Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-01T21:13:33.313Z Has data issue: false hasContentIssue false

Part III - Cognitive Development

Published online by Cambridge University Press:  26 September 2020

Jeffrey J. Lockman
Affiliation:
Tulane University, Louisiana
Catherine S. Tamis-LeMonda
Affiliation:
New York University
Get access
Type
Chapter
Information
The Cambridge Handbook of Infant Development
Brain, Behavior, and Cultural Context
, pp. 339 - 466
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Adolph, K. E., & Hoch, J. E. (2019). Motor development: Embodied, embedded, enculturated, and enabling. Annual Review of Psychology, 70, 26.1–26.24.Google Scholar
Anderson, D. I., Campos, J. J., Witherington, D. C., Dahl, A., Rivera, M., He, M., … Barbu-Roth, M. (2013). The role of locomotion in psychological development. Frontiers in Psychology, 4, 440.CrossRefGoogle ScholarPubMed
Artioli, F., & Reese, E. (2013). Early memories in young adults from separated and non-separated families, Memory, 22, 10821102Google Scholar
Artioli, F., Reese, E., & Hayne, H. (2015). Benchmarking the past: Children’s early memories and maternal reminiscing as a function of family structure. Journal of Applied Research in Memory and Cognition, 4, 136143.Google Scholar
Bahrick, L., & Pickens, J. (1995). Infant memory for object motion across a period of three months: Implications for a four-phase attention function. Journal of Experimental Child Psychology, 59, 343371.CrossRefGoogle ScholarPubMed
Barnat, S. A., Klein, P. J., & Meltzoff, A. N. (1996). Deferred imitation across changes in context and object: Memory and generalization in 14-month-old infants. Infant Behavior and Development, 19, 241251.Google Scholar
Barr, R. (2013). Memory constraints on infant learning from picture books, television, and touchscreens. Child Development Perspectives, 7, 205210.Google Scholar
Barr, R., Dowden, A., & Hayne, H. (1996). Developmental changes in deferred imitation by 6- to 24-month-old infants. Infant Behavior and Development, 19, 159170.Google Scholar
Barr, R., & Hayne, H. (1999). Developmental changes in imitation from television during infancy. Child Development, 70, 10671081.Google Scholar
Barr, R., (2000). Age-related changes in imitation: Implications for memory development. In Rovee-Collier, C., Lipsitt, L. P., & Hayne, H. (Eds.), Progress in infancy research (Vol. 1, pp. 2167). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Barr, R., Muentener, R., Garcia, A., Fujimoto, M., & Chavez, V. (2007). The effect of repetition on imitation from television during infancy. Developmental Psychobiology, 49, 196207.CrossRefGoogle ScholarPubMed
Barr, R., Walker, J., Gross, J., & Hayne, H. (2014). Age-related changes in spreading activation during infancy. Child Development, 85, 549563.Google Scholar
Bauer, P. (2015). A complementary processes account of the development of childhood amnesia and a personal past. Psychological Review, 122, 204231.Google Scholar
Bauer, P. J., Wenner, J. A., Dropik, P. L., & Wewerka, S. S. (2000). Parameters of remembering and forgetting in the transition from infancy to early childhood. Monographs of the Society for Research in Child Development, 65, 1204.Google Scholar
Brito, N., & Barr, R. (2012). Influence of bilingualism on memory generalisation during infancy. Developmental Science, 15, 812816.Google Scholar
Brito, N., (2014). Flexible memory retrieval in bilingual 6-month-old infants. Developmental Psychobiobiology, 56, 11561163.CrossRefGoogle Scholar
Brito, N., Barr, R., McIntyre, P., & Simcock, G. (2012). Long-term transfer of learning from books and video during infanthood. Journal of Experimental Child Psychology, 111, 108119.Google Scholar
Butler, J., & Rovee-Collier, C. (1989). Contextual gating of memory retrieval. Developmental Psychobiology, 22, 533552.Google Scholar
Casey, B. J., Tottenham, N., Liston, C., & Durston, S. (2005) Imaging the developing brain: what have we learned about cognitive development? Trends in Cognitive Science, 9, 104110.CrossRefGoogle ScholarPubMed
Cornell, E. (1979). Infants’ recognition memory, forgetting, and savings. Journal of Experimental Child Psychology, 28, 359374.Google Scholar
Davis, J., & Rovee-Collier, C. (1983). Alleviated forgetting of a learned contingency in 8-week-old infants. Developmental Psychology, 19, 353365.Google Scholar
Dehaene-Lambertz, G., & Spelke, E. S. (2015). The infancy of the human brain. Neuron, 88, 93109.Google Scholar
Fagen, J. W., & Rovee-Collier, C. (1983). Memory retrieval: A time-locked process in infancy. Science, 222, 13491352.Google Scholar
Fivush, R., Haden, C., & Reese, E. (2006). Elaborating on elaborations: Role of maternal reminiscing style in cognitive and socioemotional development. Child Development, 77, 15681588.Google Scholar
Freud, S. [1905] (1953). Three essays on the theory of sexuality. In Strachey, J. (Ed.), The standard edition of the complete psychological works of Sigmund Freud (Vol. 7, pp. 125248). London: Hogarth Press.Google Scholar
Gilmore, J. H., Shi, F., Woolson, S. L., Knickmeyer, R. C., Short, S. J., Lin, W., … Shen, D. (2012). Longitudinal development of cortical and subcortical gray matter from birth to 2 years. Cerebral Cortex, 22, 24782485.CrossRefGoogle ScholarPubMed
Greco, C., Hayne, H., & Rovee-Collier, C. (1990). Roles of function, reminding, and variability in categorization by 3-month-old infants. Journal of Experimental Psychology: Learning, Memory, and Cognition, 16, 617633.Google Scholar
Greco, C., Rovee-Collier, C., Hayne, H., Griesler, P., & Earley, L. (1986). Ontogeny of early event memory I: Forgetting and retrieval by 2- and 3-month-olds. Infant Behavior and Development, 9, 441460.Google Scholar
Gross, J., Gardiner, B., & Hayne, H. (2016). Developmental reversals in recognition memory in children and adults. Developmental Psychobiology, 58, 5259.Google Scholar
Haartsen, R., Jones, E. J. H., & Johnson, M. H. (2016). Human brain development over the early years. Current Opinion in Behavioral Science, 10, 149–54.Google Scholar
Hanna, E., & Meltzoff, A. N. (1993). Peer imitation by toddlers in laboratory, home, and day-care contexts: Implications for social learning and memory. Developmental Psychology, 29, 701710.CrossRefGoogle ScholarPubMed
Hartshorn, K. (2003). Reinstatement maintains a memory in human infants for 1½ years. Developmental Psychobiology, 42, 269282.Google Scholar
Hartshorn, K., Rovee-Collier, C., Gerhardstein, P. C., Bhatt, R. S., Klein, P. J., Aaron, F., … Wurtzel, N. (1998). Developmental changes in the specificity of memory over the first year of life. Developmental Psychobiology, 33, 6178.Google Scholar
Hartshorn, K., Rovee-Collier, C., Gerhardstein, P. C, Bhatt, R. S., Wondoloski, T. L., Klein, P., … Campos-de-Carvalho, M. (1998). Ontogeny of long-term memory over the first year and a half of life. Developmental Psychobiology, 32, 6989.Google Scholar
Hayne, H. (1990). The effect of multiple reminders on long-term retention in human infants. Developmental Psychobiology, 23, 453477.Google Scholar
Hayne, H. (2004). Infant memory development: Implications for childhood amnesia. Developmental Review, 24, 3373.Google Scholar
Hayne, H. (2006). Age-related changes in infant memory retrieval: Implications for knowledge acquisition. In Munakata, Y. & Johnson, M. H. (Eds.), Processes of change in brain and cognitive development: Attention and performance XXI (pp. 209231). New York, NY: Oxford University Press.Google Scholar
Hayne, H., Barr, R., & Herbert, J. (2003). The effect of prior practice on memory reactivation and generalization. Child Development, 74, 16151627.CrossRefGoogle ScholarPubMed
Hayne, H., Boniface, J., & Barr, R. (2000). The development of declarative memory in human infants: Age-related changes in deferred imitation. Behavioral Neuroscience, 114, 7783.Google Scholar
Hayne, H., & Findlay, N. (1995). Contextual control of memory retrieval in infancy: Evidence for associative priming. Infant Behavior and Development, 18, 195207.Google Scholar
Hayne, H., Greco, C., Earley, L. A., Griesler, P. C., & Rovee-Collier, C. (1986). Ontogeny of early event memory II: Encoding and retrieval by 2- and 3-month-olds. Infant Behavior and Development, 9, 461472.Google Scholar
Hayne, H., Gross, J., Hildreth, K., & Rovee-Collier, C. (2000). Repeated reminders increase the speed of memory retrieval by 3-month-old infants. Developmental Science, 3, 312318.Google Scholar
Hayne, H., & Herbert, H. (2004). Verbal cues facilitate memory retrieval during infancy. Journal of Experimental Child Psychology, 89, 127139.Google Scholar
Hayne, H., Herbert, J., & Simcock, G. (2003). Imitation from television by 24- and 30-month-olds. Developmental Science, 6, 254261.Google Scholar
Hayne, H., & Jack, F. (2011). Childhood amnesia. Wiley Interdisciplinary Reviews in Cognitive Science, 2, 136145.Google Scholar
Hayne, H., Jaeger, K., Sonne, T., & Gross, J. (2016). Visual attention to meaningful stimuli by 1- to 3-year-olds: Implications for the measurement of memory. Developmental Psychobiology, 58, 808816.Google Scholar
Hayne, H., MacDonald, S., & Barr, R. (1997). Developmental changes in the specificity of memory over the second year of life. Infant Behavior and Development, 20, 237249.Google Scholar
Hayne, H., Rovee-Collier, C., & Borza, M. A. (1991). Infant memory for place information. Memory and Cognition, 19, 378386.Google Scholar
Herbert, J., Gross, J., & Hayne, H. (2007). Crawling is associated with more flexible memory retrieval by 9-month-old infants. Developmental Science, 10, 183189.Google Scholar
Herbert, J., & Hayne, H. (2000a). Memory retrieval by 18–30-month-olds: Age-related changes in representational flexibility. Developmental Psychology, 36, 473484.Google Scholar
Herbert, J., (2000b). The ontogeny of long-term retention during the second year of life. Developmental Science, 3, 5056.Google Scholar
Hill, W. H., Borovsky, D., & Rovee-Collier, C. (1988). Continuities in infant memory development over the first half-year. Developmental Psychobiology, 21, 4362.CrossRefGoogle Scholar
Hunter, M., & Ames, E. (1988). A multifactor model of infant preferences for novel and familiar stimuli. In Rovee-Collier, C. & Lipsitt, L. P. (Eds.), Advances in infancy research (Vol. 5, pp. 6995). Norwood, NJ: Ablex.Google Scholar
Imuta, K., Scarf, D., & Hayne, H. (2013). The effect of verbal reminders on memory reactivation in 2-, 3-, and 4-year-old children. Developmental Psychology, 49, 10561065.Google Scholar
Jack, F., MacDonald, S., Reese, E., & Hayne, H. (2009). Maternal reminiscing style during early childhood predicts the age of adolescents’ earliest memories. Child Development, 80, 496505.Google Scholar
Jack, F., Simcock, G., & Hayne, H. (2011). Magic memories: Young children’s verbal recall after a 6-year delay. Child Development, 83, 159172.Google Scholar
Klein, P. J., & Meltzoff, A. N. (1999). Long-term memory, forgetting, and deferred imitation in 12-month-old infants. Developmental Science, 2, 102113.Google Scholar
Lavenex, P., & Lavenex, P. B. (2013). Building hippocampal circuits to learn and remember: insights into the development of human memory. Behavioral Brain Research, 254, 821.Google Scholar
MacDonald, S., Uesiliana, K., & Hayne, H. (2000). Cross-cultural and gender differences in childhood amnesia. Memory, 8, 365376.Google Scholar
McDonough, L., Mandler, J. M., McKee, R. D., & Squire, L. R. (1995). The deferred imitation task as a nonverbal measure of declarative memory. Proceedings of the National Academy of Science, 92, 75807584.Google Scholar
McKee, R. D., & Squire, L. R. (1993). On the development of declarative memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 19, 397404.Google Scholar
Meltzoff, A. N. (1995). What infant memory tells us about infantile amnesia: Long-term recall and deferred imitation. Journal of Experimental Child Psychology, 59, 497515.Google Scholar
Morgan, K., & Hayne, H. (2006a). Age-related changes in memory reactivation by 1- and 2-year-old human infants. Developmental Psychobiology, 48, 4857.Google Scholar
Morgan, K., (2006b). The effect of encoding time on retention by infants and young children. Infant Behavior & Development, 29, 599602.Google Scholar
Morgan, K., (2007). Nonspecific verbal cues alleviate forgetting by young children. Developmental Science, 10, 727733.Google Scholar
Morgan, K., (2011). Age-related changes in visual recognition memory during infancy and early childhood. Developmental Psychobiology, 53, 157165.CrossRefGoogle ScholarPubMed
Morris, G., & Baker-Ward, L. (2007). Fragile but real: Children’s capacity to use newly acquired words to convey preverbal memories. Child Development, 78, 448458.Google Scholar
Morrison, C. M., & Conway, M. A. (2009, July). First words and first memories. Paper presented at the 8th Biennial Meeting of the Society for Applied Research in Memory and Cognition, Kyoto, Japan.Google Scholar
Mullen, M. K. (1994). Earliest recollections of childhood: A demographic analysis. Cognition, 52, 5579.Google Scholar
Nelson, C. A. (2000). Neural plasticity and human development: The role of early experience sculpting memory systems. Developmental Science, 3, 115130.Google Scholar
Nielsen, M., Haun, D., Kärtner, J., & Legare, C. H. (2017). The persistent sampling bias in developmental psychology: a call to action. Journal of Experimental Child Psychology, 162, 3138.Google Scholar
