Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-4nk8m Total loading time: 2.44 Render date: 2021-10-18T08:55:13.068Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Part III - Cognitive Development

Published online by Cambridge University Press:  26 September 2020

Jeffrey J. Lockman
Affiliation:
Tulane University, Louisiana
Catherine S. Tamis-LeMonda
Affiliation:
New York University
Get access
Type
Chapter
Information
The Cambridge Handbook of Infant Development
Brain, Behavior, and Cultural Context
, pp. 339 - 466
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adolph, K. E., & Hoch, J. E. (2019). Motor development: Embodied, embedded, enculturated, and enabling. Annual Review of Psychology, 70, 26.1–26.24.CrossRefGoogle ScholarPubMed
Anderson, D. I., Campos, J. J., Witherington, D. C., Dahl, A., Rivera, M., He, M., … Barbu-Roth, M. (2013). The role of locomotion in psychological development. Frontiers in Psychology, 4, 440.CrossRefGoogle ScholarPubMed
Artioli, F., & Reese, E. (2013). Early memories in young adults from separated and non-separated families, Memory, 22, 10821102CrossRefGoogle ScholarPubMed
Artioli, F., Reese, E., & Hayne, H. (2015). Benchmarking the past: Children’s early memories and maternal reminiscing as a function of family structure. Journal of Applied Research in Memory and Cognition, 4, 136143.CrossRefGoogle Scholar
Bahrick, L., & Pickens, J. (1995). Infant memory for object motion across a period of three months: Implications for a four-phase attention function. Journal of Experimental Child Psychology, 59, 343371.CrossRefGoogle ScholarPubMed
Barnat, S. A., Klein, P. J., & Meltzoff, A. N. (1996). Deferred imitation across changes in context and object: Memory and generalization in 14-month-old infants. Infant Behavior and Development, 19, 241251.CrossRefGoogle ScholarPubMed
Barr, R. (2013). Memory constraints on infant learning from picture books, television, and touchscreens. Child Development Perspectives, 7, 205210.CrossRefGoogle Scholar
Barr, R., Dowden, A., & Hayne, H. (1996). Developmental changes in deferred imitation by 6- to 24-month-old infants. Infant Behavior and Development, 19, 159170.CrossRefGoogle Scholar
Barr, R., & Hayne, H. (1999). Developmental changes in imitation from television during infancy. Child Development, 70, 10671081.CrossRefGoogle ScholarPubMed
Barr, R., (2000). Age-related changes in imitation: Implications for memory development. In Rovee-Collier, C., Lipsitt, L. P., & Hayne, H. (Eds.), Progress in infancy research (Vol. 1, pp. 2167). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Barr, R., Muentener, R., Garcia, A., Fujimoto, M., & Chavez, V. (2007). The effect of repetition on imitation from television during infancy. Developmental Psychobiology, 49, 196207.CrossRefGoogle ScholarPubMed
Barr, R., Walker, J., Gross, J., & Hayne, H. (2014). Age-related changes in spreading activation during infancy. Child Development, 85, 549563.CrossRefGoogle ScholarPubMed
Bauer, P. (2015). A complementary processes account of the development of childhood amnesia and a personal past. Psychological Review, 122, 204231.CrossRefGoogle Scholar
Bauer, P. J., Wenner, J. A., Dropik, P. L., & Wewerka, S. S. (2000). Parameters of remembering and forgetting in the transition from infancy to early childhood. Monographs of the Society for Research in Child Development, 65, 1204.CrossRefGoogle Scholar
Brito, N., & Barr, R. (2012). Influence of bilingualism on memory generalisation during infancy. Developmental Science, 15, 812816.CrossRefGoogle ScholarPubMed
Brito, N., (2014). Flexible memory retrieval in bilingual 6-month-old infants. Developmental Psychobiobiology, 56, 11561163.Google ScholarPubMed
Brito, N., Barr, R., McIntyre, P., & Simcock, G. (2012). Long-term transfer of learning from books and video during infanthood. Journal of Experimental Child Psychology, 111, 108119.CrossRefGoogle Scholar
Butler, J., & Rovee-Collier, C. (1989). Contextual gating of memory retrieval. Developmental Psychobiology, 22, 533552.Google ScholarPubMed
Casey, B. J., Tottenham, N., Liston, C., & Durston, S. (2005) Imaging the developing brain: what have we learned about cognitive development? Trends in Cognitive Science, 9, 104110.CrossRefGoogle ScholarPubMed
Cornell, E. (1979). Infants’ recognition memory, forgetting, and savings. Journal of Experimental Child Psychology, 28, 359374.CrossRefGoogle ScholarPubMed
Davis, J., & Rovee-Collier, C. (1983). Alleviated forgetting of a learned contingency in 8-week-old infants. Developmental Psychology, 19, 353365.CrossRefGoogle Scholar
Dehaene-Lambertz, G., & Spelke, E. S. (2015). The infancy of the human brain. Neuron, 88, 93109.CrossRefGoogle ScholarPubMed
Fagen, J. W., & Rovee-Collier, C. (1983). Memory retrieval: A time-locked process in infancy. Science, 222, 13491352.Google ScholarPubMed
Fivush, R., Haden, C., & Reese, E. (2006). Elaborating on elaborations: Role of maternal reminiscing style in cognitive and socioemotional development. Child Development, 77, 15681588.CrossRefGoogle ScholarPubMed
Freud, S. [1905] (1953). Three essays on the theory of sexuality. In Strachey, J. (Ed.), The standard edition of the complete psychological works of Sigmund Freud (Vol. 7, pp. 125248). London: Hogarth Press.Google Scholar
Gilmore, J. H., Shi, F., Woolson, S. L., Knickmeyer, R. C., Short, S. J., Lin, W., … Shen, D. (2012). Longitudinal development of cortical and subcortical gray matter from birth to 2 years. Cerebral Cortex, 22, 24782485.CrossRefGoogle ScholarPubMed
Greco, C., Hayne, H., & Rovee-Collier, C. (1990). Roles of function, reminding, and variability in categorization by 3-month-old infants. Journal of Experimental Psychology: Learning, Memory, and Cognition, 16, 617633.Google ScholarPubMed
