/10.1016/j.clinph.2013.04.007CrossRefGoogle ScholarPubMed
Ruysschaert, L., Warreyn, P., Wiersema, J. R., Oostra, A., & Roeyers, H. (2014). Exploring the role of neural mirroring in children with autism spectrum disorder. Autism Research, 7(2), 197206. https://doi.org/10.1002/aur.1339Google Scholar
Salmelin, R., Hámáaláinen, M., Kajola, M., & Hari, R. (1995). Functional segregation of movement-related rhythmic activity in the human brain. NeuroImage, 2(4), 237243. https://doi.org/10.1006/NIMG.1995.1031Google Scholar
Salmelin, R., & Hari, R. (1994). Spatiotemporal characteristics of sensorimotor neuromagnetic rhythms related to thumb movement. Neuroscience, 60(2), 537550. https://doi.org/10.1016/0306-4522(94)90263-1Google Scholar
Salo, V. C. (2018). Examining the role of the motor system in early communicative development (Unpublished doctoral dissertation). University of Maryland, College Park.Google Scholar
Shapiro, I. (2011). Embodied cognition. New York, NY: Routledge.Google Scholar
Shimada, S., & Hiraki, K. (2006). Infant’s brain responses to live and televised action. NeuroImage, 32(2), 930939. https://doi.org/10.1016/J.NEUROIMAGE.2006.03.044Google Scholar
Shin, Y. K., Proctor, R. W., & Capaldi, E. J. (2010). A review of contemporary ideomotor theory. Psychological Bulletin, 136(6), 943974. https://doi.org/10.1037/a0020541Google Scholar
Southgate, V., & Hamilton, A. F. (2008). Unbroken mirrors: Challenging a theory of Autism. Trends in Cognitive Sciences, 12(6), 225229. https://doi.org/10.1016/j.tics.2008.03.005Google Scholar
Southgate, V., Johnson, M. H., Karoui, I. E., & Csibra, G. (2010). Motor system activation reveals infants’ on-line prediction of others’ goals. Psychological Science, 21(3), 355359. https://doi.org/10.1177/0956797610362058Google Scholar
Southgate, V., Johnson, M. H., Osborne, T., & Csibra, G. (2009). Predictive motor activation during action observation in human infants. Biology Letters, 5(6), 769772. https://doi.org/10.1098/rsbl.2009.0474Google Scholar
Stadler, W., Ott, D. V. M., Springer, A., Schubotz, R. I., Schütz-Bosbach, S., & Prinz, W. (2012). Repetitive TMS suggests a role of the human dorsal premotor cortex in action prediction. Frontiers in Human Neuroscience, 6, 20. https://doi.org/10.3389/fnhum.2012.00020Google Scholar
Stapel, J. C., Hunnius, S., van Elk, M., & Bekkering, H. (2010). Motor activation during observation of unusual versus ordinary actions in infancy. Social Neuroscience, 5(5–6), 451460. https://doi.org/10.1080/17470919.2010.490667Google Scholar
Sun, P. -P., Tan, F. -L., Zhang, Z., Jiang, Y. -H., Zhao, Y., & Zhu, C. -Z. (2018). Feasibility of functional near-infrared spectroscopy (fNIRS) to investigate the mirror neuron system: An experimental study in a real-life situation. Frontiers in Human Neuroscience, 12, 86. https://doi.org/10.3389/fnhum.2018.00086Google Scholar
Sutera, S., Pandey, J., Esser, E. L., Rosenthal, M. A., Wilson, L. B., Barton, M., … Fein, D. (2007). Predictors of optimal outcome in toddlers diagnosed with autism spectrum disorders. Journal of Autism and Developmental Disorders, 37(1), 98107. https://doi.org/10.1007/s10803-006-0340-6Google Scholar
Thorpe, S. G., Cannon, E. N., & Fox, N. A. (2016). Spectral and source structural development of mu and alpha rhythms from infancy through adulthood. Clinical Neurophysiology, 127(1), 254269. https://doi.org/10.1016/j.clinph.2015.03.004Google Scholar
Tomasello, M. (1995). Joint attention and social cognition. In Moore, C. & Dunham, P. J. (Eds.), Joint attention: Its origins and role in development (pp. 103130). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Tomasello, M., Carpenter, M., Call, J., Behne, T., & Moll, H. (2005). Understanding and sharing intentions: The origins of cultural cognition. Behavioral and Brain Sciences, 28(5), 675691. https://doi.org/10.1017/S0140525X05000129Google Scholar