Noble, K. G., Engelhardt, L. E., Brito, N. H., Mack, L. J., Nail, E. J., Angal, J., … Elliott, A. J. (2015). Socioeconomic disparities in neurocognitive development in the first two years of life. Developmental Psychobiology, 57, 535551.Google Scholar
Otto, B. (2018). Language development of infants and toddlers. In Otto, B., Language development in early childhood education (5th ed., pp. 111113). New York, NY: Pearson.Google Scholar
Pascalis, O., de Schonen, S., Morton, J., Deruelle, C., & Fabre-Grenet, M. (1995). Mother’s face recognition by neonates: A replication and an extension. Infant Behavior and Development, 18, 7985.Google Scholar
Peterson, C., Grant, V., & Boland, L. (2005). Childhood amnesia in children and adolescents: Their earliest memories. Memory, 13, 622637.Google Scholar
Peterson, C., Warren, K. L., & Short, M. M. (2011). Infantile amnesia across the years: A 2-year follow-up of children’s earliest memories. Child Development, 82, 10921105.Google Scholar
Pillemer, D. B., Picariello, M. L., & Pruett, J. C. (1994). Very long-term memories of a salient preschool event. Applied Cognitive Psychology, 8, 95106.CrossRefGoogle Scholar
Reardon, S. F. (2011). The widening academic-achievement gap between the rich and the poor: New evidence and possible explanations. In Duncan, G. J & Murnane, R. J. (Eds.), Whither opportunity?: Rising inequality, schools, and children’s life chances (pp. 91116). New York, NY: Russell Sage Foundation.Google Scholar
Reese, E., Haden, C. A., & Fivush, R. (1993). Mother–child conversations about the past: Relationships of style and memory over time. Cognitive Development, 8, 403430.Google Scholar
Reese, E., Hayne, H., & MacDonald, S. (2008). Looking back to the future: Māori and Pakeha mother–child birth stories. Child Development, 79, 114125.Google Scholar
Reese, E., Jack, F., & White, N. (2010). Origins of adolescents’ autobiographical memories. Child Development, 25, 352367.Google Scholar
Reynolds, G. (2015). Infant visual attention and object recognition. Behavioral Brain Research, 285, 3443.CrossRefGoogle ScholarPubMed
Richmond, J., Colombo, M., & Hayne, H. (2007). Interpreting visual preferences in the visual paired-comparison task. Journal of Experimental Psychology: Learning, Memory, and Cognition, 33, 823831.Google ScholarPubMed
Richmond, J., & Nelson, C. A. (2007). Accounting for change in declarative memory: A cognitive neuroscience perspective. Developmental Review, 27, 349373.Google Scholar
Richmond, J., Sowerby, P., Colombo, M., & Hayne, H. (2004). The effect of familiarization time, retention interval, and context change on adult’s performance in the visual paired-comparison task. Developmental Psychobiology, 44, 146155.Google Scholar
Riggins, T., Cheatham, C. L., Stark, E., & Bauer, P. J. (2013). Elicited imitation performance at 20 months predicts memory abilities in school-aged children. Journal of Cognition and Development, 14, 593606.Google Scholar
Robinson, A. J., & Pascalis, O. (2004). Development of flexible visual recognition memory in human infants. Developmental Science, 7, 527533.Google Scholar
Rose, S. A., Gottfried, A. W., Melloy-Carminar, P., & Bridger, W. H. (1982). Familiarity and novelty preferences in infant recognition memory: Implications for information processing. Developmental Psychology, 18, 704713.Google Scholar
Rovee-Collier, C., & Cuevas, K. (2009). Multiple memory systems are unnecessary to account for infant memory development: An ecological model. Developmental Psychology, 45, 160174.Google Scholar
Rovee-Collier, C., Griesler, P., & Earley, L. (1985). Contextual determinants of retrieval in three-month-old infants. Learning and Motivation, 16, 139157.Google Scholar
Rovee-Collier, C., & Hayne, H. (1987). Reactivation of infant memory: Implications for cognitive development. In Reese, H. W. (Ed.), Advances in child development and behavior (Vol. 20, pp. 185238). New York, NY: Academic Press.Google Scholar
Rovee-Collier, C., Patterson, J., & Hayne, H. (1985). Specificity in the reactivation of infant memory. Developmental Psychobiology, 18, 559574.Google Scholar
Rovee-Collier, C., Sullivan, M., Enright, M., Lucas, D., & Fagen, J. W. (1980). Reactivation of infant memory. Science, 208, 11591161.Google Scholar
Seehagen, S., Konrad, C., Herbert, J. S., & Schneider, S. (2015). Timely sleep facilitates declarative memory consolidation in infants. PNAS, 112, 16251629.Google Scholar
Seehagen, S., Zmyj, N., & Herbert, J. S. (2019). Remembering in the context of internal states: The role of sleep for infant memory. Child Development Perspectives, 13, 110115.Google Scholar
Simcock, G., & DeLoache, J. S. (2008). The effect of repetition on infants’ imitation from picture books. Infancy, 13, 687697.CrossRefGoogle Scholar
Simcock, G., & Hayne, H. (2002). Breaking the barrier: Children do not translate their preverbal memories into language. Psychological Science, 13, 225231.Google Scholar
Sokolov, E. N. (1963). Perception and the conditioned reflex. New York, NY: Macmillan.Google Scholar
Spear, N. E., & Parsons, P. J. (1976). Analysis of a reactivation treatment: Ontogenetic determinants of alleviated forgetting. In Medin, D. L., Roberts, W. A., & Davis, R. T., (Eds.), Process of animal memory (pp. 135165). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Squire, L. R. (1992). Memory and the hippocampus: A synthesis from findings with rats, monkeys, and humans. Psychological Review, 99(2), 195231.Google Scholar
Sylva, K., Melhuish, E., Sammons, P., Siraj-Blatchford, I., & Taggart, B. (2010). Early childhood matters: Evidence from the effective pre-school and primary education project. London: RoutledgeGoogle Scholar
Tulving, E., & Thomson, D. M. (1973). Encoding specificity and retrieval processes in episodic memory. Psychological Review, 80, 352373.Google Scholar
Tustin, K., & Hayne, H. (2010). Defining the boundary: Age-related changes in childhood amnesia. Developmental Psychology, 46, 10491061.Google Scholar
Waldfogel, S. (1948). The frequency and affective character of childhood memories. Psychological Monographs, 62, 139.CrossRefGoogle Scholar
Wang, Q. (2003). Infantile amnesia reconsidered: A cross-cultural analysis. Memory, 11, 6580.Google Scholar
Wang, Q. (2006a). Earliest recollections of self and others in European American and Taiwanese young adults. Psychological Science, 17, 708714.Google Scholar
Wang, Q. (2006b). Relations of maternal style and child self-concept to autobiographical memories in Chinese, Chinese immigrant, and European American 3-year-olds. Child Development, 77, 17941809.Google Scholar
Wang, Q., Conway, M., & Hou, Y. (2004). Infantile amnesia: A cross-cultural investigation. Cognitive Sciences, 1, 123135.Google Scholar
World Health Organization (n.d.). The global strategy for women’s, children’s and adolescents’ health (2016–2030). Geneva. Retrieved from www.who.int/life-course/partners/global-strategy/en.Google Scholar
Zack, E., Barr, R., Gerhardstein, P., Dickerson, K., & Meltzoff, A. N. (2009). Infant imitation from television using novel touch-screen technology. British Journal of Developmental Psychology, 27, 1326.Google Scholar

References

Anderson, E., Hespos, S. J., & Rips, L. (2018). Five-month-old infants have expectations for the accumulation of nonsolid substances. Cognition, 175, 110. https://doi.org/10.1016/j.cognition.2018.02.009Google Scholar
Baillargeon, R., & DeVos, J. (1991). Object permanence in young infants: Further evidence. Child Development, 62(6), 12271246.Google Scholar
Baillargeon, R., Needham, A., & DeVos, J. (1993). The development of young infants’ intuitions about support. Infant and Child Development, 1(2), 6978.Google Scholar
Baillargeon, R., Stavans, M., Wu, D., Gertner, R., Setoh, P., Kittredge, A. K., & Bernard, A. (2012). Object individuation and physical reasoning in infancy: An integrative account. Language Learning and Development, 8, 446.Google Scholar
Bourgeois, K. S., Khawar, A. W., Neal, A., & Lockman, J. (2005). Infant manual exploration of objects, surfaces, and their interrelations, Infancy, 8, 233252,Google Scholar
Bowerman, M. (1996). Learning how to structure space for language: A crosslinguistic perspective. In Bloom, P., Peterson, M. A., Nadel, L., & Garrett, M. F. (Eds.), Language and space (pp. 385436). Cambridge, MA: MIT Press.Google Scholar
Bowerman, M., & Choi, S. (2003). Space under construction: Language-specific spatial categorization in first language acquisition. In Gentner, D. & Goldin-Meadow, S. (Eds.), Language in mind (pp. 387428). Cambridge, MA: MIT Press.Google Scholar
Casasola, M. Bhagwat, J., Doan, S. N., & Love, H. (2017). Getting some space: Infants’ and caregivers’ containment and support spatial constructions during play. Journal of Experimental Child Psychology, 159, 110128.Google Scholar
Casasola, M., & Cohen, L. (2002). Infant categorization of containment, support, and tight-fit spatial relationships. Developmental Science, 5(2), 247264.Google Scholar
Cheries, E. W., Mitroff, S. R., Wynn, K., & Scholl, B. J. (2008). Cohesion as a constraint on object persistence in infancy. Developmental Science, 11, 427432.Google Scholar
Chiang, W. C., & Wynn, K. (2000). Infants’ tracking of objects and collections. Cognition, 77, 169195.Google Scholar
Choi, S., & Bowerman, M. (1991). Learning to express motion events in English and Korean: The influence of language-specific lexicalization patterns. Cognition, 41(13), 83121.Google Scholar
Choi, S., McDonough, L., Bowerman, M., & Mandler, J. M. (1999). Early sensitivity to language-specific spatial categories in English and Korean. Cognitive Development, 14(2), 241268.Google Scholar
Gentner, D., & Bowerman, M. (2009). Why some spatial semantic categories are harder to learn than others: The typological prevalence hypothesis. In Guo, J., Lieven, E., Ervin-Tripp, S., Budwig, N., Özçaliskan, S., & Nakamura, K. (Eds.). Crosslinguistic approaches to the psychology of language: Research in the tradition of Dan Isaac Slobin (pp. 465480). New York, NY: Lawrence Erlbaum Associates.Google Scholar
Hespos, S. J., & Baillargeon, R. (2001a). Infants’ knowledge about occlusion and containment: A surprising discrepancy. Psychological Science, 12(2), 141147.Google Scholar
Hespos, S. J., (2001b). Reasoning about containment events in very young infants. Cognition, 78, 207245.CrossRefGoogle ScholarPubMed
Hespos, S. J., (2006). Decalage in infants’ reasoning about occlusion and containment events: Converging evidence from action tasks. Cognition, 99, B31B41.Google Scholar
Hespos, S. J., (2008). Young infants’ actions reveal their developing knowledge of support variables: Converging evidence for violation-of-expectation findings. Cognition, 107(1), 304316.Google Scholar
Hespos, S. J., Ferry, A., Anderson, E., Hollenbeck, E., & Rips, L. (2016). Five-month-old infants have expectations about how substances behave and interact. Psychological Science, 27(2), 244256. https://doi.org/10.1177/0956797615617897Google Scholar
Hespos, S. J., Ferry, A., & Rips, L. (2009). Five-month-old infants have different expectations for solids and liquids. Psychological Science, 20(5), 603611.Google Scholar
Hespos, S. J., & Spelke, E. S. (2004). Conceptual precursors to spatial language. Nature, 430, 453456.CrossRefGoogle Scholar
Hespos, S. J., & vanMarle, K. (2012). Physics for infants: Characterizing the origins of knowledge about objects, substances, and number. Wiley Interdisciplinary Reviews: Cognitive Science, 3(1), 1927.Google ScholarPubMed
Higgins, C., Campos, J., & Kermoian, R. (1996). Effects of self-produced locomotion on infant postural compensation to optic flow. Developmental Psychology, 32, 836841.Google Scholar
Huntley-Fenner, G., Carey, S., & Solimando, A. (2002). Objects are individuals but stuff doesn’t count: Perceived rigidity and cohesiveness influence infants’ representations of small groups of discrete entities. Cognition, 85, 203221.CrossRefGoogle ScholarPubMed
Imai, M., & Mazuka, R. (2007). Language-relative construal of individuation constrained by universal ontology: Revisiting language universals and linguistic relativity. Cognitive Science: A Multidisciplinary Journal, 31(3), 385413.CrossRefGoogle ScholarPubMed
Izard, V., Sann, C., Spelke, E. S., & Streri, A. (2009). Newborn infants perceive abstract numbers. Proceedings of the National Academy of Sciences of the United States of America, 106(25), 1038210385.Google Scholar
Jordan, K. E., Brannon, E. M., Logothetis, N. K., & Ghazanfar, A. A. (2005). Monkeys match the number of voices they hear to the number of faces they see. Current Biology, 15(11), 10341038.Google Scholar
Kourtzi, Z., & Kanwisher, N. (2001). Representation of the perceived object shape by the human lateral occipital complex. Science, 293(5534), 15061509.Google Scholar
Lipton, J. S., & Spelke, E. S. (2003). Origins of number sense. Large-number discrimination in human infants. Psychological Science, 14, 396401.Google Scholar
Lloyd-Fox, S., Blasi, A., McCann, S., Rozhiko, M., Katus, L., Mason, L., … Elwell, C. E. (2019). Habituation and novelty detection fNIRS brain responses in 5- and 8-month-old infants: The Gambia and UK. Developmental Science, 22(5), e12817. doi: 10.1111/desc.12817Google Scholar
Needham, A., & Baillargeon, R. (1993). Intuitions about support in 4.5-month-old infants. Cognition, 47, 121148.Google Scholar
Oakes, L. M., (2017). Sample size, statistical power, and false conclusions in infant looking-time research. Infancy, 22, 436469.Google Scholar
Piaget, J. (1952). The origins of intelligence in children. New York, NY: W. W Norton & Co.Google Scholar
Piaget, J. (1954). The construction of reality in the child. New York, NY: Basic Books.Google Scholar