Greco, C., Rovee-Collier, C., Hayne, H., Griesler, P., & Earley, L. (1986). Ontogeny of early event memory I: Forgetting and retrieval by 2- and 3-month-olds. Infant Behavior and Development, 9, 441460.CrossRefGoogle Scholar
Gross, J., Gardiner, B., & Hayne, H. (2016). Developmental reversals in recognition memory in children and adults. Developmental Psychobiology, 58, 5259.CrossRefGoogle ScholarPubMed
Haartsen, R., Jones, E. J. H., & Johnson, M. H. (2016). Human brain development over the early years. Current Opinion in Behavioral Science, 10, 149–54.Google Scholar
Hanna, E., & Meltzoff, A. N. (1993). Peer imitation by toddlers in laboratory, home, and day-care contexts: Implications for social learning and memory. Developmental Psychology, 29, 701710.CrossRefGoogle ScholarPubMed
Hartshorn, K. (2003). Reinstatement maintains a memory in human infants for 1½ years. Developmental Psychobiology, 42, 269282.CrossRefGoogle ScholarPubMed
Hartshorn, K., Rovee-Collier, C., Gerhardstein, P. C., Bhatt, R. S., Klein, P. J., Aaron, F., … Wurtzel, N. (1998). Developmental changes in the specificity of memory over the first year of life. Developmental Psychobiology, 33, 6178.Google ScholarPubMed
Hartshorn, K., Rovee-Collier, C., Gerhardstein, P. C, Bhatt, R. S., Wondoloski, T. L., Klein, P., … Campos-de-Carvalho, M. (1998). Ontogeny of long-term memory over the first year and a half of life. Developmental Psychobiology, 32, 6989.3.0.CO;2-Q>CrossRefGoogle Scholar
Hayne, H. (1990). The effect of multiple reminders on long-term retention in human infants. Developmental Psychobiology, 23, 453477.CrossRefGoogle ScholarPubMed
Hayne, H. (2004). Infant memory development: Implications for childhood amnesia. Developmental Review, 24, 3373.CrossRefGoogle Scholar
Hayne, H. (2006). Age-related changes in infant memory retrieval: Implications for knowledge acquisition. In Munakata, Y. & Johnson, M. H. (Eds.), Processes of change in brain and cognitive development: Attention and performance XXI (pp. 209231). New York, NY: Oxford University Press.Google Scholar
Hayne, H., Barr, R., & Herbert, J. (2003). The effect of prior practice on memory reactivation and generalization. Child Development, 74, 16151627.CrossRefGoogle ScholarPubMed
Hayne, H., Boniface, J., & Barr, R. (2000). The development of declarative memory in human infants: Age-related changes in deferred imitation. Behavioral Neuroscience, 114, 7783.CrossRefGoogle ScholarPubMed
Hayne, H., & Findlay, N. (1995). Contextual control of memory retrieval in infancy: Evidence for associative priming. Infant Behavior and Development, 18, 195207.CrossRefGoogle Scholar
Hayne, H., Greco, C., Earley, L. A., Griesler, P. C., & Rovee-Collier, C. (1986). Ontogeny of early event memory II: Encoding and retrieval by 2- and 3-month-olds. Infant Behavior and Development, 9, 461472.CrossRefGoogle Scholar
Hayne, H., Gross, J., Hildreth, K., & Rovee-Collier, C. (2000). Repeated reminders increase the speed of memory retrieval by 3-month-old infants. Developmental Science, 3, 312318.CrossRefGoogle Scholar
Hayne, H., & Herbert, H. (2004). Verbal cues facilitate memory retrieval during infancy. Journal of Experimental Child Psychology, 89, 127139.CrossRefGoogle ScholarPubMed
Hayne, H., Herbert, J., & Simcock, G. (2003). Imitation from television by 24- and 30-month-olds. Developmental Science, 6, 254261.CrossRefGoogle Scholar
Hayne, H., & Jack, F. (2011). Childhood amnesia. Wiley Interdisciplinary Reviews in Cognitive Science, 2, 136145.CrossRefGoogle ScholarPubMed
Hayne, H., Jaeger, K., Sonne, T., & Gross, J. (2016). Visual attention to meaningful stimuli by 1- to 3-year-olds: Implications for the measurement of memory. Developmental Psychobiology, 58, 808816.CrossRefGoogle Scholar
Hayne, H., MacDonald, S., & Barr, R. (1997). Developmental changes in the specificity of memory over the second year of life. Infant Behavior and Development, 20, 237249.Google Scholar
Hayne, H., Rovee-Collier, C., & Borza, M. A. (1991). Infant memory for place information. Memory and Cognition, 19, 378386.CrossRefGoogle ScholarPubMed
Herbert, J., Gross, J., & Hayne, H. (2007). Crawling is associated with more flexible memory retrieval by 9-month-old infants. Developmental Science, 10, 183189.CrossRefGoogle ScholarPubMed
Herbert, J., & Hayne, H. (2000a). Memory retrieval by 18–30-month-olds: Age-related changes in representational flexibility. Developmental Psychology, 36, 473484.CrossRefGoogle ScholarPubMed
Herbert, J., (2000b). The ontogeny of long-term retention during the second year of life. Developmental Science, 3, 5056.CrossRefGoogle Scholar
Hill, W. H., Borovsky, D., & Rovee-Collier, C. (1988). Continuities in infant memory development over the first half-year. Developmental Psychobiology, 21, 4362.CrossRefGoogle Scholar
Hunter, M., & Ames, E. (1988). A multifactor model of infant preferences for novel and familiar stimuli. In Rovee-Collier, C. & Lipsitt, L. P. (Eds.), Advances in infancy research (Vol. 5, pp. 6995). Norwood, NJ: Ablex.Google Scholar
Imuta, K., Scarf, D., & Hayne, H. (2013). The effect of verbal reminders on memory reactivation in 2-, 3-, and 4-year-old children. Developmental Psychology, 49, 10561065.CrossRefGoogle ScholarPubMed
Jack, F., MacDonald, S., Reese, E., & Hayne, H. (2009). Maternal reminiscing style during early childhood predicts the age of adolescents’ earliest memories. Child Development, 80, 496505.CrossRefGoogle ScholarPubMed
Jack, F., Simcock, G., & Hayne, H. (2011). Magic memories: Young children’s verbal recall after a 6-year delay. Child Development, 83, 159172.CrossRefGoogle ScholarPubMed