Tomasello, M., Carpenter, M., & Liszkowski, U. (2007). A new look at infant pointing. Child Development, 78(3), 705722. https://doi.org/10.1111/j.1467-8624.2007.01025.xCrossRefGoogle Scholar
Tomasello, M., Kruger, A. C., & Ratner, H. H. (1993). Cultural learning. Behavioral and Brain Sciences, 16(3), 495. https://doi.org/10.1017/S0140525X0003123XGoogle Scholar
Toth, K., Munson, J., Meltzoff, A. N., & Dawson, G. (2006). Early predictors of communication development in young children with autism spectrum disorder: Joint attention, imitation, and toy play. Journal of Autism and Developmental Disorders, 36(8), 9931005. https://doi.org/10.1007/s10803-006-0137-7Google Scholar
van Elk, M., van Schie, H. T., Hunnius, S., Vesper, C., & Bekkering, H. (2008). You’ll never crawl alone: Neurophysiological evidence for experience-dependent motor resonance in infancy. NeuroImage, 43(4), 808814. https://doi.org/10.1016/j.neuroimage.2008.07.057Google Scholar
van Overwalle, F., & Baetens, K. (2009). Understanding others’ actions and goals by mirror and mentalizing systems: A meta-analysis. NeuroImage, 48(3), 564584. https://doi.org/10.1016/j.neuroimage.2009.06.009Google Scholar
Virji-Babul, N., Moiseev, A., Cheung, T., Weeks, D., Cheyne, D., & Ribary, U. (2008). Changes in mu rhythm during action observation and execution in adults with Down syndrome: Implications for action representation. Neuroscience Letters, 436(2), 177180. https://doi.org/10.1016/J.NEULET.2008.03.022Google Scholar
Virji-Babul, N., Rose, A., Moiseeva, N., & Makan, N. (2012). Neural correlates of action understanding in infants: Influence of motor experience. Brain and Behavior, 2(3), 237242. https://doi.org/10.1002/brb3.50Google Scholar
Wellman, H. M., Phillips, A. T., Dunphy-Lelii, S., & LaLonde, N. (2004). Infant social attention predicts preschool social cognition. Developmental Science, 7(3), 283288. https://doi.org/10.1111/j.1467-7687.2004.00347.xGoogle Scholar
Woodward, A. L., & Gerson, S. A. (2014). Mirroring and the development of action understanding. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 369(1644), 20130181. https://doi.org/10.1098/rstb.2013.0181Google Scholar
Yang, J., Andric, M., & Mathew, M. M. (2015). The neural basis of hand gesture comprehension: A meta-analysis of functional magnetic resonance imaging studies. Neuroscience & Biobehavioral Reviews, 57, 88104. https://doi.org/10.1016/j.neubiorev.2015.08.006Google Scholar
Yoo, K. H., Cannon, E. N., Thorpe, S. G., & Fox, N. A. (2015). Desynchronization in EEG during perception of means–end actions and relations with infants’ grasping skill. British Journal of Developmental Psychology, 34(1), 2437. https://doi.org/10.1111/bjdp.12115Google Scholar
Yoo, K. H., Thorpe, S. G., & Fox, N. A. (2016). Neural correlates of motor learning in infants. Paper presented at the Biennial International Conference on Infant Studies, New Orleans, LA.Google Scholar
Young, G. S., Rogers, S. J., Hutman, T., Rozga, A., Sigman, M., & Ozonoff, S. (2011). Imitation from 12 to 24 months in autism and typical development: A longitudinal Rasch analysis. Developmental Psychology, 47(6), 15651578. https://doi.org/10.1037/a0025418Google Scholar
Zwaigenbaum, L., Bauman, M. L., Choueiri, R., Kasari, C., Carter, A., Granpeesheh, D., … Natowicz, M. R. (2015). Early intervention for children with autism spectrum disorder under 3 years of age: Recommendations for practice and research. Pediatrics, 136(Suppl. 1), S60S81. https://doi.org/10.1542/peds.2014-3667EGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×