Rips, L. J., & Hespos, S. J. (2015). Mental divisions of the physical world: Objects and substances. Psychological Bulletin, 141(4), 786811.Google Scholar
Rochat, P. (1992). Self-sitting and reaching in 5- to 8-month-old infants: The impact of posture and its development on early eye–hand coordination. Journal of Motor Behavior, 24(2), 210220.Google Scholar
Rosenberg, R. D., & Carey, S. (2009). Infants’ representations of material entities. In Hood, B. M. & Santos, L. R. (Eds.), The origins of object knowledge (pp. 165188). Oxford: Oxford University Press.Google Scholar
Slone, L. K., Moore, D. S., & Johnson, S. P. (2018) Object exploration facilitates 4-month-olds’ mental rotation performance. PLoS ONE 13(8), e0200468.Google Scholar
Sommerville, J. A., Woodward, A. L., & Needham, A. (2005). Action experience alters 3-month-old infants’ perception of others’ actions. Cognition, 96(1), B1B11.Google Scholar
Soska, K. C., & Adolph, K. E. (2014). Postural position constrains multimodal object exploration in infants. Infancy, 19(2), 138161.Google Scholar
Spelke, E. S. (1990). Principles of object perception. Cognitive Science, 14(1), 2956.Google Scholar
Spelke, E. S., Breinlinger, K., Macomber, J., & Jacobson, K. (1992). Origins of knowledge. Psychological Review, 99(4), 605632.Google Scholar
Spelke, E. S., & Kinzler, K. D. (2007). Core knowledge. Developmental Science, 10(1), 8996. doi: 10.1111/j.1467-7687.2007.00569.xGoogle Scholar
Stahl, A. E., & Feigenson, L. (2015). Observing the unexpected enhances infants’ learning and exploration. Science, 348(6230), 9194.Google Scholar
Wang, S., Baillargeon, B., & Paterson, S. (2005). Detecting continuity violations in infancy: a new account and new evidence from covering and tube events. Cognition, 95(2), 129173.Google Scholar

References

Aldridge, M. A., Stillman, R. D., & Bower, T. G. R. (2001). Newborn categorization of vowel-like sounds. Developmental Science, 4, 220232.Google Scholar
Althaus, N., & Westermann, G. (2016). Labels constructively shape object categories in 10-month-old infants. Journal of Experimental Child Psychology, 151, 517.Google Scholar
Arterberry, M. E., & Bornstein, M. H. (2012). Categorization of real and replica objects by 14- and 18-month-old infants. Infant Behavior and Development, 35, 606612.Google Scholar
Balaban, M. T., & Waxman, S. R. (1997). Do words facilitate object categorization in 9-month-old infants? Journal of Experimental Child Psychology, 64, 326.Google Scholar
Behl-Chadha, G. (1996). Basic-level and superordinate-like categorical representations in early infancy. Cognition, 60, 105141.Google Scholar
Bertoncini, J., Bijeljac-Babic, R., Jusczyk, P. W., Kennedy, L. J., & Mehler, J. (1988). An investigation of young infants’ perceptual representations of speech sounds. Journal of Experimental Psychology: General, 117, 2133.Google Scholar
Booth, A. E., Schuler, K., & Zajicek, R. (2010). Specifying the role of function in infant categorization. Infant Behavior and Development, 33, 672684.Google Scholar
Bornstein, M. H., Arterberry, M. E., Mash, C., & Manian, N. (2010). Discrimination of facial expression by 5-month-old infants of nondepressed and clinically depressed mothers. Infant Behavior and Development, 34, 100106.Google Scholar
Brown, A. M. (1990). Development of visual sensitivity to light and color vision in human infants: A critical review. Vision Research, 30, 11591188.CrossRefGoogle ScholarPubMed
Bruner, J., Goodnow, J., & Austin, G. (1956). A study of thinking. New York, NY: Wiley.Google Scholar
Byers-Heinlein, K. (2017). Bilingualism affects 9-month-old infants’ expectations about how words refer to kinds. Developmental Science, 20, e12486.Google Scholar
Casasola, M., & Cohen, L. B. (2002). Infant categorization of containment, support and tight-fit spatial relationships. Developmental Science, 5, 247264.Google Scholar
Clifford, A., Franklin, A., Davies, I. R. L., & Holmes, A. (2009). Electrophysiological markers of categorical perception of color in 7-month-old infants. Brain and Cognition, 71, 165172.Google Scholar
Cohen, L. B., DeLoache, J. S., & Rissman, M. W. (1975). The effect of stimulus complexity on infant visual attention and habituation. Child Development, 46, 611617.Google Scholar
Cohen, L. B., & Gelber, E. R. (1975). Infant visual memory. In Cohen, L. B. & Salapatek, P. (Eds.), Infant perception: From sensation to cognition. Volume I: Basic visual Processes (pp. 347404). New York, NY: Academic Press.Google Scholar
Cohen, L. B., & Strauss, M. S. (1979). Concept acquisition in the human infant. Child Development, 50, 419424.Google Scholar
Comishen, K. J., Bialystok, E., & Adler, S. A. (2019). The impact of bilingual environments on selective attention in infancy. Developmental Science, 22(4), e12797.Google Scholar
de Haan, M., Johnson, M. H., Maurer, D., & Perrett, D. I. (2001). Recognition of individual faces and average face prototypes by 1- and 3-month-old infants. Cognitive Development, 16, 659678.Google Scholar
DeCasper, A. J., & Spence, M. J. (1986). Prenatal maternal speech influences newborns’ perception of speech sounds. Infant Behavior and Development, 9, 133150.Google Scholar
Deng, W. S., & Sloutsky, V. M. (2015). Linguistic labels, dynamic visual features, and attention in infant category learning. Journal of Experimental Child Psychology, 134, 6277.Google Scholar
Dixon, K. C., Reynolds, G. D., Romano, A. C., Roth, K. C., Stumpe, A. L., Guy, M. W., & Mosteller, S. M. (2017). Neural correlates of individuation and categorization of other-species faces in infancy. Neuropsychologia, 18, 126127.Google Scholar
Eimas, P. D., & Quinn, P. C. (1994). Studies on the formation of perceptually based basic-level categories in young infants. Child Development, 65, 903917.Google Scholar
Eimas, P. D., Siqueland, E. R., Jusczyk, P., & Vigorito, J. (1971). Speech perception in infants. Science, 171, 303306.Google Scholar
Elman, J. L. (1993). Learning and development in neural networks: The importance of starting small. Cognitive Psychology, 48, 7199.Google Scholar
Fenson, L., Dale, P. S., Reznick, J. S., Bates, E., Thal, D. J., Pethick, S. J., … Stiles, J. (1994). Variability in early communicative development. Monographs of the Society for Research in Child Development, 59, i.CrossRefGoogle ScholarPubMed
Ferguson, B., & Waxman, S. R. (2017). Linking language & categorization in infancy. Journal of Child Language, 44(3), 527552.Google Scholar
Ferguson, K. T., & Casasola, M. (2015). Are you an animal too? US and Malawian infants’ categorization of plastic and wooden animal replicas. Infancy, 20, 189207.Google Scholar
Ferry, A. L., Hespos, S. J., & Waxman, S. R. (2010). Categorization in 3- and 4-month-old infants: An advantage of words over tones. Child Development, 81, 472479.CrossRefGoogle ScholarPubMed
Ferry, A. L., Hespos, S. J., (2013). Nonhuman primate vocalizations support categorization in very young human infants. Proceedings of the National Academy of Sciences of the United States of America, 110, 1523115235.Google Scholar
French, R. M., Mermillod, M., Quinn, P. C., Chauvin, A., & Mareschal, D. (2002). The importance of starting blurry: Simulating improved basic-level category learning in infants due to weak visual acuity. In Proceedings of the 24th Annual Conference of the Cognitive Science Society (pp. 322327). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
Fulkerson, A. L., & Waxman, S. R. (2007). Words (but not tones) facilitate object categorization: Evidence from 6- and 12-month-olds. Cognition, 105, 218228.Google Scholar
Gelman, R. (1978). Cognitive development. Annual Review of Psychology, 29, 297332.Google Scholar
Gervain, J. (2015). Plasticity in early language acquisition: The effects of prenatal and early childhood experience. Current Opinion in Neurobiology, 35, 1320.Google Scholar
Gliozzi, V., Mayor, J., Hu, J. F., & Plunkett, K. (2009). Labels as features (not names) for infant categorization: A neurocomputational approach. Cognitive Science: A Multidisciplinary Journal, 33, 709738.Google Scholar
Goldstone, R. L., Kersten, A., & Carvalho, P. F. (2018). Concepts and categorization. In Wixted, J. T. & Thompson-Schill, S. (Eds.), Steven’s handbook of experimental psychology, Language and thought (4th ed., pp. 607630). New York, NY: Wiley & Sons.Google Scholar
Goldwater, M. B., Brunt, R. J., & Echols, C. H. (2018). Speech facilitates the categorization of motions in 9-month-old infants. Frontiers in Psychology, 9, 113.Google Scholar
Graham, S. A., Kilbreath, C. S., & Welder, A. N. (2004). Thirteen-month-olds rely on shared labels and shape similarity for inductive inferences. Child Development, 75, 409427.Google Scholar
Greco, C., Hayne, H., & Rovee-Collier, C. (1990). Roles of function, reminding, and variability in categorization by 3-month-old infants. Journal of Experimental Psychology: Learning Memory and Cognition, 16, 617633.Google Scholar
Groba, A., de Houwer, A., Obrig, H., Rossi, S., Groba, A., de Houwer, A., … Rossi, S. (2019). Bilingual and monolingual first language acquisition experience differentially shapes children’s property term learning: Evidence from behavioral and neurophysiological measures. Brain Sciences, 9, 40.Google Scholar
Grossmann, T., Gliga, T., Johnson, M. H., & Mareschal, D. (2009). The neural basis of perceptual category learning in human infants. Journal of Cognitive Neuroscience, 21, 2276–86.Google Scholar
Hayne, H., Rovee-Collier, C., & Perris, E. E. (1987). Categorization and memory retrieval by three-month-olds. Memory, 58, 750767.Google ScholarPubMed
Homa, D., & Vosburgh, R. (1976). Category breadth and the abstraction of prototypical information. Journal of Experimental Psychology: Human Perception and Performance, 2, 322330.Google Scholar
Horst, J. S., Oakes, L. M., & Madole, K. L. (2005). What does it look like and what can it do? Category structure influences how infants categorize. Child Development, 76, 614631.Google Scholar
Huth, A. G., Nishimoto, S., Vu, A. T., & Gallant, J. L. (2012). A continuous semantic space describes the representation of thousands of object and action categories across the human brain. Neuron, 76, 12101224.Google Scholar
Johnson, S. P. (2011). Development of visual perception. Wiley Interdisciplinary Reviews: Cognitive Science, 2, 515528.Google ScholarPubMed
Kandhadai, P., Hall, D. G., & Werker, J. F. (2017). Second label learning in bilingual and monolingual infants. Developmental Science, 20, e12429.Google Scholar
Kelly, D. J., Quinn, P. C., Slater, A. M., Lee, K., Ge, L., & Pascalis, O. (2007). The other-race effect develops during infancy. Psychological Science, 18, 1084.Google Scholar
Kestenbaum, R., & Nelson, C. A. (1990). The recognition and categorization of upright and inverted emotional expressions by 7-month-old infants. Infant Behavior and Development, 13, 497511.Google Scholar
Kovack-Lesh, K. A., Horst, J. S., & Oakes, L. M. (2008). The cat is out of the bag: The joint influence of previous experience and looking behavior on infant categorization. Infancy, 13, 285307.CrossRefGoogle Scholar
Kovack-Lesh, K. A., & Oakes, L. M. (2007). Hold your horses: How exposure to different items influences infant categorization. Journal of Experimental Child Psychology, 98, 6993.Google Scholar
Kroll, J. F., & Dussias, P. E. (2017). The benefits of multilingualism to the personal and professional development of residents of the US. Foreign Language Annals, 50, 248259.Google Scholar
Libertus, K., & Needham, A. W. (2010). Teach to reach: The effects of active vs. passive reaching experiences on action and perception. Vision Research, 50, 27502757.Google Scholar
Libertus, K., (2014). Encouragement is nothing without control: Factors influencing the development of reaching and face preference. Journal of Motor Learning and Development, 2, 1627.Google Scholar
Luck, S. J. (2014). An introduction to the event-related potential technique (2nd ed.). Cambridge, MA: MIT Press.Google Scholar
Luck, S. J., & Gaspelin, N. (2017). How to get statistically significant effects in any ERP experiment (and why you shouldn’t). Psychophysiology, 54(1), 146157.Google Scholar
Luck, S. J., & Kappenman, E. S. (Eds.). (2011). The Oxford handbook of event-related potential components. New York, NY: Oxford University Press.Google Scholar
Mack, M. L., Love, B. C., & Preston, A. R. (2016). Dynamic updating of hippocampal object representations reflects new conceptual knowledge. Proceedings of the National Academy of Sciences, 113, 1320313208.Google Scholar
Mack, M. L., Love, B. C., (2017). Building concepts one episode at a time: The hippocampus and concept formation. Neuroscience Letters, 680, 3138.Google Scholar
Madole, K. L., Oakes, L. M., & Cohen, L. B. (1993). Developmental changes in infants’ attention to function and form-function correlations. Cognitive Development, 8, 189209.Google Scholar
Mahon, B. Z. (2015). Missed connections: A connectivity-constrained account of the representation and organization of object concepts. In Margolis, E. & Laurence, S. (Eds.), The conceptual mind: New directions in the study of concepts (pp. 79115). Cambridge, MA: MIT Press.Google Scholar
Mandler, J. M. (2004). The foundations of mind: Origins of conceptual thought. New York, NY: Oxford University Press.Google Scholar
Mandler, J. M., Bauer, P. J., & McDonough, L. (1991). Separating the sheep from the goats: Differentiating global categories. Cognitive Psychology, 23, 263298.Google Scholar