Klein, P. J., & Meltzoff, A. N. (1999). Long-term memory, forgetting, and deferred imitation in 12-month-old infants. Developmental Science, 2, 102113.CrossRefGoogle ScholarPubMed
Lavenex, P., & Lavenex, P. B. (2013). Building hippocampal circuits to learn and remember: insights into the development of human memory. Behavioral Brain Research, 254, 821.CrossRefGoogle ScholarPubMed
MacDonald, S., Uesiliana, K., & Hayne, H. (2000). Cross-cultural and gender differences in childhood amnesia. Memory, 8, 365376.CrossRefGoogle ScholarPubMed
McDonough, L., Mandler, J. M., McKee, R. D., & Squire, L. R. (1995). The deferred imitation task as a nonverbal measure of declarative memory. Proceedings of the National Academy of Science, 92, 75807584.CrossRefGoogle ScholarPubMed
McKee, R. D., & Squire, L. R. (1993). On the development of declarative memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 19, 397404.Google ScholarPubMed
Meltzoff, A. N. (1995). What infant memory tells us about infantile amnesia: Long-term recall and deferred imitation. Journal of Experimental Child Psychology, 59, 497515.CrossRefGoogle ScholarPubMed
Morgan, K., & Hayne, H. (2006a). Age-related changes in memory reactivation by 1- and 2-year-old human infants. Developmental Psychobiology, 48, 4857.CrossRefGoogle ScholarPubMed
Morgan, K., (2006b). The effect of encoding time on retention by infants and young children. Infant Behavior & Development, 29, 599602.CrossRefGoogle ScholarPubMed
Morgan, K., (2007). Nonspecific verbal cues alleviate forgetting by young children. Developmental Science, 10, 727733.Google ScholarPubMed
Morgan, K., (2011). Age-related changes in visual recognition memory during infancy and early childhood. Developmental Psychobiology, 53, 157165.CrossRefGoogle ScholarPubMed
Morris, G., & Baker-Ward, L. (2007). Fragile but real: Children’s capacity to use newly acquired words to convey preverbal memories. Child Development, 78, 448458.CrossRefGoogle ScholarPubMed
Morrison, C. M., & Conway, M. A. (2009, July). First words and first memories. Paper presented at the 8th Biennial Meeting of the Society for Applied Research in Memory and Cognition, Kyoto, Japan.Google Scholar
Mullen, M. K. (1994). Earliest recollections of childhood: A demographic analysis. Cognition, 52, 5579.Google ScholarPubMed
Nelson, C. A. (2000). Neural plasticity and human development: The role of early experience sculpting memory systems. Developmental Science, 3, 115130.CrossRefGoogle Scholar
Nielsen, M., Haun, D., Kärtner, J., & Legare, C. H. (2017). The persistent sampling bias in developmental psychology: a call to action. Journal of Experimental Child Psychology, 162, 3138.CrossRefGoogle ScholarPubMed
Noble, K. G., Engelhardt, L. E., Brito, N. H., Mack, L. J., Nail, E. J., Angal, J., … Elliott, A. J. (2015). Socioeconomic disparities in neurocognitive development in the first two years of life. Developmental Psychobiology, 57, 535551.CrossRefGoogle ScholarPubMed
Otto, B. (2018). Language development of infants and toddlers. In Otto, B., Language development in early childhood education (5th ed., pp. 111113). New York, NY: Pearson.Google Scholar
Pascalis, O., de Schonen, S., Morton, J., Deruelle, C., & Fabre-Grenet, M. (1995). Mother’s face recognition by neonates: A replication and an extension. Infant Behavior and Development, 18, 7985.CrossRefGoogle Scholar
Peterson, C., Grant, V., & Boland, L. (2005). Childhood amnesia in children and adolescents: Their earliest memories. Memory, 13, 622637.CrossRefGoogle ScholarPubMed
Peterson, C., Warren, K. L., & Short, M. M. (2011). Infantile amnesia across the years: A 2-year follow-up of children’s earliest memories. Child Development, 82, 10921105.CrossRefGoogle ScholarPubMed
Pillemer, D. B., Picariello, M. L., & Pruett, J. C. (1994). Very long-term memories of a salient preschool event. Applied Cognitive Psychology, 8, 95106.CrossRefGoogle Scholar
Reardon, S. F. (2011). The widening academic-achievement gap between the rich and the poor: New evidence and possible explanations. In Duncan, G. J & Murnane, R. J. (Eds.), Whither opportunity?: Rising inequality, schools, and children’s life chances (pp. 91116). New York, NY: Russell Sage Foundation.Google Scholar
Reese, E., Haden, C. A., & Fivush, R. (1993). Mother–child conversations about the past: Relationships of style and memory over time. Cognitive Development, 8, 403430.CrossRefGoogle Scholar
Reese, E., Hayne, H., & MacDonald, S. (2008). Looking back to the future: Māori and Pakeha mother–child birth stories. Child Development, 79, 114125.CrossRefGoogle ScholarPubMed
Reese, E., Jack, F., & White, N. (2010). Origins of adolescents’ autobiographical memories. Child Development, 25, 352367.Google Scholar
Reynolds, G. (2015). Infant visual attention and object recognition. Behavioral Brain Research, 285, 3443.CrossRefGoogle ScholarPubMed
Richmond, J., Colombo, M., & Hayne, H. (2007). Interpreting visual preferences in the visual paired-comparison task. Journal of Experimental Psychology: Learning, Memory, and Cognition, 33, 823831.Google ScholarPubMed
Richmond, J., & Nelson, C. A. (2007). Accounting for change in declarative memory: A cognitive neuroscience perspective. Developmental Review, 27, 349373.CrossRefGoogle ScholarPubMed
Richmond, J., Sowerby, P., Colombo, M., & Hayne, H. (2004). The effect of familiarization time, retention interval, and context change on adult’s performance in the visual paired-comparison task. Developmental Psychobiology, 44, 146155.CrossRefGoogle Scholar
Riggins, T., Cheatham, C. L., Stark, E., & Bauer, P. J. (2013). Elirefd imitation performance at 20 months predicts memory abilities in school-aged children. Journal of Cognition and Development, 14, 593606.CrossRefGoogle Scholar