Mandler, J. M., Fivush, R., & Reznick, J. S. (1987). The development of contextual categories. Cognitive Development, 2, 339354.Google Scholar
Mandler, J. M., & McDonough, L. (1993). Concept formation in infancy. Cognitive Development, 8, 281318.Google Scholar
Mandler, J. M., (1998a). On developing a knowledge base in infancy. Developmental Psychology, 34, 12741288.Google Scholar
Mandler, J. M., (1998b). Studies in inductive inference in infancy. Cognitive Psychology, 37, 6096.Google Scholar
Mareschal, D., & Tan, S. H. (2007). Flexible and context-dependent categorization by eighteen-month-olds. Child Development, 78, 1937.CrossRefGoogle ScholarPubMed
Marinović, V., Hoehl, S., & Pauen, S. (2014). Neural correlates of human–animal distinction: An ERP-study on early categorical differentiation with 4- and 7-month-old infants and adults. Neuropsychologia, 60, 6076.Google Scholar
Martin, A. (2016). GRAPES – grounding representations in action, perception, and emotion systems: How object properties and categories are represented in the human brain. Psychonomic Bulletin and Review, 23, 979990.Google Scholar
Maurer, D., & Werker, J. F. (2014). Perceptual narrowing during infancy: A comparison of language and faces. Developmental Psychobiology, 56, 154178.Google Scholar
McDonough, L., & Mandler, J. M. (1998). Inductive generalization in 9- and 11-month-olds. Developmental Science, 1, 227232.Google Scholar
Medin, D. L., Lynch, E. B., Coley, J. D., & Atran, S. (1997). Categorization and reasoning among tree experts: do all roads lead to Rome? Cognitive Psychology, 32, 4996.Google Scholar
Mervis, C. B. (1985). On the existence of prelinguistic categories: A case study. Infant Behavior and Development, 8, 293300.Google Scholar
Mervis, C. B., & Rosch, E. (1981). Categorization of natural objects. Annual Review of Psychology, 32, 89115.Google Scholar
Murphy, G. L. (2002). The big book of concepts. Cambridge, MA: MIT Press.Google Scholar
Murphy, G. L. (2010). What are categories and concepts. In Mareschal, D., Quinn, P. C., & Lea, S. (Eds.), The making of human concepts (pp. 1128). Oxford: Oxford University Press.Google Scholar
Newport, E. L. (1990). Maturational constraints on language learning. Cognitive Science: A Multidisciplinary Journal, 14, 1128.Google Scholar
Oakes, L. M. (2008). Categorization skills and concepts. In Haith, M. M. & Benson, J. B. (Eds.), Encyclopedia of infant and early childhood development (pp. 249259). San Diego, CA: Academic Press.Google Scholar
Oakes, L. M., Coppage, D. J., & Dingel, A. (1997). By land or by sea: The role of perceptual similarity in infants’ categorization of animals. Developmental Psychology, 33, 396407.Google Scholar
Oakes, L. M., & Kovack-Lesh, K. A. (2007). Memory processes and categorization in infancy. Special Issue: The Development of Categorization, 11, 661677.Google Scholar
Oakes, L. M., (2013). Infants’ visual recognition memory for a series of categorically related items. Journal of Cognition and Development, 14, 6386.Google Scholar
Oakes, L. M., Madole, K. L., & Cohen, L. B. (1991). Infants’ object examining: Habituation and categorization. Cognitive Development, 6, 377392.Google Scholar
Oakes, L. M., & Ribar, R. J. (2005). A comparison of infants’ categorization in paired and successive presentation familiarization tasks. Infancy, 7, 8598.Google Scholar
Pascalis, O., de Haan, M., & Nelson, C. A. (2002). Is face processing species-specific during the first year of life? Science, 296, 13211323.Google Scholar
Pascalis, O., Scott, L. S., Kelly, D. J., Shannon, R. W., Nicholson, E., Coleman, M., & Nelson, C. A. (2005). Plasticity of face processing in infancy. PNAS Proceedings of the National Academy of Sciences of the United States of America, 102, 52975300.Google Scholar
Peykarjou, S., Wissner, J., & Pauen, S. (2017). Categorical ERP repetition effects for human and furniture items in 7-month-old infants. Infant and Child Development, 26, e2016.Google Scholar
Piaget, J. (1952). Origins of intelligence in children (Cook, M., Ed.). New York, NY: International Universities Press.Google Scholar
Plunkett, K., Hu, J. -F., & Cohen, L. B. (2008). Labels can override perceptual categories in early infancy. Cognitive Psychology, 106, 665681.Google Scholar
Posner, M. I., & Keele, S. W. (1968). On the genesis of abstract ideas. Journal of Experimental Psychology, 77, 353363.Google Scholar
Poulin-Dubois, D., Frenkiel-Fishman, S., Samantha, N., & Johnson, S. (2006). Infants’ inductive generalization of bodily, motion, and sensory properties to animals and people. Journal of Cognition and Development, 7, 431453.Google Scholar
Quinn, P. C., Doran, M. M., Reiss, J. E., & Hoffman, J. E. (2010). Neural markers of subordinate-level categorization in 6- to 7-month-old infants. Developmental Science, 13, 499507.Google Scholar
Quinn, P. C., & Eimas, P. D. (1997). A reexamination of the perceptual-to-conceptual shift in mental representations. Review of General Psychology, 1, 171187.Google Scholar
Quinn, P. C., Eimas, P. D., & Rosenkrantz, S. L. (1993). Evidence for representations of perceptually similar natural categories by 3- and 4-month-old infants. Perception, 22, 463475.Google Scholar
Quinn, P. C., & Johnson, M. H. (2000). Global-before-basic object categorization in connectionist networks and 2-month-old infants. Infancy, 1, 3146.Google Scholar
Quinn, P. C., Lee, K., Pascalis, O., & Slater, A. M. (2007). In support of an expert-novice difference in the representation of humans versus non-human animals by infants: Generalization from persons to cats occurs only with upright whole images. Cognitie Creier Comportament. Special Issue: The Development of Categorization, 11, 679694.Google Scholar
Quinn, P. C., Slater, A. M., Brown, E., & Hayes, R. A. (2001). Developmental change in form categorization in early infancy. British Journal of Developmental Psychology, 19, 207218.Google Scholar
Quinn, P. C., Westerlund, A. J., & Nelson, C. A. (2006). Neural markers of categorization in 6-month-old infants. Psychological Science, 17, 5966.Google Scholar
Quinn, P. C., Yahr, J., Kuhn, A., Slater, A. M., & Pascalis, O. (2002). Representation of the gender of human faces by infants: A preference for female. Perception, 31, 11091121.Google Scholar
Rakison, D. H. (2007). Inductive categorization: A methodology to examine the basis for categorization and induction in infancy. Cognitie Creier Comportament. Special Issue: The Development of Categorization, 11, 773790.Google Scholar
Rakison, D. H., & Butterworth, G. E. (1998). Infants’ use of object parts in early categorization. Developmental Psychology, 34, 4962.Google Scholar
Rakison, D. H., & Lupyan, G. (2008). Developing object concepts in infancy: An associative learning perspective. Monographs of the Society for Research in Child Development, 73(7), 1110.Google Scholar
Ramsey, J. L., Langlois, J. H., & Marti, N. C. (2005). Infant categorization of faces: Ladies first. Developmental Review, 25, 212246.Google Scholar
Rennels, J. L., Juvrud, J., Kayl, A. J., Asperholm, M., Gredeback, G., & Herlitz, A. (2017). Caregiving experience and its relation to perceptual narrowing of face gender. Developmental Psychology, 53, 14371446.Google Scholar
Rennels, J. L., & Kayl, A. J. (2017). How experience affects infants’ facial categorization. In Cohen, H. & Lefebvre, C. (Eds.), Handbook of categorization in cognitive science (Vol. 331, pp. 637652). San Diego, CA: Elsevier.Google Scholar
Rennels, J. L., Kayl, A. J., Langlois, J. H., Davis, R. E., & Orlewicz, M. (2016). Asymmetries in infants’ attention toward and categorization of male faces: The potential role of experience. Journal of Experimental Child Psychology, 142, 137157.Google Scholar
Ribar, R. J., Oakes, L. M., & Spalding, T. L. (2004). Infants can rapidly form new categorical representations. Psychonomic Bulletin and Review, 11, 536541.Google Scholar
Roberts, K. (1988). Retrieval of a basic-level category in prelinguistic infants. Developmental Psychology, 24, 2127.Google Scholar
Robinson, C. W., & Sloutsky, V. M. (2007). Linguistic label and categorization in infancy: Do labels facilitate or hinder? Infancy, 11, 233253.Google Scholar
Ross, G. S. (1980). Categorization in 1- to 2-year-olds. Developmental Psychology, 16, 391396.Google Scholar
Ross, N., Medin, D., Coley, J. D., & Atran, S. (2003). Cultural and experiential differences in the development of folkbiological induction. Cognitive Development, 18, 2547.Google Scholar
Scott, L. S., & Monesson, A. (2009). The origin of biases in face perception. Psychological Science, 20, 676680.Google Scholar
Slater, A. M., Mattock, A., & Brown, E. (1990). Size constancy at birth: Newborn infants’ responses to retinal and real size. Journal of Experimental Child Psychology, 322, 314322.Google Scholar
Slater, A. M., & Morison, V. (1985). Shape constancy and slant perception at birth. Perception, 14, 337344.Google Scholar
Sloutsky, V. M., & Deng, W. S. (2017). Categories, concepts, and conceptual development. Language, Cognition and Neuroscience, 34(10), 12841297.Google Scholar
Smith, E. E., & Medin, D. L. (1981). Categories and concepts. Cambridge, MA: Harvard University Press.Google Scholar
Smith, J. D., & Minda, J. P. (1998). Prototypes in the mist: The early epochs of category learning. Journal of Experimental Psychology: Learning Memory and Cognition, 24, 14111436.Google Scholar
Smith, L. B., Jones, S. S., & Landau, B. (1996). Naming in young children: A dumb attentional mechanism? Cognitive Psychology, 60, 143171.Google Scholar
Smith, L. B., Jones, S. S., Landau, B., Gershkoff-Stowe, L., & Samuelson, L. K. (2002). Object name learning provides on-the-job training for attention. Psychological Science, 13, 1319.Google Scholar
Träuble, B., & Pauen, S. (2007). The role of functional information for infant categorization. Cognition, 105, 362379.Google Scholar
Turati, C., Simion, F., & Zanon, L. (2003). Newborns’ perceptual categorization for closed and open geometric forms. Infancy, 4, 309325.Google Scholar
Waxman, S. R., & Braun, I. (2005). Consistent (but not variable) names as invitations to form object categories: New evidence from 12-month-old infants. Cognitive Psychology, 95, B59B68.Google Scholar
Waxman, S. R., & Markow, D. B. (1995). Words as invitations to form categories: Evidence from 12- to 13-month-old infants. Cognitive Psychology, 29, 257302.Google Scholar
Weber, M., Thompson-Schill, S. L., Osherson, D., Haxby, J., & Parsons, L. (2009). Predicting judged similarity of natural categories from their neural representations. Neuropsychologia, 47, 859868.Google Scholar
Welder, A. N., & Graham, S. A. (2001). The influences of shape similarity and shared labels on infants’ inductive inferences about nonobvious object properties. Child Development, 72, 16531673.Google Scholar
Westermann, G., & Mareschal, D. (2012). Mechanisms of developmental change in infant categorization. Cognitive Development, 27, 367382.Google Scholar
Wiesen, S. E., Watkins, R. M., & Needham, A. W. (2016). Active motor training has long-term effects on infants’ object exploration. Frontiers in Psychology, 7, 599.Google Scholar
Yoshida, H., & Smith, L. B. (2001). Early noun lexicons in English and Japanese. Cognitive Psychology, 82, B63B74.Google Scholar
Younger, B. A. (1985). The segregation of items into categories by ten-month-old infants. Child Development, 56, 15741583.Google Scholar
Younger, B. A. (1990). Infant categorization: Memory for category-level and specific item information. Journal of Experimental Child Psychology, 50, 131155.Google Scholar

References

Acredolo, L. P. (1978). Development of spatial orientation in infancy. Developmental Psychology, 14(3), 224234.Google Scholar
Addyman, C., Rocha, S., & Mareschal, D. (2014). Mapping the origins of time: Scalar errors in infant time estimation. Developmental Psychology, 50(8), 20302035Google Scholar
Adolph, K. E., & Tamis-LeMonda, C. S. (2014). The costs and benefits of development: The transition from crawling to walking. Child Development Perspectives, 8(4), 187192.Google Scholar
Amalric, M., & Dehaene, S. (2016). Origins of the brain networks for advanced mathematics in expert mathematicians. Proceedings of the National Academy of Sciences, 113(18), 49094917.Google Scholar
Ansari, D., & Karmiloff-Smith, A. (2002). Atypical trajectories of number development: A neuroconstructivist perspective. Trends in Cognitive Sciences 6, 511516.Google Scholar
Aslin, R. N., & Newport, E. L. (2012). Statistical learning: From acquiring specific items to forming general rules. Current Directions in Psychological Science, 21, 170176.Google Scholar
Balcomb, F., Newcombe, N. S., & Ferrara, K. (2011). Finding where and saying where: Developmental relationships between place learning and language in the first year. Journal of Cognition and Development, 12(3), 315331.Google Scholar
Barner, D., Brooks, N., & Bale, A. (2011). Accessing the unsaid: The role of scalar alternatives in children’s pragmatic inference. Cognition, 118(1), 8493.Google Scholar
Barry, C., & Burgess, N. (2014). Neural mechanisms of self-location. Current Biology, 24(8), R330R339.Google Scholar
Berkowitz, T., Schaeffer, M. W., Maloney, E. A., Peterson, L., Gregor, C., Levine, S. C., & Beilock, S. L. (2015). Math at home adds up to achievement in school. Science, 350(6257), 196198.Google Scholar
Brannon, E. M., Lutz, D., & Cordes, S. (2006). The development of area discrimination and its implications for numerical abilities in infancy. Development Science, 9(6), F59F64.Google Scholar
Brannon, E. M., Suanda, S., & Libertus, K., (2007). Temporal discrimination increases in precision over development and parallels the development of numerosity discrimination. Developmental Science, 10(6), 770777.Google Scholar
Bremner, J. G., & Bryant, P. E. (1977). Place versus response as the basis of spatial errors made by young infants. Journal of Experimental Child Psychology, 23(1), 162171.Google Scholar
Brown, A. A., Spetch, M. L., & Hurd, P. L. (2007). Growing in circles: Rearing environment alters spatial navigation in fish. Psychological Science, 18(7), 569573.Google Scholar
Bullens, J., Nardini, M., Doeller, C. F., Braddick, O., Postma, A., & Burgess, N. (2010). The role of landmarks and boundaries in the development of spatial memory. Developmental Science, 13(1), 170180.Google Scholar
Burgess, N. (2006). Spatial memory: How egocentric and allocentric combine. Trends in Cognitive Sciences, 10(12), 551557.Google Scholar
Bushnell, E. W., McKenzie, B. E., Lawrence, D. A., & Connell, S. (1995). The spatial coding strategies of one-year-old infants in a locomotor search task. Child Development, 66(4), 937958.Google Scholar
Byrne, P., Becker, S., & Burgess, N. (2007). Remembering the past and imagining the future: A neural model of spatial memory and imagery. Psychological Review, 114(2), 340375.Google Scholar
Campos, J. J., Anderson, D. I., Barbu-Roth, M. A., Hubbard, E. M., Hertenstein, M. J., & Witherington, D. (2000). Travel broadens the mind. Infancy, 1(2), 149219.Google Scholar
Cantlon, J. F., & Brannon, E. M. (2006). Shared system for ordering small and large numbers in monkeys and humans. Psychological Science, 17(5), 401406.Google Scholar
Cantrell, L., Boyer, T. W., Cordes, S., & Smith, L. B. (2015). Signal clarity: An account of the variability in infant quantity discrimination tasks. Developmental Science, 18(6), 877893.Google Scholar
Cantrell, L., & Smith, L. B. (2013). Open questions and a proposal: A critical review of the evidence on infant numerical abilities. Cognition, 128(3), 331352.Google Scholar
Casasola, M., Bhagwat, J., Doan, S. N., & Love, H. (2017). Getting some space: Infants’ and caregivers’ containment and support spatial constructions during play. Journal of Experimental Child Psychology, 159, 110128.Google Scholar
Castaldi, E., Piazza, M., Dehaene, S., Vignaud, A., & Eger, E. (2019). Attentional amplification of neural codes for number independent of other quantities along the dorsal visual stream. bioRxiv, 527119. http://dx.doi.org/10.7554/eLife.45160Google Scholar
Chen, G., Manson, D., Cacucci, F., & Wills, T. J. (2016). Absence of visual input results in the disruption of grid cell firing in the mouse. Current Biology, 26(17), 23352342.Google Scholar
Cheng, K. (1986). A purely geometric module in the rat’s spatial representation. Cognition, 23(2), 149178.Google Scholar
Cheng, K., & Newcombe, N. S. (2005). Is there a geometric module for spatial orientation? Squaring theory and evidence. Psychonomic Bulletin and Review, 12, 123.Google Scholar
Chiandetti, C., & Vallortigara, G. (2008). Is there an innate geometric module? Effects of experience with angular geometric cues on spatial re-orientation based on the shape of the environment. Animal Cognition, 11(1), 139146.Google Scholar
Chiandetti, C., (2010). Experience and geometry: Controlled-rearing studies with chicks. Animal Cognition, 13(3), 463470.Google Scholar
Clearfield, M. W. (2004). The role of crawling and walking experience in infant spatial memory. Journal of Experimental Child Psychology, 89(3), 214241.Google Scholar
Clearfield, M. W., & Mix, K. S. (1999). Number versus contour length in infants’ discrimination of small visual sets. Psychological Science, 10(5), 408411.Google Scholar
Constantinescu, M., Moore, D. S., Johnson, S. P., & Hines, M. (2018). Early contributions to infants’ mental rotation abilities. Developmental Science, 21(4), e12613.Google Scholar
Dean, A. L., & Harvey, W. O. (1979). An information-processing analysis of a Piagetian imagery task. Developmental Psychology, 15(4), 474475.Google Scholar
de Hevia, M. D., Izard, V., Coubart, A., Spelke, E. S., & Streri, A. (2014). Representations of space, time, and number in neonates. Proceedings of the National Academy of Sciences, 111(13), 48094813.Google Scholar
de Hevia, M. D., & Spelke, E. S. (2010). Number-space mapping in human infants. Psychological Science, 21(5), 653660.Google Scholar
DeLoache, J. S. (1987). Rapid change in the symbolic functioning of very young children. Science, 238(4833), 15561557.Google Scholar
Diamond, A. (1998). Understanding the A-not-B error: Working memory vs. reinforced response, or active trace vs. latent trace. Developmental Science, 1(2), 185189.Google Scholar
Dilks, D. D., Hoffman, J. E., & Landau, B. (2008). Vision for perception and vision for action: Normal and unusual development. Developmental Science, 11(4), 474486.Google Scholar
Dolscheid, S., Hunnius, S., Casasanto, D., & Majid, A. (2014). Prelinguistic infants are sensitive to space–pitch associations found across cultures. Psychological Science, 25(6), 12561261.Google Scholar
Estes, D. (1998). Young children’s awareness of their mental activity: The case of mental rotation. Child Development, 69(5), 13451360.Google Scholar
Feigenson, L., & Carey, S. (2003). Tracking individuals via object-files: Evidence from infants’ manual search. Developmental Science, 6(5), 568584.Google Scholar
Feigenson, L., Carey, S., & Spelke, E. (2002). Infants’ discrimination of number vs. continuous extent. Cognitive Psychology, 44(1), 3366.Google Scholar
Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in Cognitive Sciences, 8(7), 307314.Google Scholar
Fisher, C. B. (1979). Children’s memory for orientation in the absence of external cues. Child Development, 50(4), 10881092.Google Scholar
Frick, A. (2019). Spatial transformation abilities and their relation to later mathematics performance. Psychological Research, 83, 14651484.Google Scholar
Frick, A., Daum, M. M., Walser, S., & Mast, F. W. (2009). Motor processes in children’s mental rotation. Journal of Cognition and Development, 10(1–2), 1840.Google Scholar
Frick, A., Ferrara, K., & Newcombe, N. S. (2013). Using a touch-screen paradigm to assess the development of mental rotation between 3½ and 5½ years of age. Cognitive Processing, 14(2), 117127.Google Scholar
Frick, A., Hansen, M. A., & Newcombe, N. S. (2013). Development of mental rotation in 3- to 5-year-old children. Cognitive Development, 28(4), 386399.Google Scholar
Frick, A., & Möhring, W. (2013). Mental object rotation and motor development in 8- and 10-month-old infants. Journal of Experimental Child Psychology, 115(4), 708720.Google Scholar
Frick, A., & Wang, S. H. (2014). Mental spatial transformations in 14- and 16-month-old infants: Effects of action and observational experience. Child Development, 85(1), 278293.Google Scholar
Gallistel, C. R. (1990). The organization of learning (Vol. 336). Cambridge, MA: MIT Press.Google Scholar
Galloway, J. C. C., Ryu, J. C., & Agrawal, S. K. (2008). Babies driving robots: Self-generated mobility in very young infants. Intelligent Service Robotics, 1(2), 123134.Google Scholar
Gerson, S. A., & Woodward, A. L. (2014). Learning from their own actions: The unique effect of producing actions on infants’ action understanding. Child Development, 85(1), 264277.Google Scholar
Gunderson, E. A., & Levine, S. C. (2011). Some types of parent number talk count more than others: Relations between parents’ input and children’s cardinal-number knowledge. Developmental Science, 14(5), 10211032.Google Scholar
Gunderson, E. A., Ramirez, G., Beilock, S. L., & Levine, S. C. (2012). The relation between spatial skill and early number knowledge: The role of the linear number line. Developmental Psychology, 48(5), 12291241.Google Scholar
Halberda, J., Mazzocco, M. M., & Feigenson, L. (2008). Individual differences in non-verbal number acuity correlate with maths achievement. Nature, 455(7213), 665668.Google Scholar
Hamamouche, K., & Cordes, S. (2019). Number, time, and space are not singularly represented: Evidence against a common magnitude system beyond early childhood. Psychonomic Bulletin & Review, 26, 122.Google Scholar
Hawes, Z., LeFevre, J. A., Xu, C., & Bruce, C. D. (2015). Mental rotation with tangible three-dimensional objects: A new measure sensitive to developmental differences in 4- to 8-year-old children. Mind, Brain, and Education, 9(1), 1018.Google Scholar
Hawes, Z., Moss, J., Caswell, B., Seo, J., & Ansari, D. (2019). Relations between numerical, spatial, and executive function skills and mathematics achievement: A latent-variable approach. Cognitive Psychology, 109, 6890.Google Scholar
Hawes, Z., Sokolowski, H. M., Ononye, C. B., & Ansari, D. (2019). Neural underpinnings of numerical and spatial cognition: An fMRI meta-analysis of brain regions associated with symbolic number, arithmetic, and mental rotation. Neuroscience & Biobehavioral Reviews, 103, 316336.Google Scholar
Hermer, L., & Spelke, E. (1996). Modularity and development: The case of spatial reorientation. Cognition, 61(3), 195232.Google Scholar
Hermer-Vazquez, L., Moffet, A., & Munkholm, P. (2001). Language, space, and the development of cognitive flexibility in humans: The case of two spatial memory tasks. Cognition, 79(3), 263299.Google Scholar
Hespos, S. J., Dora, B., Rips, L. J., & Christie, S. (2012). Infants make quantity discriminations for substances. Child Development, 83(2), 554567.Google Scholar
Huttenlocher, J., Newcombe, N., & Sandberg, E. (1994). The coding of spatial location in young children. Cognitive Psychology, 27, 115147.Google Scholar
Jacobs, L. F., & Menzel, R. (2014). Navigation outside of the box: what the lab can learn from the field and what the field can learn from the lab. Movement Ecology, 2(1), 122.Google Scholar
Johnson, S. P., & Aslin, R. N. (1995). Perception of object unity in 2-month-old infants. Developmental Psychology, 31(5), 739745.Google Scholar
Jung, W. P., Kahrs, B. A., & Lockman, J. J. (2015). Manual action, fitting, and spatial planning: Relating objects by young children. Cognition, 134, 128139.Google Scholar
Jung, W. P., Kahrs, B. A., (2018). Fitting handled objects into apertures by 17- to 36-month-old children: The dynamics of spatial coordination. Developmental Psychology, 54(2), 228239.Google Scholar
Karmiloff-Smith, A. (1992). Beyond modularity: A developmental perspective on cognitive science. Cambridge, MA: MIT Press.Google Scholar
Kaufman, J., & Needham, A. (2011). Spatial expectations of young human infants, following passive movement. Developmental Psychobiology, 53(1), 2336.Google Scholar
Keen, R. (2003). Representation of objects and events: Why do infants look so smart and toddlers look so dumb? Current Directions in Psychological Science, 12(3), 7983.Google Scholar
Klibanoff, R. S., Levine, S. C., Huttenlocher, J., Vasilyeva, M., & Hedges, L. V. (2006). Preschool children’s mathematical knowledge: The effect of teacher “math talk.” Developmental Psychology, 42(1), 5969.Google Scholar
Landau, B., & Ferrara, K. (2013). Space and language in Williams syndrome: Insights from typical development. Wiley Interdisciplinary Reviews: Cognitive Science, 4(6), 693706.Google Scholar
Landau, B., Smith, L., & Jones, S. (1998). Object perception and object naming in early development. Trends in Cognitive Sciences, 2(1), 1924.Google Scholar
Laurance, H. E., Learmonth, A. E., Nadel, L., & Jacobs, W. J. (2003). Maturation of spatial navigation strategies: Convergent findings from computerized spatial environments and self-report. Journal of Cognition and Development, 4(2), 211238.Google Scholar
Learmonth, A. E., Nadel, L., & Newcombe, N. S. (2002). Children’s use of landmarks: Implications for modularity theory. Psychological Science, 13(4), 337341.Google Scholar
Learmonth, A. E., Newcombe, N. S., & Huttenlocher, J. (2001). Toddlers’ use of metric information and landmarks to reorient. Journal of Experimental Child Psychology, 80(3), 225244.Google Scholar
Learmonth, A. E., Newcombe, N. S., Sheridan, N., & Jones, M. (2008). Why size counts: Children’s spatial reorientation in large and small enclosures. Developmental Science, 11(3), 414426.Google Scholar
Leibovich, T., Katzin, N., Harel, M., & Henik, A. (2017). From “sense of number” to “sense of magnitude”: The role of continuous magnitudes in numerical cognition. Behavioral and Brain Sciences, 40, 162.Google Scholar
Lew, A. R. (2011). Looking beyond the boundaries: Time to put landmarks back on the cognitive map? Psychological Bulletin, 137(3), 484507.Google Scholar
Lew, A. R., Foster, K. A., Crowther, H. L., & Green, M. (2004). Indirect landmark use at 6 months of age in a spatial orientation task. Infant Behavior and Development, 27(1), 8190.Google Scholar
Libertus, K., Joh, A. S., & Needham, A. W. (2016). Motor training at 3 months affects object exploration 12 months later. Developmental Science, 19(6), 10581066.Google Scholar
Lourenco, S. F., & Longo, M. R. (2010). General magnitude representation in human infants. Psychological Science, 21(6), 873881.Google Scholar
McKenzie, B. E., Day, R. H., & Ihsen, E. (1984). Localization of events in space: Young infants are not always egocentric. British Journal of Developmental Psychology, 2(1), 19.Google Scholar
Meck, W. H., & Church, R. M. (1983). A mode control model of counting and timing processes. Journal of Experimental Psychology: Animal Behavior Processes, 9(3), 320334.Google Scholar