Robinson, A. J., & Pascalis, O. (2004). Development of flexible visual recognition memory in human infants. Developmental Science, 7, 527533.CrossRefGoogle ScholarPubMed
Rose, S. A., Gottfried, A. W., Melloy-Carminar, P., & Bridger, W. H. (1982). Familiarity and novelty preferences in infant recognition memory: Implications for information processing. Developmental Psychology, 18, 704713.CrossRefGoogle Scholar
Rovee-Collier, C., & Cuevas, K. (2009). Multiple memory systems are unnecessary to account for infant memory development: An ecological model. Developmental Psychology, 45, 160174.CrossRefGoogle Scholar
Rovee-Collier, C., Griesler, P., & Earley, L. (1985). Contextual determinants of retrieval in three-month-old infants. Learning and Motivation, 16, 139157.CrossRefGoogle Scholar
Rovee-Collier, C., & Hayne, H. (1987). Reactivation of infant memory: Implications for cognitive development. In Reese, H. W. (Ed.), Advances in child development and behavior (Vol. 20, pp. 185238). New York, NY: Academic Press.Google Scholar
Rovee-Collier, C., Patterson, J., & Hayne, H. (1985). Specificity in the reactivation of infant memory. Developmental Psychobiology, 18, 559574.CrossRefGoogle ScholarPubMed
Rovee-Collier, C., Sullivan, M., Enright, M., Lucas, D., & Fagen, J. W. (1980). Reactivation of infant memory. Science, 208, 11591161.CrossRefGoogle ScholarPubMed
Seehagen, S., Konrad, C., Herbert, J. S., & Schneider, S. (2015). Timely sleep facilitates declarative memory consolidation in infants. PNAS, 112, 16251629.CrossRefGoogle ScholarPubMed
Seehagen, S., Zmyj, N., & Herbert, J. S. (2019). Remembering in the context of internal states: The role of sleep for infant memory. Child Development Perspectives, 13, 110115.CrossRefGoogle Scholar
Simcock, G., & DeLoache, J. S. (2008). The effect of repetition on infants’ imitation from picture books. Infancy, 13, 687697.CrossRefGoogle Scholar
Simcock, G., & Hayne, H. (2002). Breaking the barrier: Children do not translate their preverbal memories into language. Psychological Science, 13, 225231.CrossRefGoogle Scholar
Sokolov, E. N. (1963). Perception and the conditioned reflex. New York, NY: Macmillan.Google Scholar
Spear, N. E., & Parsons, P. J. (1976). Analysis of a reactivation treatment: Ontogenetic determinants of alleviated forgetting. In Medin, D. L., Roberts, W. A., & Davis, R. T., (Eds.), Process of animal memory (pp. 135165). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Squire, L. R. (1992). Memory and the hippocampus: A synthesis from findings with rats, monkeys, and humans. Psychological Review, 99(2), 195231.CrossRefGoogle ScholarPubMed
Sylva, K., Melhuish, E., Sammons, P., Siraj-Blatchford, I., & Taggart, B. (2010). Early childhood matters: Evidence from the effective pre-school and primary education project. London: RoutledgeCrossRefGoogle Scholar
Tulving, E., & Thomson, D. M. (1973). Encoding specificity and retrieval processes in episodic memory. Psychological Review, 80, 352373.CrossRefGoogle Scholar
Tustin, K., & Hayne, H. (2010). Defining the boundary: Age-related changes in childhood amnesia. Developmental Psychology, 46, 10491061.CrossRefGoogle ScholarPubMed
Waldfogel, S. (1948). The frequency and affective character of childhood memories. Psychological Monographs, 62, 139.CrossRefGoogle Scholar
Wang, Q. (2003). Infantile amnesia reconsidered: A cross-cultural analysis. Memory, 11, 6580.CrossRefGoogle ScholarPubMed
Wang, Q. (2006a). Earliest recollections of self and others in European American and Taiwanese young adults. Psychological Science, 17, 708714.CrossRefGoogle ScholarPubMed
Wang, Q. (2006b). Relations of maternal style and child self-concept to autobiographical memories in Chinese, Chinese immigrant, and European American 3-year-olds. Child Development, 77, 17941809.CrossRefGoogle ScholarPubMed
Wang, Q., Conway, M., & Hou, Y. (2004). Infantile amnesia: A cross-cultural investigation. Cognitive Sciences, 1, 123135.Google Scholar
World Health Organization (n.d.). The global strategy for women’s, children’s and adolescents’ health (2016–2030). Geneva. Retrieved from www.who.int/life-course/partners/global-strategy/en.Google Scholar
Zack, E., Barr, R., Gerhardstein, P., Dickerson, K., & Meltzoff, A. N. (2009). Infant imitation from television using novel touch-screen technology. British Journal of Developmental Psychology, 27, 1326.CrossRefGoogle ScholarPubMed
Anderson, E., Hespos, S. J., & Rips, L. (2018). Five-month-old infants have expectations for the accumulation of nonsolid substances. Cognition, 175, 110. https://doi.org/10.1016/j.cognition.2018.02.009CrossRefGoogle ScholarPubMed
Baillargeon, R., & DeVos, J. (1991). Object permanence in young infants: Further evidence. Child Development, 62(6), 12271246.CrossRefGoogle ScholarPubMed
Baillargeon, R., Needham, A., & DeVos, J. (1993). The development of young infants’ intuitions about support. Infant and Child Development, 1(2), 6978.Google Scholar
Baillargeon, R., Stavans, M., Wu, D., Gertner, R., Setoh, P., Kittredge, A. K., & Bernard, A. (2012). Object individuation and physical reasoning in infancy: An integrative account. Language Learning and Development, 8, 446.CrossRefGoogle Scholar
Bourgeois, K. S., Khawar, A. W., Neal, A., & Lockman, J. (2005). Infant manual exploration of objects, surfaces, and their interrelations, Infancy, 8, 233252,CrossRefGoogle Scholar
Bowerman, M. (1996). Learning how to structure space for language: A crosslinguistic perspective. In Bloom, P., Peterson, M. A., Nadel, L., & Garrett, M. F. (Eds.), Language and space (pp. 385436). Cambridge, MA: MIT Press.Google Scholar