Mix, K. S. (2009). How Spencer made number: First uses of the number words. Journal of Experimental Child Psychology, 102(4), 427444.Google Scholar
Mix, K. S., Huttenlocher, J., & Levine, S. C. (2002). Multiple cues for quantification in infancy: Is number one of them? Psychological Bulletin, 128(2), 278294.Google Scholar
Mix, K. S., Levine, S. C., & Newcombe, N. S. (2016). Development of quantitative thinking across correlated dimensions. In Henik, A. & Fias, W. (Eds.), Continuous issues in numerical cognition (pp. 133). London: Academic Press.Google Scholar
Möhring, W., & Frick, A. (2013). Touching up mental rotation: Effects of manual experience on 6-month-old infants’ mental object rotation. Child Development, 84(5), 15541565.Google Scholar
Möhring, W., Libertus, M., & Bertin, E. (2012). Speed discrimination in 6- and 10-month-old infants follows Weber’s law. Journal of Experimental Child Psychology, 111, 405418.Google Scholar
Montello, D. R. (1993). Scale and multiple psychologies of space. In Frank, A. U. & Campari, I. (Eds.), Spatial information theory: A theoretical basis for GIS (pp. 312321). European Conference on Spatial Information Theory, Berlin: Springer.Google Scholar
Moore, D. S., & Johnson, S. P. (2008). Mental rotation in human infants: A sex difference. Psychological Science, 19(11), 10631066.Google Scholar
Moore, D. S., & Johnson, S. P. (2011). Mental rotation of dynamic, three-dimensional stimuli by 3-month-old infants. Infancy, 16(4), 435445.Google Scholar
Morris, R. G. M., Garrud, P., Rawlins, J. A., & O’Keefe, J. (1982). Place navigation impaired in rats with hippocampal lesions. Nature, 297(5868), 681683.CrossRefGoogle ScholarPubMed
Muessig, L., Hauser, J., Wills, T. J., & Cacucci, F. (2015). A developmental switch in place cell accuracy coincides with grid cell maturation. Neuron, 86(5), 11671173.Google Scholar
Munakata, Y., McClelland, J. L., Johnson, M. H., & Siegler, R. S. (1997). Rethinking infant knowledge: Toward an adaptive process account of successes and failures in object permanence tasks. Psychological Review, 104(4), 686713.Google Scholar
Nazareth, A., Weisberg, S. M., Margulis, K., & Newcombe, N. S. (2018). Charting the development of cognitive mapping. Journal of Experimental Child Psychology, 170, 86106.Google Scholar
Needham, A., Barrett, T., & Peterman, K. (2002). A pick-me-up for infants’ exploratory skills: Early simulated experiences reaching for objects using “sticky mittens” enhances young infants’ object exploration skills. Infant Behavior and Development, 25(3), 279295.Google Scholar
Newcombe, N. S. (2017). Harnessing spatial thinking to support STEM learning. OECD Education Working Papers, No. 161. Paris: OECD Publishing.Google Scholar
Newcombe, N. S., & Huttenlocher, J. (2000). Making space: The development of spatial representation and reasoning. Cambridge, MA: MIT Press.Google Scholar
Newcombe, N. S., (2006). Development of spatial cognition. In Kuhn, D. & Siegler, R. S. (Eds.), Handbook of child psychology (6th ed., pp. 734776). Hoboken, NJ: John Wiley & Sons.Google Scholar
Newcombe, N. S., Huttenlocher, J., Drummey, A. B., & Wiley, J. (1998). The development of spatial location coding: Place learning and dead reckoning in the second and third years. Cognitive Development, 13, 185201.Google Scholar
Odic, D., Hock, H., & Halberda, J. (2014). Hysteresis affects approximate number discrimination in young children. Journal of Experimental Psychology: General, 143(1), 255265.Google Scholar
Örnkloo, H., & von Hofsten, C. (2007). Fitting objects into holes: On the development of spatial cognition skills. Developmental Psychology, 43(2), 404416.Google Scholar
Overman, W. H., Pate, B. J., Moore, K., & Peuster, A. (1996). Ontogeny of place learning in children as measured in the radial arm maze, Morris search task, and open field task. Behavioral Neuroscience, 110(6), 12051228.Google Scholar
Pica, P., Lemer, C., Izard, V., & Dehaene, S. (2004). Exact and approximate arithmetic in an Amazonian indigene group. Science, 306(5695), 499503.Google Scholar
Poulter, S., Hartley, T., & Lever, C. (2018). The neurobiology of mammalian navigation. Current Biology, 28(17), R1023R1042.Google Scholar
Pruden, S. M., Levine, S. C., & Huttenlocher, J. (2011). Children’s spatial thinking: Does talk about the spatial world matter? Developmental Science, 14(6), 14171430.Google Scholar
Quinn, P. C., & Liben, L. S. (2008). A sex difference in mental rotation in young infants. Psychological Science, 19(11), 10671070.Google Scholar
Quinn, P. C., (2014). A sex difference in mental rotation in infants: Convergent evidence. Infancy, 19(1), 103116.Google Scholar
Ratliff, K. R., & Newcombe, N. S. (2008). Reorienting when cues conflict: Evidence for an adaptive-combination view. Psychological Science, 19(12), 13011307.Google Scholar
Raudies, F., Gilmore, R. O., Kretch, K. S., Franchak, J. M., & Adolph, K. E. (2012, November). Understanding the development of motion processing by characterizing optic flow experienced by infants and their mothers. Paper presented at the Development and Learning and Epigenetic Robotics (ICDL), 2012 IEEE International Conference, San Diego, CA.Google Scholar
Ribordy, F., Jabès, A., Lavenex, P. B., & Lavenex, P. (2013). Development of allocentric spatial memory abilities in children from 18 months to 5 years of age. Cognitive Psychology, 66(1), 129.Google Scholar
Saxe, G. B. (2015). Culture and cognitive development: Studies in mathematical understanding. New York, NY: Psychology Press.Google Scholar
Schneider, M., Beeres, K., Coban, L., Merz, S., Schmidt, S., Stricker, J., & de Smedt, B. (2017). Associations of non-symbolic and symbolic numerical magnitude processing with mathematical competence: A meta-analysis. Developmental Science, 20(3), e12372.Google Scholar
Schwarzer, G., Freitag, C., Buckel, R., & Lofruthe, A. (2013). Crawling is associated with mental rotation ability by 9-month-old infants. Infancy, 18(3), 432441.Google Scholar
Seed, A., & Byrne, R. (2010). Animal tool use. Current Biology, 20(23), R1032R1039.Google Scholar
Shusterman, A., Lee, S. A., & Spelke, E. S. (2011). Cognitive effects of language on human navigation. Cognition, 120(2), 186201.Google Scholar
Sluzenski, J., Newcombe, N. S., & Satlow, E. (2004). Knowing where things are in the second year of life: Implications for hippocampal development. Journal of Cognitive Neuroscience, 16, 14431451.Google Scholar
Smith, L. B., & Kemler, D. G. (1978). Levels of experienced dimensionality in children and adults. Cognitive Psychology, 10(4), 502532.Google Scholar
Smith, L. B., Thelen, E., Titzer, R., & McLin, D. (1999). Knowing in the context of acting: The task dynamics of the A-not-B error. Psychological Review, 106(2), 235260.Google Scholar
Smith, L. B., Yu, C., & Pereira, A. F. (2011). Not your mother’s view: The dynamics of toddler visual experience. Developmental Science, 14(1), 917.Google Scholar
Sokolowski, H. M., Fias, W., Ononye, C. B., & Ansari, D. (2017). Are numbers grounded in a general magnitude processing system? A functional neuroimaging meta-analysis. Neuropsychologia, 105, 5069.Google Scholar
Soska, K. C., Adolph, K. E., & Johnson, S. P. (2010). Systems in development: motor skill acquisition facilitates three-dimensional object completion. Developmental Psychology, 46(1), 129138.Google Scholar
Spelke, E. S. (1990). Principles of object perception. Cognitive Science, 14(1), 2956.Google Scholar
Spelke, E. S., & Kinzler, K. D. (2007). Core knowledge. Developmental Science, 10(1), 8996.Google Scholar
Srinivasan, M., & Carey, S. (2010). The long and the short of it: On the nature and origin of functional overlap between representations of space and time. Cognition, 116(2), 217241.Google Scholar
Starkey, P., Spelke, E. S., & Gelman, R. (1983). Detection of intermodal numerical correspondences by human infants. Science, 222(4620), 179181.Google Scholar
Street, S. Y., James, K. H., Jones, S. S., & Smith, L. B. (2011). Vision for action in toddlers: The posting task. Child Development, 82(6), 20832094.Google Scholar
Sutton, J. E., & Newcombe, N. S. (2014). The hippocampus is not a geometric module: Processing environment geometry during reorientation. Frontiers in Human Neuroscience, 8, 16.Google Scholar
Tan, H. M., Bassett, J. P., O’Keefe, J., Cacucci, F., & Wills, T. J. (2015). The development of the head direction system before eye opening in the rat. Current Biology, 25(4), 479483.Google Scholar
Tan, H. M., Wills, T. J., & Cacucci, F. (2017). The development of spatial and memory circuits in the rat. Wiley Interdisciplinary Reviews: Cognitive Science, 8(3). doi: 10.1002/wcs.1424.Google Scholar
Thelen, E., & Smith, L. B. (1994). A dynamic systems approach to the development of perception and action. Cambridge, MA: MIT Press.Google Scholar
Twyman, A. D., Friedman, A., & Spetch, M. L. (2007). Penetrating the geometric module: Catalyzing children’s use of landmarks. Developmental Psychology, 43(6), 15231530.Google Scholar
Twyman, A. D., Newcombe, N. S., & Gould, T. J. (2013). Malleability in the development of spatial reorientation. Developmental Psychobiology, 55(3), 243255.Google Scholar
Verdine, B. N., Golinkoff, R. M., Hirsh-Pasek, K., & Newcombe, N. S. (2017). I. Spatial skills, their development, and their links to mathematics. Monographs of the Society for Research in Child Development, 82(1), 730.Google Scholar
Vieites, V., Nazareth, A., Reeb-Sutherland, B. C., & Pruden, S. M. (2015). A new biomarker to examine the role of hippocampal function in the development of spatial reorientation in children: A review. Frontiers in Psychology, 6, 490.Google Scholar
Voyer, D., Voyer, S., & Bryden, M. P. (1995). Magnitude of sex differences in spatial abilities: A meta-analysis and consideration of critical variables. Psychological Bulletin, 117(2), 250270.Google Scholar
Wang, R. F., & Spelke, E. S. (2002). Human spatial representation: Insights from animals. Trends in Cognitive Sciences, 6(9), 376382.Google Scholar
Weisberg, S. M., Marchette, S. A., & Chatterjee, A. (2018). Behavioral and neural representations of spatial directions across words, schemas, and images. Journal of Neuroscience, 38 (21), 49965007.Google Scholar
Weisberg, S. M., & Newcombe, N.S. (2016). How do (some) people make a cognitive map? Routes, places and working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 42, 768785.Google Scholar
Wilcox, T., & Biondi, M. (2015). Object processing in the infant: Lessons from neuroscience. Trends in Cognitive Sciences, 19(7), 406413. doi:10.1016/j.tics.2015.04.009Google Scholar
Wills, T. J., Cacucci, F., Burgess, N., & O’Keefe, J. (2010). Development of the hippocampal cognitive map in preweanling rats. Science, 328(5985), 15731576.Google Scholar
Wolbers, T., & Wiener, J. M. (2014). Challenges for identifying the neural mechanisms that support spatial navigation: the impact of spatial scale. Frontiers in Human Neuroscience, 8(571), 112.Google Scholar
Xu, F., & Spelke, E. S. (2000). Large number discrimination in 6-month-old infants. Cognition, 74(1), B1B11.Google Scholar
Xu, F., Spelke, E. S., & Goddard, S. (2005). Number sense in human infants. Developmental Science, 8(1), 88101.Google Scholar
Xu, Y., Regier, T., & Newcombe, N. S. (2017). An adaptive cue combination model of human spatial reorientation. Cognition, 163, 5666.Google Scholar

References

Adamson, L. B., & Frick, J. E. (2003). The still face: A history of a shared experimental paradigm. Infancy, 4, 451473.Google Scholar
American Academy of Pediatrics (AAP) Committee on Public Education (1999). Media education. Pediatrics, 104, 341343. doi: 10.1542/peds.104.2.341Google Scholar
American Academy of Pediatrics (AAP) Council on Communications and Media (2016). Children and adolescents and digital media. Pediatrics, 138. doi: 10.1542/peds.2016–2593Google Scholar
Anderson, D. R., & Davidson, M. C. (2019). Receptive versus interactive video screens: A role for the brain’s default mode network in learning from media. Computers in Human Behavior, 99, 168180. https://doi.org/10.1016/j.chb.2019.05.008Google Scholar
Anderson, D. R., Fite, K. V., Petrovich, N., & Hirsch, J. (2006). Cortical activation while watching video montage: An fMRI study. Media Psychology, 8, 724.Google Scholar
Anderson, D. R., & Hanson, K. G. (2017). Screen media and parent–child interactions. In Barr, R. & Linebarger, D. N. (Eds.), Media exposure during infancy and early childhood: The effects of content and context on learning and development (pp. 173194). Cham, Switzerland: Springer.Google Scholar
Anderson, D. R., & Pempek, T. A. (2005). Television and very young children. American Behavioral Scientist, 48, 505522.Google Scholar
Aslin, R. N. (2012). Questioning the questions that have been asked about the infant brain using near-infrared spectroscopy. Cognitive Neuropsychology, 29, 733.Google Scholar
Bank, A. M., Barr, R., Calvert, S. L., Parrott, W. G., McDonough, S. C., & Rosenblum, K. (2012). Maternal depression and family media use: A questionnaire and diary analysis. Journal of Child and Family Studies, 21, 208216. doi: 10.1007/s10826-011-9464-1.Google Scholar
Barnett, S. M., & Ceci, S. J. (2002). When and where do we apply what we learn? A taxonomy for far transfer. Psychological Bulletin, 128, 612637. doi:10.1037/0033-2909.128.4.612.Google Scholar
Barr, R. (2010). Transfer of learning between 2D and 3D sources during infancy: Informing theory and practice. Developmental Review, 30, 128154. doi:10.1016/j.dr.2010.03.001.Google Scholar
Barr, R. (2013). Memory constraints on infant learning from picture books, television, and touch-screens. Child Development Perspectives, 7, 205210. doi:10.1111/cdep.12041.Google Scholar
Barr, R., & Hayne, H. (1999). Developmental changes in imitation from television during infancy. Child Development, 70, 10671081.Google Scholar
Barr, R., Kirkorian, H., Radesky, J., Coyne, S., Nichols, D., Blanchfield, O., Rusnak, S., Stockdale, L., Ribner, A., Durnez, J., Epstein, M., Heimann, M., Koch, F.-S., Sundqvist, A., Birberg-Thornberg, U., Konrad, C., Slussareff, M., Bus, A., Bellagamba, F., Fitzpatrick, C. and CAFE Consortium Key Investigators (in revision). Beyond Screen Time: A synergistic approach to a more comprehensive assessment of family media exposure during early childhood.Google Scholar
Barr, R., Lauricella, A., Zack, E., & Calvert, S. L. (2010). The relation between infant exposure to television and executive functioning, cognitive skills, and school readiness at age four. Merrill Palmer Quarterly, 56, 2148.Google Scholar
Barr, R., & Linebarger, D. N. (Eds.) (2017). Media exposure during infancy and early childhood: The effects of content and context on learning and development. Cham, Switzerland: Springer.Google Scholar
Barr, R., McClure, E., & Palarkain, R. (2018). What the research says about the impact of media on children aged 0–3 years old. Retrieved from www.zerotothree.org/resources/series/screen-sense.Google Scholar
Barr, R., Muentener, P., & Garcia, A. (2007). Age-related changes in deferred imitation from television by 6- to 18-month-olds. Developmental Science, 10, 910921.Google Scholar
Barr, R., Muentener, P., Garcia, A., Fujimoto, M., & Chávez, V. (2007). The effect of repetition on imitation from television during infancy. Developmental Psychobiology, 49, 196207.Google Scholar
Barr, R., Shuck, L., Salerno, K., Atkinson, E., & Linebarger, D. L. (2010). Music interferes with learning from television during infancy. Infant and Child Development: An International Journal of Research and Practice, 19, 313331.Google Scholar
Barr, R., Zack, E., Garcia, A., & Muentener, P. (2008). Infants’ attention and responsiveness to television increases with prior exposure and parental interaction. Infancy, 13, 3056.Google Scholar
Bornstein, M. H., & Tamis-LeMonda, C. S. (2008). Mother–infant interaction. In Bremner, J. G. & Wachs, T. D. (Eds.), The Wiley-Blackwell handbook of infant development (pp. 269295). Malden, MA: Wiley-Blackwell.Google Scholar
Bortfeld, H., Wruck, E., & Boas, D. A. (2007). Assessing infants’ cortical response to speech using near-infrared spectroscopy. Neuroimage, 34, 407415.Google Scholar
Bus, A. G., Takacs, Z. K., & Kegel, C. A. T. (2015). Affordances and limitations of electronic storybooks for young children’s emergent literacy. Developmental Review, 35, 7997.Google Scholar
Buss, A. T., Fox, N., Boas, D. A., & Spencer, J. P. (2014). Probing the early development of visual working memory capacity with functional near-infrared spectroscopy. Neuroimage, 85, 314325, doi: 10.1016/j.neuroimage.2013.05.034Google Scholar
Calvert, S. L., Rideout, V. J., Woolard, J. L., Barr, R. F., & Strouse, G. A. (2005). Age, ethnicity, and socioeconomic patterns in early computer use: A national survey. American Behavioral Scientist, 48, 590607.Google Scholar
Carver, L. J., Meltzoff, A. N., & Dawson, G. (2006). Event-related potential (ERP) indices of infants’ recognition of familiar and unfamiliar objects in two and three dimensions. Developmental Science, 9, 5162.Google Scholar
Choi, J. H., Mendelsohn, A. L, Weisleder, A., Brockmeyer Cates, C., Canfield, C., Seery, A., … Tomopoulos, S. (2018). Real-world usage of educational media does not promote parent–child cognitive stimulation activities. Academic Pediatrics, 18, 172178. doi: 10.1016/j.acap.2017.04.020.Google Scholar
Christakis, D. A., Gilkerson, J., Richards, J. A., Zimmerman, F. J., Garrison, M. M., Xu, D., … Yapanel, U. (2009). Audible television and decreased adult words, infant vocalizations, and conversational turns: A population-based study. Archives of Pediatric & Adolescent Medicine, 163, 554558.Google Scholar
Connell, S. L., Lauricella, A. R., & Wartella, E. (2015). Parental co-use of media technology with their parents in the U.S.A. Journal of Children and Media, 9, 521.Google Scholar
Courage, M. L., Murphy, A. N., Goulding, S., & Setliff, A. E. (2010). When the television is on: The impact of infant-directed video on 6- and 18-month-olds’ attention during toy play and on parent–infant interaction. Infant Behavior and Development, 33, 176188.Google Scholar
Cristia, A., & Seidl, A. (2015) Parental reports on touch screen use in early childhood. PLoS ONE, 10. https://doi.org/10.1371/journal.pone.0128338Google Scholar
Cuevas, K., Cannon, E. N., Yoo, K., & Fox, N. A. (2013). The infant EEG Mu rhythm: Methodological considerations and best practices. Developmental Review, 34, 2643.Google Scholar
Dayanim, S., & Namy, L. L. (2015). Infants learn baby signs from video. Child Development, 86, 800811.Google Scholar
DeLoache, J. S. (1995). Early symbol understanding and use. Psychology of Learning and Motivation, 33, 65116.Google Scholar
DeLoache, J. S., Chiong, C., Sherman, K., Islam, N., Vanderborght, M., Troseth, G. L., … O’Doherty, K. (2010). Do babies learn from baby media?. Psychological Science, 21, 15701574.Google Scholar
DeLoache, J. S., Strauss, M. S., & Maynard, J. (1979). Picture perception in infancy. Infant Behavior and Development, 2, 7789.Google Scholar
Demers, L. B., Hanson, K. G., Kirkorian, H. L., Pempek, T. A., & Anderson, D. R. (2013). Infant gaze following during parent–infant coviewing of baby videos. Child Development, 84, 591603. doi: 10.1111/j.1467-8624.2012.01868.xGoogle Scholar
Dickerson, K., Gerhardstein, P., & Moser, A. (2017). The role of the human mirror neuron system in supporting communication in a digital world. Frontiers in Psychology, 8, 698.Google Scholar
Dickerson, K., Gerhardstein, P., Zack, E., & Barr, R. (2013). Age-related changes in learning across early childhood: A new imitation task. Developmental Psychobiology, 55, 719732. doi:10.1002/dev.21068.Google Scholar
Dirks, J., & Gibson, E. (1977). Infants’ perception of similarity between live people and their photographs. Child Development, 48(1), 124130.Google Scholar
Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) (2018). Media exposure and early child development workshop. Retrieved from www.nichd.nih.gov/about/meetings/2018/012518.Google Scholar
Fair, D. A., Cohen, A. L., Dosenbach, N. U. F., Church, J. A., Miezin, F. M., Barch, D. M., … Schlaggar, B. L. (2008). The maturing architecture of the brain’s default network. Proceedings of the National Academy of Sciences, 105, 40284032.Google Scholar
Fenstermacher, S. K., Barr, R., Brey, E., Pempek, T. A, Ryan, M., Calvert, S., … Linebarger, D. (2010). Interactional quality depicted in infant-directed videos: Where are the interactions? Infant and Child Development, 19, 594612. doi: 10.1002/icd.714Google Scholar
Fenstermacher, S. K., Barr, R., Salerno, K., Garcia, A., Shwery, C. E., Calvert, S. L., & Linebarger, D. L. (2010). Infant-directed media: An analysis of product information and claims. Infant & Child Development, 19, 557576.Google Scholar
Gao, W., Zhu, H., Giovanello, K. S., Smith, J. K., Dinggang, S., Gilmore, J. H., & Lin, W. (2009). Evidence on the emergence of the brain’s default network from 2-week-old to 2-year-old healthy pediatric subjects. Proceedings of the National Academy of Sciences, 106, 67906795.Google Scholar
Gervain, J., Mehler, J., Werker, J. F., Nelson, C. A., Csibra, G., Lloyd-Fox, S., … Aslin, R. N. (2011). Near-infrared spectroscopy: A report from the McDonnell infant methodology consortium. Developmental Cognitive Neuroscience, 1, 2246.Google Scholar
Goedhart, G., Kromhout, H., Wiart, J., & Vermeulen, R. (2015). Validating self-reported mobile phone use in adults using a newly developed smartphone application. Occupational & Environmental Medicine, 72(1), 812818.Google Scholar
Goldstein, M. H., Schwade, J. A., & Bornstein, M. H. (2009). The value of vocalizing: Five-month-old infants associate their own noncry vocalizations with responses from caregivers. Child Development, 80, 636644.Google Scholar
Guernsey, L. (2012). Screen time: How electronic media – from baby videos to educational software – affects your young child. Philadelphia, PA: Basic Books.Google Scholar
Hasson, U., Yang, E., Vallines, I., Heeger, D.J., & Rubin, N. (2008). A hierarchy of temporal receptive windows in human cortex. Journal of Neuroscience, 28, 25392550.Google Scholar
Henning, A., & Striano, T. (2011). Infant and maternal sensitivity to interpersonal timing. Child Development, 82, 916931.Google Scholar
Heron-Delaney, M., Anzures, G., Herbert, J. S., Quinn, P. C., Slater, A. M., Tanaka, J. W., … Pascalis, O. (2011). Perceptual training prevents the emergence of the other race effect during infancy. PLoS ONE, 6. http://doi.org/10.1371/journal.pone.0019858Google Scholar
Hipp, D., Gerhardstein, P., Zimmermann, L., Moser, A., Taylor, G., & Barr, R. (2017). The dimensional divide: Learning from TV and touchscreens during early childhood. In Barr, R. & Linebarger, D. N. (Eds.), Media exposure during infancy and early childhood: The effects of content and context on learning and development (pp. 3354). Cham, Switzerland: Springer.Google Scholar
Hirsh-Pasek, K., Zosh, J. M., Golinkoff, R. M., Gray, J. H., Robb, M. B., & Kaufman, J. (2015). Putting education in “educational” apps: Lessons from the science of learning. Psychological Science in the Public Interest, 16, 334.Google Scholar
Kabali, H. K., Irigoyen, M. M., Nunez-Davis, R., Budacki, J. G., Mohanty, S. H., Leister, K. P., & Bonner Jr, R. L. (2015). Exposure and use of mobile media devices by young children. Pediatrics, 136, 10441050.Google Scholar
Khan, M., Chakraborty, N., Rahman, A., & Nasrin, T. (2007). 2007 follow-up (wave II) evaluation of the reach and impact of Sisimpur: A technical report. Dhaka, Bangladesh: Associates for Community and Population Research.Google Scholar
Kirkorian, H. L. (2018). When and how do interactive digital media help children connect what they see on and off the screen? Child Development Perspectives, 12, 210214. doi.org/10.1111/cdep.12290.Google Scholar
Kirkorian, H. L., Anderson, D. R., & Keen, R. (2012). Age differences in online processing of video: An eye movement study. Child Development, 83, 497507.Google Scholar
Kirkorian, H. L., & Choi, K. (2017). Associations between toddlers’ naturalistic media experience and observed learning from screens. Infancy, 22, 271277.Google Scholar
Kirkorian, H. L., Choi, K., & Pempek, T. A. (2016). Toddlers’ word learning from contingent and noncontingent video on touchscreens. Child Development, 87, 405413. doi: 10.1111/cdev.12508Google Scholar
Kirkorian, H. L., Pempek, T. A., Murphy, L. A., Schmidt, M. E., & Anderson, D. R. (2009). The impact of background television on parent–child interaction. Child Development, 80, 13501359.Google Scholar
Koenig, M. A., & Woodward, A. L. (2010). Sensitivity of 24-month-olds to the prior inaccuracy of the source: Possible mechanisms. Developmental Psychology, 46, 815.Google Scholar
Krcmar, M. (2010). Can social meaningfulness and repeat exposure help infants and toddlers overcome the video deficit?. Media Psychology, 13, 3153.Google Scholar
Kuchirko, Y., Tafuro, L., & Tamis-LeMonda, C.S. (2018). Becoming a communicative partner: Infant contingent responsiveness to maternal language and gestures. Infancy, 23, 558576. doi: 10.1111/infa.12222Google Scholar
Kuhl, P. K., Tsao, F. M., & Liu, H. M. (2003). Foreign-language experience in infancy: Effects of short-term exposure and social interaction on phonetic learning. Proceedings of the National Academy of Sciences, 100, 90969101.Google Scholar
Landau, S., Lorch, E.P., & Milich, R. (1992). Visual attention to and comprehension of television in attention-deficit hyperactivity disordered and normal boys. Child Development, 63, 928937.Google Scholar
Lapierre, M. A., Piotrowski, J. T., & Linebarger, D. L. (2012). Background television in the homes of US children. Pediatrics, 130, 839846.Google Scholar
Lauricella, A. R., Blackwell, C. K., & Wartella, E. (2017). The “new” technology environment: The role of content and context on learning and development from mobile media. In Barr, R. & Linebarger, D. N. (Eds.), Media exposure during infancy and early childhood: The effects of content and context on learning and development (pp. 124). Cham, Switzerland: Springer.Google Scholar
Lauricella, A. R., Pempek, T. A., Barr, R., & Calvert, S. L. (2010). Contingent computer interactions for young children’s object retrieval success. Journal of Applied Developmental Psychology, 31, 362369.Google Scholar
Lauricella, A. R., Wartella, E., & Rideout, V. (2015). Young children’s screen time: The complex role of parent and child factors. Journal of Applied Developmental Psychology, 36, 1117. doi.org/10.1016/j.appdev.2014.12.001Google Scholar
Lerner, C., & Barr, R. (2015). Screen sense: Setting the record straight – research-based guidelines for screen use for children under 3 years old. Zero to Three, 35, 110.Google Scholar
Li, H., Subrahmanyam, K., Bai, X., Xie, X., & Liu, T. (2018). Viewing fantastical events versus touching fantastical events: Short-term effects on children’s inhibitory control. Child Development, 89, 4857. https://doi.org/10.1111/cdev.12820Google Scholar
Lillard, A. S., Drell, M. B., Richey, E. M., Boguszewski, K., & Smith, E. D. (2015). Further examination of the immediate impact of television on children’s executive function. Developmental Psychology, 51, 792805. doi: 10.1037/a0039097Google Scholar