Bowerman, M., & Choi, S. (2003). Space under construction: Language-specific spatial categorization in first language acquisition. In Gentner, D. & Goldin-Meadow, S. (Eds.), Language in mind (pp. 387428). Cambridge, MA: MIT Press.Google Scholar
Casasola, M. Bhagwat, J., Doan, S. N., & Love, H. (2017). Getting some space: Infants’ and caregivers’ containment and support spatial constructions during play. Journal of Experimental Child Psychology, 159, 110128.CrossRefGoogle ScholarPubMed
Casasola, M., & Cohen, L. (2002). Infant categorization of containment, support, and tight-fit spatial relationships. Developmental Science, 5(2), 247264.CrossRefGoogle Scholar
Cheries, E. W., Mitroff, S. R., Wynn, K., & Scholl, B. J. (2008). Cohesion as a constraint on object persistence in infancy. Developmental Science, 11, 427432.CrossRefGoogle ScholarPubMed
Chiang, W. C., & Wynn, K. (2000). Infants’ tracking of objects and collections. Cognition, 77, 169195.CrossRefGoogle ScholarPubMed
Choi, S., & Bowerman, M. (1991). Learning to express motion events in English and Korean: The influence of language-specific lexicalization patterns. Cognition, 41(13), 83121.CrossRefGoogle ScholarPubMed
Choi, S., McDonough, L., Bowerman, M., & Mandler, J. M. (1999). Early sensitivity to language-specific spatial categories in English and Korean. Cognitive Development, 14(2), 241268.Google Scholar
Gentner, D., & Bowerman, M. (2009). Why some spatial semantic categories are harder to learn than others: The typological prevalence hypothesis. In Guo, J., Lieven, E., Ervin-Tripp, S., Budwig, N., Özçaliskan, S., & Nakamura, K. (Eds.). Crosslinguistic approaches to the psychology of language: Research in the tradition of Dan Isaac Slobin (pp. 465480). New York, NY: Lawrence Erlbaum Associates.Google Scholar
Hespos, S. J., & Baillargeon, R. (2001a). Infants’ knowledge about occlusion and containment: A surprising discrepancy. Psychological Science, 12(2), 141147.CrossRefGoogle ScholarPubMed
Hespos, S. J., (2001b). Reasoning about containment events in very young infants. Cognition, 78, 207245.CrossRefGoogle ScholarPubMed
Hespos, S. J., (2006). Decalage in infants’ reasoning about occlusion and containment events: Converging evidence from action tasks. Cognition, 99, B31B41.CrossRefGoogle ScholarPubMed
Hespos, S. J., (2008). Young infants’ actions reveal their developing knowledge of support variables: Converging evidence for violation-of-expectation findings. Cognition, 107(1), 304316.CrossRefGoogle ScholarPubMed
Hespos, S. J., Ferry, A., Anderson, E., Hollenbeck, E., & Rips, L. (2016). Five-month-old infants have expectations about how substances behave and interact. Psychological Science, 27(2), 244256. https://doi.org/10.1177/0956797615617897CrossRefGoogle Scholar
Hespos, S. J., Ferry, A., & Rips, L. (2009). Five-month-old infants have different expectations for solids and liquids. Psychological Science, 20(5), 603611.CrossRefGoogle ScholarPubMed
Hespos, S. J., & Spelke, E. S. (2004). Conceptual precursors to spatial language. Nature, 430, 453456.CrossRefGoogle Scholar
Hespos, S. J., & vanMarle, K. (2012). Physics for infants: Characterizing the origins of knowledge about objects, substances, and number. Wiley Interdisciplinary Reviews: Cognitive Science, 3(1), 1927.Google ScholarPubMed
Higgins, C., Campos, J., & Kermoian, R. (1996). Effects of self-produced locomotion on infant postural compensation to optic flow. Developmental Psychology, 32, 836841.CrossRefGoogle Scholar
Huntley-Fenner, G., Carey, S., & Solimando, A. (2002). Objects are individuals but stuff doesn’t count: Perceived rigidity and cohesiveness influence infants’ representations of small groups of discrete entities. Cognition, 85, 203221.CrossRefGoogle ScholarPubMed
Imai, M., & Mazuka, R. (2007). Language-relative construal of individuation constrained by universal ontology: Revisiting language universals and linguistic relativity. Cognitive Science: A Multidisciplinary Journal, 31(3), 385413.CrossRefGoogle ScholarPubMed
Izard, V., Sann, C., Spelke, E. S., & Streri, A. (2009). Newborn infants perceive abstract numbers. Proceedings of the National Academy of Sciences of the United States of America, 106(25), 1038210385.CrossRefGoogle ScholarPubMed
Jordan, K. E., Brannon, E. M., Logothetis, N. K., & Ghazanfar, A. A. (2005). Monkeys match the number of voices they hear to the number of faces they see. Current Biology, 15(11), 10341038.CrossRefGoogle ScholarPubMed
Kourtzi, Z., & Kanwisher, N. (2001). Representation of the perceived object shape by the human lateral occipital complex. Science, 293(5534), 15061509.CrossRefGoogle ScholarPubMed
Lipton, J. S., & Spelke, E. S. (2003). Origins of number sense. Large-number discrimination in human infants. Psychological Science, 14, 396401.CrossRefGoogle ScholarPubMed
Lloyd-Fox, S., Blasi, A., McCann, S., Rozhiko, M., Katus, L., Mason, L., … Elwell, C. E. (2019). Habituation and novelty detection fNIRS brain responses in 5- and 8-month-old infants: The Gambia and UK. Developmental Science, 22(5), e12817. doi: 10.1111/desc.12817CrossRefGoogle ScholarPubMed
Needham, A., & Baillargeon, R. (1993). Intuitions about support in 4.5-month-old infants. Cognition, 47, 121148.CrossRefGoogle ScholarPubMed
Oakes, L. M., (2017). Sample size, statistical power, and false conclusions in infant looking-time research. Infancy, 22, 436469.CrossRefGoogle ScholarPubMed
Piaget, J. (1952). The origins of intelligence in children. New York, NY: W. W Norton & Co.CrossRefGoogle Scholar
Piaget, J. (1954). The construction of reality in the child. New York, NY: Basic Books.CrossRefGoogle Scholar
Rips, L. J., & Hespos, S. J. (2015). Mental divisions of the physical world: Objects and substances. Psychological Bulletin, 141(4), 786811.CrossRefGoogle Scholar
Rochat, P. (1992). Self-sitting and reaching in 5- to 8-month-old infants: The impact of posture and its development on early eye–hand coordination. Journal of Motor Behavior, 24(2), 210220.CrossRefGoogle ScholarPubMed
Rosenberg, R. D., & Carey, S. (2009). Infants’ representations of material entities. In Hood, B. M. & Santos, L. R. (Eds.), The origins of object knowledge (pp. 165188). Oxford: Oxford University Press.CrossRefGoogle Scholar
Slone, L. K., Moore, D. S., & Johnson, S. P. (2018) Object exploration facilitates 4-month-olds’ mental rotation performance. PLoS ONE 13(8), e0200468.CrossRefGoogle ScholarPubMed
Sommerville, J. A., Woodward, A. L., & Needham, A. (2005). Action experience alters 3-month-old infants’ perception of others’ actions. Cognition, 96(1), B1B11.CrossRefGoogle ScholarPubMed
Soska, K. C., & Adolph, K. E. (2014). Postural position constrains multimodal object exploration in infants. Infancy, 19(2), 138161.CrossRefGoogle ScholarPubMed
Spelke, E. S. (1990). Principles of object perception. Cognitive Science, 14(1), 2956.CrossRefGoogle Scholar
Spelke, E. S., Breinlinger, K., Macomber, J., & Jacobson, K. (1992). Origins of knowledge. Psychological Review, 99(4), 605632.CrossRefGoogle ScholarPubMed
Spelke, E. S., & Kinzler, K. D. (2007). Core knowledge. Developmental Science, 10(1), 8996. doi: 10.1111/j.1467-7687.2007.00569.xCrossRefGoogle ScholarPubMed
Stahl, A. E., & Feigenson, L. (2015). Observing the unexpected enhances infants’ learning and exploration. Science, 348(6230), 9194.CrossRefGoogle ScholarPubMed
Wang, S., Baillargeon, B., & Paterson, S. (2005). Detecting continuity violations in infancy: a new account and new evidence from covering and tube events. Cognition, 95(2), 129173.CrossRefGoogle ScholarPubMed
Aldridge, M. A., Stillman, R. D., & Bower, T. G. R. (2001). Newborn categorization of vowel-like sounds. Developmental Science, 4, 220232.CrossRefGoogle Scholar
Althaus, N., & Westermann, G. (2016). Labels constructively shape object categories in 10-month-old infants. Journal of Experimental Child Psychology, 151, 517.CrossRefGoogle ScholarPubMed
Arterberry, M. E., & Bornstein, M. H. (2012). Categorization of real and replica objects by 14- and 18-month-old infants. Infant Behavior and Development, 35, 606612.CrossRefGoogle ScholarPubMed
Balaban, M. T., & Waxman, S. R. (1997). Do words facilitate object categorization in 9-month-old infants? Journal of Experimental Child Psychology, 64, 326.CrossRefGoogle ScholarPubMed
Behl-Chadha, G. (1996). Basic-level and superordinate-like categorical representations in early infancy. Cognition, 60, 105141.CrossRefGoogle ScholarPubMed
Bertoncini, J., Bijeljac-Babic, R., Jusczyk, P. W., Kennedy, L. J., & Mehler, J. (1988). An investigation of young infants’ perceptual representations of speech sounds. Journal of Experimental Psychology: General, 117, 2133.CrossRefGoogle ScholarPubMed
Booth, A. E., Schuler, K., & Zajicek, R. (2010). Specifying the role of function in infant categorization. Infant Behavior and Development, 33, 672684.CrossRefGoogle ScholarPubMed
Bornstein, M. H., Arterberry, M. E., Mash, C., & Manian, N. (2010). Discrimination of facial expression by 5-month-old infants of nondepressed and clinically depressed mothers. Infant Behavior and Development, 34, 100106.CrossRefGoogle ScholarPubMed
Brown, A. M. (1990). Development of visual sensitivity to light and color vision in human infants: A critical review. Vision Research, 30, 11591188.CrossRefGoogle ScholarPubMed
Bruner, J., Goodnow, J., & Austin, G. (1956). A study of thinking. New York, NY: Wiley.Google Scholar
Byers-Heinlein, K. (2017). Bilingualism affects 9-month-old infants’ expectations about how words refer to kinds. Developmental Science, 20, e12486.CrossRefGoogle ScholarPubMed
Casasola, M., & Cohen, L. B. (2002). Infant categorization of containment, support and tight-fit spatial relationships. Developmental Science, 5, 247264.CrossRefGoogle Scholar
Clifford, A., Franklin, A., Davies, I. R. L., & Holmes, A. (2009). Electrophysiological markers of categorical perception of color in 7-month-old infants. Brain and Cognition, 71, 165172.CrossRefGoogle ScholarPubMed
Cohen, L. B., DeLoache, J. S., & Rissman, M. W. (1975). The effect of stimulus complexity on infant visual attention and habituation. Child Development, 46, 611617.CrossRefGoogle ScholarPubMed
Cohen, L. B., & Gelber, E. R. (1975). Infant visual memory. In Cohen, L. B. & Salapatek, P. (Eds.), Infant perception: From sensation to cognition. Volume I: Basic visual Processes (pp. 347404). New York, NY: Academic Press.CrossRefGoogle Scholar
Cohen, L. B., & Strauss, M. S. (1979). Concept acquisition in the human infant. Child Development, 50, 419424.CrossRefGoogle ScholarPubMed
Comishen, K. J., Bialystok, E., & Adler, S. A. (2019). The impact of bilingual environments on selective attention in infancy. Developmental Science, 22(4), e12797.CrossRefGoogle ScholarPubMed
de Haan, M., Johnson, M. H., Maurer, D., & Perrett, D. I. (2001). Recognition of individual faces and average face prototypes by 1- and 3-month-old infants. Cognitive Development, 16, 659678.CrossRefGoogle Scholar
DeCasper, A. J., & Spence, M. J. (1986). Prenatal maternal speech influences newborns’ perception of speech sounds. Infant Behavior and Development, 9, 133150.CrossRefGoogle Scholar
Deng, W. S., & Sloutsky, V. M. (2015). Linguistic labels, dynamic visual features, and attention in infant category learning. Journal of Experimental Child Psychology, 134, 6277.CrossRefGoogle ScholarPubMed