Lin, P., Yang, Y., Jovicich, J., de Pisapia, N., Wang, X., Zuo, C. S., & Levitt, J. J. (2016). Static and dynamic posterior cingulate cortex nodal topology of default mode network predicts attention task performance. Brain Imaging and Behavior, 10, 212225.Google Scholar
Linebarger, D. L., Barr, R., Lapierre, M. A., & Piotrowski, J. T. (2014). Associations between parenting, media use, cumulative risk, and children’s executive functioning. Journal of Developmental & Behavioral Pediatrics, 35, 367377.Google Scholar
Linebarger, D. L., & Walker, D. (2005). Infants’ and toddlers’ television viewing and language outcomes. American Behavioral Scientist, 48, 624645.Google Scholar
Mandel, D. R., Jusczyk, P. W., & Pisoni, D. B. (1995). Infants’ recognition of the sound patterns of their own names. Psychological Science, 6, 314317.Google Scholar
Markant, J., & Scott, L. S. (2018). Attention and perceptual learning interact in the development of the other-race effect. Current Directions in Psychological Science, 27(3), 163169.Google Scholar
Mendelsohn, A. L., Brockmeyer, C. A., Dreyer, B. P., Fierman, A. H., Berkule-Silberman, S. B., & Tomopoulos, S. (2010). Do verbal interactions with infants during electronic media exposure mitigate adverse impacts on their language development as toddlers? Infant and Child Development, 19, 577593. http://doi.org/10.1002/icd.711.Google Scholar
McCall, R. B., Parke, R. D., Kavanaugh, R. D., Engstrom, R., Russell, J., & Wycoff, E. (1977). Imitation of live and televised models by children one to three years of age. Monographs of the Society for Research in Child Development, 194.Google Scholar
McClure, E. R., Chentsova-Dutton, Y. E., Barr, R. F., Holochwost, S., & Parrott, W. G. (2015). “FaceTime doesn’t count”: Video chat as an exception to media restrictions for infants and toddlers. International Journal of Child-Computer Interaction, 6, 16. doi: x10.1016/j.ijcci.2016.02.002Google Scholar
McClure, E. R., Chentsova-Dutton, Y. E., Holochwost, S. J., Parrott, W. G., & Barr, R. (2017). Look at that! Video chat and joint visual attention development among babies and toddlers. Child Development, 89(1), 2736. doi:10.1111/cdev.12833Google Scholar
McDaniel, B. T., & Radesky, J. S. (2018). Technoference: Parent distraction with technology and associations with child behavior problems. Child Development, 89, 100109. doi:10.1111/cdev.12822Google Scholar
Meek, J. H., Firbank, M., Elwell, C. E., Atkinson, J., Braddick, O., & Wyatt, J. S. (1998). Regional hemodynamic responses to visual stimulation in awake infants. Pediatric Research, 43(6), 840.Google Scholar
Moser, A., Zimmermann, L., Dickerson, K., Grenell, A., Barr, R., & Gerhardstein, P. (2015). They can interact, but can they learn? Toddlers’ transfer learning from touchscreens and television. Journal of Experimental Child Psychology, 137, 137155. doi:10.1016/j.jecp.2015.04.002.Google Scholar
Mumme, D. L., & Fernald, A. (2003). The infant as onlooker: Learning from emotional reactions observed in a television scenario. Child Development, 74, 221237.Google Scholar
Murray, L., & Trevarthen, C. (1985). Emotional regulation of interactions between two-month-olds and their mothers. In Field, T. & Fox, N. (Eds.), Social perception in infants (pp. 177197). Norwood, NJ: Ablex.Google Scholar
Myers, L. J., Crawford, E., Murphy, C., Aka-Ezoua, E., & Felix, C. (2018). Eyes in the room trump eyes on the screen: Effects of a responsive co-viewer on toddlers’ responses to and learning from video chat. Journal of Children and Media, 12(3), 275294.Google Scholar
Myers, L. J., LeWitt, R. B., Gallo, R. E., & Maselli, N. M. (2017). Baby FaceTime: Can toddlers learn from online video chat?. Developmental Science, 20(4), 115.Google Scholar
Myruski, S., Gulyayeva, O., Birk, S., Pérez-Edgar, K., Buss, K. A., & Dennis-Tiwary, T. A. (2018) Digital disruption? Maternal mobile device use is related to infant social-emotional functioning. Developmental Science, 21, e12610. https://doi.org/10.1111/desc.12610Google Scholar
Nakano, T., Kato, M., Morito, Y., Itoi, S., & Kitazawa, S. (2013). Blink-related momentary activation of the default mode network while viewing videos. Proceedings of the National Academy of Sciences, 110, 702706.Google Scholar
Nathanson, A. I., Aladé, F., Sharp, M. L., Rasmussen, E. E., & Christy, K. (2014). The relation between television exposure and executive function among preschoolers. Developmental Psychology, 50, 1497.Google Scholar
National Association for the Education of Young Children & the Fred Rogers Center for Early Learning and Children’s Media at Saint Vincent College. (2012, January). Technology and interactive media as tools in early childhood programs serving children from birth through age 8. Joint position statement. Reston, VA.Google Scholar
Nielsen, M., Simcock, G., & Jenkins, L. (2008). The effect of social engagement on 24 month olds’ imitation from live and televised models. Developmental Science, 11, 722731. doi:10.1111/j.1467-7687.2008.00722.x.Google Scholar
Nussenbaum, K., & Amso, D. (2016). An attentional Goldilocks effect: An optimal amount of social interactivity promotes word learning from video. Journal of Cognition and Development, 17, 3040.Google Scholar
Oulasvirta, A., Tamminen, S., Roto, V., & Kuorelahti, J. (2005, April). Interaction in 4-second bursts: The fragmented nature of attentional resources in mobile HCI. In Proceedings of the SIGCHI conference on Human factors in computing systems (pp. 919928). New York, NY: ACM. https://doi.org/10.1145/1054972.1055101Google Scholar
Pempek, T. A., Kirkorian, H. L., & Anderson, D. R. (2014). The effects of background television on the quantity and quality of child-directed speech by parents. Journal of Children and Media, 8, 211222.Google Scholar
Pempek, T. A., Kirkorian, H. L., Richards, J. E., Anderson, D. R., Lund, A. F., & Stevens, M. (2010). Video comprehensibility and attention in very young children. Developmental Psychology, 46, 12831293.Google Scholar
Pempek, T. A., & McDaniel, B. T. (2016). Young children’s tablet use and associations with maternal well-being. Journal of Child and Family Studies, 25, 26362647.Google Scholar
Peña, M., Maki, A., Kovacic, D., Dehaene-Lambertz, G., Koizumi, H., Bouquet, F., & Mehler, J. (2003). Sounds and silence: An optical topography study of language recognition at birth. Proceedings of the National Academy of Sciences, 100, 1170211705.Google Scholar
Perlman, S. B., Huppert, T. J., & Luna, B. (2015). Functional near-infrared spectroscopy evidence for development of prefrontal engagement in working memory in early through middle childhood. Cerebral Cortex, 26, 27902799.Google Scholar
Przybylski, A. K., & Weinstein, N. (2017). Digital screen time limits and young children’s psychological well-being: Evidence from a population-based study. Child Development, 90(1), e56e65. doi.org/10.1111/cdev.13007Google Scholar
Radesky, J. S., Kistin, C. J., Zuckerman, B., Nitzberg, K., Gross, J., Kaplan-Sanoff, M., … Silverstein, M. (2014). Patterns of mobile device use by caregivers and children during meals in fast-food restaurants. Pediatrics, 133, 843849.Google Scholar
Radesky, J. S., Peacock-Chambers, E., Zuckerman, B., & Silverstein, M. (2016). Use of mobile technology to calm upset children: Associations with social-emotional development. JAMA Pediatrics, 170, 397399.Google Scholar
Radesky, J. S., Silverstein, M., Zuckerman, B., & Christakis, D. A. (2014). Infant self-regulation and early childhood media exposure. Pediatrics, 133(5), e1172e1178. doi: 10.1542/peds.2013–2367Google Scholar
Reed, J., Hirsh-Pasek, K., & Golinkoff, R. M. (2017). Learning on hold: Cell phones sidetrack parent–child interactions. Developmental Psychology, 53, 1428.Google Scholar
Regev, M., Honey, C. J., Simony, E., & Hasson, U. (2013). Selective and invariant neural responses to spoken and written narratives. Journal of Neuroscience, 33, 1597815988.Google Scholar
Richards, J. E. (2010). The development of attention to simple and complex visual stimuli in infants: Behavioral and psychophysiological measures. Developmental Review, 30, 203219.Google Scholar
Richards, M. N., & Calvert, S. L. (2017). Media characters, parasocial relationships, and the social aspects of children’s learning across media platforms. In Barr, R. & Linebarger, D. N. (Eds.), Media exposure during infancy and early childhood: The effects of content and context on learning and development (pp. 141163). Cham, Switzerland: Springer.Google Scholar
Richert, R. A., Robb, M. B., Fender, J. G., & Wartella, E. (2010). Word learning from baby videos. Archives of Pediatrics & Adolescent Medicine, 164, 432437.Google Scholar
Rideout, V. (2017). Zero to eight: Children’s media use in America 2017. San Francisco, CA: Common Sense Media. Retrieved from www.commonsensemedia.org/research/zero-to-eight-childrens-media-use-in-america-2017.Google Scholar
Roseberry, S. L., Garcia-Sierra, A., & Kuhl, P. K. (2018). Two are better than one: Infant language learning from video improves in the presence of peers. Proceedings of the National Academy of Sciences of the United States of America, 115(40), 98599866.Google Scholar
Roseberry, S. L., Hirsh-Pasek, K., & Golinkoff, R. M. (2014). Skype me! Socially contingent interactions help toddlers learn language. Child Development, 85, 956970. doi:10.1111/cdev.12166.Google Scholar
Ruysschaert, L., Warreyn, P., Wiersema, J. R., Metin, B., & Roeyers, H. (2013). Neural mirroring during the observation of live and video actions in infants. Clinical Neurophysiology, 124, 17651770. doi: 10.1016/j.clinph.2013.04.007Google Scholar
Schmidt, M. E., Pempek, T. A., Kirkorian, H. L., Lund, A. F., & Anderson, D. R. (2008). The effects of background television on the toy play behavior of very young children. Child Development, 79, 11371151.Google Scholar
Setliff, A. E., & Courage, M. L. (2011). Background television and infants’ allocation of their attention during toy play. Infancy, 16, 611639.Google Scholar
Shimada, S., & Hiraki, K. (2006). Infant’s brain responses to live and televised action. Neuroimage, 32, 930939. doi: 10.1016/j.neuroimage.2006.03.044Google Scholar
Simcock, G., Garrity, K., & Barr, R. (2011). The effect of narrative cues on infants’ imitation from television and picture books. Child Development, 82, 16071619. doi: 10.1111/j.1467-8624.2011.01636.xGoogle Scholar
Strouse, G. A., & Troseth, G. L. (2014). Supporting toddlers’ transfer of word learning from video. Cognitive Development, 30, 4764.Google Scholar
Sudre, G., Szekely, E., Sharp, W., Kasparek, S., & Shaw, P. (2017). Multimodal mapping of the brain’s functional connectivity and the adult outcome of attention deficit hyperactivity disorder. Proceedings of the National Academy of Sciences, 114, 1178711792.Google Scholar
Troseth, G. L. (2010). Is it life or is it Memorex? Video as a representation of reality. Developmental Review, 30, 155175. doi:10.1016/j.dr.2010.03.007.Google Scholar
Troseth, G. L., & DeLoache, J. S. (1998). The medium can obscure the message: Young children’s understanding of video. Child Development, 69, 950965.Google Scholar
Troseth, G. L., Saylor, M. M., & Archer, A. H. (2006). Young children’s use of video as a source of socially relevant information. Child Development, 77, 786799.Google Scholar
Vaala, S. E., Linebarger, D. L., Fenstermacher, S. K., Tedone, A., Brey, E., Barr, R., … Calvert, S. L. (2010). Content analysis of language-promoting teaching strategies used in infant-directed media. Infant and Child Development, 19, 628648.Google Scholar
Vandewater, E. A., & Lee, S. -J. (2009). Measuring children’s media use in the digital age: Issues and challenges. American Behavioral Scientist, 52, 11521176.Google Scholar
Wartella, E., Rideout, V., Lauricella, A., & Connell, S. (2014). Revised parenting in the age of digital technology: A national survey. Evanston, IL: Northwestern University. Retrieved from http://web5.soc.northwestern.edu/cmhd/wp-content/uploads/2014/08/NWU.MediaTechReading.Hispanic.FINAL2014.pdf.Google Scholar
West, G. L., Konishi, K., & Bohbot, V. D. (2017). Video games and hippocampus-dependent learning. Current Directions in Psychological Science, 26, 152158.Google Scholar
Wilcox, T., & Biondi, M. (2015). fNIRS in the developmental sciences. Wiley Interdisciplinary Reviews: Cognitive Science, 6, 263283.Google Scholar
Wood, E., Petkovski, M., de Pasquale, D., Gottardo, A., Evans, M. A., & Savage, R. S. (2016). Parent scaffolding of young children when engaged with mobile technology. Frontiers in Psychology, 7, 690. http://doi.org/10.3389/fpsyg.2016.00690Google Scholar
Zack, E., & Barr, R. (2016). The role of interactional quality in learning from touch screens during infancy: Context matters. Frontiers in Psychology, 7, 1264.Google Scholar
Zack, E., Barr, R., Gerhardstein, P., Dickerson, K., & Meltzoff, A. N. (2009). Infant imitation from television using novel touch screen technology. British Journal of Developmental Psychology, 27, 1326.Google Scholar
Zosh, J. M., Lytle, S. R., Golinkoff, R. M., & Hirsh-Pasek, K. (2017). Putting the education back in educational apps: How content and context interact to promote learning. In Barr, R. & Linebarger, D. N. (Eds.), Media exposure during infancy and early childhood: The effects of content and context on learning and development (pp. 259282). Cham, Switzerland: Springer.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×