Dixon, K. C., Reynolds, G. D., Romano, A. C., Roth, K. C., Stumpe, A. L., Guy, M. W., & Mosteller, S. M. (2017). Neural correlates of individuation and categorization of other-species faces in infancy. Neuropsychologia, 18, 126127.Google Scholar
Eimas, P. D., & Quinn, P. C. (1994). Studies on the formation of perceptually based basic-level categories in young infants. Child Development, 65, 903917.CrossRefGoogle ScholarPubMed
Eimas, P. D., Siqueland, E. R., Jusczyk, P., & Vigorito, J. (1971). Speech perception in infants. Science, 171, 303306.CrossRefGoogle ScholarPubMed
Elman, J. L. (1993). Learning and development in neural networks: The importance of starting small. Cognitive Psychology, 48, 7199.Google ScholarPubMed
Fenson, L., Dale, P. S., Reznick, J. S., Bates, E., Thal, D. J., Pethick, S. J., … Stiles, J. (1994). Variability in early communicative development. Monographs of the Society for Research in Child Development, 59, i.CrossRefGoogle ScholarPubMed
Ferguson, B., & Waxman, S. R. (2017). Linking language & categorization in infancy. Journal of Child Language, 44(3), 527552.CrossRefGoogle ScholarPubMed
Ferguson, K. T., & Casasola, M. (2015). Are you an animal too? US and Malawian infants’ categorization of plastic and wooden animal replicas. Infancy, 20, 189207.CrossRefGoogle Scholar
Ferry, A. L., Hespos, S. J., & Waxman, S. R. (2010). Categorization in 3- and 4-month-old infants: An advantage of words over tones. Child Development, 81, 472479.CrossRefGoogle ScholarPubMed
Ferry, A. L., Hespos, S. J., (2013). Nonhuman primate vocalizations support categorization in very young human infants. Proceedings of the National Academy of Sciences of the United States of America, 110, 1523115235.CrossRefGoogle ScholarPubMed
French, R. M., Mermillod, M., Quinn, P. C., Chauvin, A., & Mareschal, D. (2002). The importance of starting blurry: Simulating improved basic-level category learning in infants due to weak visual acuity. In Proceedings of the 24th Annual Conference of the Cognitive Science Society (pp. 322327). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
Fulkerson, A. L., & Waxman, S. R. (2007). Words (but not tones) facilitate object categorization: Evidence from 6- and 12-month-olds. Cognition, 105, 218228.CrossRefGoogle ScholarPubMed
Gelman, R. (1978). Cognitive development. Annual Review of Psychology, 29, 297332.CrossRefGoogle ScholarPubMed
Gervain, J. (2015). Plasticity in early language acquisition: The effects of prenatal and early childhood experience. Current Opinion in Neurobiology, 35, 1320.CrossRefGoogle ScholarPubMed
Gliozzi, V., Mayor, J., Hu, J. F., & Plunkett, K. (2009). Labels as features (not names) for infant categorization: A neurocomputational approach. Cognitive Science: A Multidisciplinary Journal, 33, 709738.CrossRefGoogle ScholarPubMed
Goldstone, R. L., Kersten, A., & Carvalho, P. F. (2018). Concepts and categorization. In Wixted, J. T. & Thompson-Schill, S. (Eds.), Steven’s handbook of experimental psychology, Language and thought (4th ed., pp. 607630). New York, NY: Wiley & Sons.Google Scholar
Goldwater, M. B., Brunt, R. J., & Echols, C. H. (2018). Speech facilitates the categorization of motions in 9-month-old infants. Frontiers in Psychology, 9, 113.CrossRefGoogle ScholarPubMed
Graham, S. A., Kilbreath, C. S., & Welder, A. N. (2004). Thirteen-month-olds rely on shared labels and shape similarity for inductive inferences. Child Development, 75, 409427.CrossRefGoogle ScholarPubMed
Greco, C., Hayne, H., & Rovee-Collier, C. (1990). Roles of function, reminding, and variability in categorization by 3-month-old infants. Journal of Experimental Psychology: Learning Memory and Cognition, 16, 617633.Google ScholarPubMed
Groba, A., de Houwer, A., Obrig, H., Rossi, S., Groba, A., de Houwer, A., … Rossi, S. (2019). Bilingual and monolingual first language acquisition experience differentially shapes children’s property term learning: Evidence from behavioral and neurophysiological measures. Brain Sciences, 9, 40.CrossRefGoogle ScholarPubMed
Grossmann, T., Gliga, T., Johnson, M. H., & Mareschal, D. (2009). The neural basis of perceptual category learning in human infants. Journal of Cognitive Neuroscience, 21, 2276–86.CrossRefGoogle ScholarPubMed
Hayne, H., Rovee-Collier, C., & Perris, E. E. (1987). Categorization and memory retrieval by three-month-olds. Memory, 58, 750767.Google ScholarPubMed
Homa, D., & Vosburgh, R. (1976). Category breadth and the abstraction of prototypical information. Journal of Experimental Psychology: Human Perception and Performance, 2, 322330.Google Scholar
Horst, J. S., Oakes, L. M., & Madole, K. L. (2005). What does it look like and what can it do? Category structure influences how infants categorize. Child Development, 76, 614631.CrossRefGoogle ScholarPubMed
Huth, A. G., Nishimoto, S., Vu, A. T., & Gallant, J. L. (2012). A continuous semantic space describes the representation of thousands of object and action categories across the human brain. Neuron, 76, 12101224.CrossRefGoogle ScholarPubMed
Johnson, S. P. (2011). Development of visual perception. Wiley Interdisciplinary Reviews: Cognitive Science, 2, 515528.Google ScholarPubMed
Kandhadai, P., Hall, D. G., & Werker, J. F. (2017). Second label learning in bilingual and monolingual infants. Developmental Science, 20, e12429.CrossRefGoogle ScholarPubMed
Kelly, D. J., Quinn, P. C., Slater, A. M., Lee, K., Ge, L., & Pascalis, O. (2007). The other-race effect develops during infancy. Psychological Science, 18, 1084.CrossRefGoogle ScholarPubMed
Kestenbaum, R., & Nelson, C. A. (1990). The recognition and categorization of upright and inverted emotional expressions by 7-month-old infants. Infant Behavior and Development, 13, 497511.CrossRefGoogle Scholar
Kovack-Lesh, K. A., Horst, J. S., & Oakes, L. M. (2008). The cat is out of the bag: The joint influence of previous experience and looking behavior on infant categorization. Infancy, 13, 285307.CrossRefGoogle Scholar
Kovack-Lesh, K. A., & Oakes, L. M. (2007). Hold your horses: How exposure to different items influences infant categorization. Journal of Experimental Child Psychology, 98, 6993.CrossRefGoogle ScholarPubMed
Kroll, J. F., & Dussias, P. E. (2017). The benefits of multilingualism to the personal and professional development of residents of the US. Foreign Language Annals, 50, 248259.CrossRefGoogle ScholarPubMed
Libertus, K., & Needham, A. W. (2010). Teach to reach: The effects of active vs. passive reaching experiences on action and perception. Vision Research, 50, 27502757.CrossRefGoogle ScholarPubMed
Libertus, K., (2014). Encouragement is nothing without control: Factors influencing the development of reaching and face preference. Journal of Motor Learning and Development, 2, 1627.CrossRefGoogle Scholar
Luck, S. J. (2014). An introduction to the event-related potential technique (2nd ed.). Cambridge, MA: MIT Press.Google Scholar
Luck, S. J., & Gaspelin, N. (2017). How to get statistically significant effects in any ERP experiment (and why you shouldn’t). Psychophysiology, 54(1), 146157.CrossRefGoogle ScholarPubMed
Luck, S. J., & Kappenman, E. S. (Eds.). (2011). The Oxford handbook of event-related potential components. New York, NY: Oxford University Press.Google Scholar
Mack, M. L., Love, B. C., & Preston, A. R. (2016). Dynamic updating of hippocampal object representations reflects new conceptual knowledge. Proceedings of the National Academy of Sciences, 113, 1320313208.Google ScholarPubMed
Mack, M. L., Love, B. C., (2017). Building concepts one episode at a time: The hippocampus and concept formation. Neuroscience Letters, 680, 3138.CrossRefGoogle Scholar
Madole, K. L., Oakes, L. M., & Cohen, L. B. (1993). Developmental changes in infants’ attention to function and form-function correlations. Cognitive Development, 8, 189209.CrossRefGoogle Scholar
Mahon, B. Z. (2015). Missed connections: A connectivity-constrained account of the representation and organization of object concepts. In Margolis, E. & Laurence, S. (Eds.), The conceptual mind: New directions in the study of concepts (pp. 79115). Cambridge, MA: MIT Press.Google Scholar
Mandler, J. M. (2004). The foundations of mind: Origins of conceptual thought. New York, NY: Oxford University Press.Google Scholar
Mandler, J. M., Bauer, P. J., & McDonough, L. (1991). Separating the sheep from the goats: Differentiating global categories. Cognitive Psychology, 23, 263298.CrossRefGoogle Scholar
Mandler, J. M., Fivush, R., & Reznick, J. S. (1987). The development of contextual categories. Cognitive Development, 2, 339354.CrossRefGoogle Scholar
Mandler, J. M., & McDonough, L. (1993). Concept formation in infancy. Cognitive Development, 8, 281318.CrossRefGoogle Scholar
Mandler, J. M., (1998a). On developing a knowledge base in infancy. Developmental Psychology, 34, 12741288.CrossRefGoogle ScholarPubMed
Mandler, J. M., (1998b). Studies in inductive inference in infancy. Cognitive Psychology, 37, 6096.Google ScholarPubMed
Mareschal, D., & Tan, S. H. (2007). Flexible and context-dependent categorization by eighteen-month-olds. Child Development, 78, 1937.CrossRefGoogle ScholarPubMed
Marinović, V., Hoehl, S., & Pauen, S. (2014). Neural correlates of human–animal distinction: An ERP-study on early categorical differentiation with 4- and 7-month-old infants and adults. Neuropsychologia, 60, 6076.CrossRefGoogle ScholarPubMed
Martin, A. (2016). GRAPES – grounding representations in action, perception, and emotion systems: How object properties and categories are represented in the human brain. Psychonomic Bulletin and Review, 23, 979990.CrossRefGoogle ScholarPubMed
Maurer, D., & Werker, J. F. (2014). Perceptual narrowing during infancy: A comparison of language and faces. Developmental Psychobiology, 56, 154178.CrossRefGoogle ScholarPubMed
McDonough, L., & Mandler, J. M. (1998). Inductive generalization in 9- and 11-month-olds. Developmental Science, 1, 227232.CrossRefGoogle Scholar
Medin, D. L., Lynch, E. B., Coley, J. D., & Atran, S. (1997). Categorization and reasoning among tree experts: do all roads lead to Rome? Cognitive Psychology, 32, 4996.CrossRefGoogle ScholarPubMed
Mervis, C. B. (1985). On the existence of prelinguistic categories: A case study. Infant Behavior and Development, 8, 293300.CrossRefGoogle Scholar
Mervis, C. B., & Rosch, E. (1981). Categorization of natural objects. Annual Review of Psychology, 32, 89115.CrossRefGoogle Scholar
Murphy, G. L. (2002). The big book of concepts. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Murphy, G. L. (2010). What are categories and concepts. In Mareschal, D., Quinn, P. C., & Lea, S. (Eds.), The making of human concepts (pp. 1128). Oxford: Oxford University Press.CrossRefGoogle Scholar
Newport, E. L. (1990). Maturational constraints on language learning. Cognitive Science: A Multidisciplinary Journal, 14, 1128.CrossRefGoogle Scholar
Oakes, L. M. (2008). Categorization skills and concepts. In Haith, M. M. & Benson, J. B. (Eds.), Encyclopedia of infant and early childhood development (pp. 249259). San Diego, CA: Academic Press.CrossRefGoogle Scholar
Oakes, L. M., Coppage, D. J., & Dingel, A. (1997). By land or by sea: The role of perceptual similarity in infants’ categorization of animals. Developmental Psychology, 33, 396407.CrossRefGoogle ScholarPubMed
Oakes, L. M., & Kovack-Lesh, K. A. (2007). Memory processes and categorization in infancy. Special Issue: The Development of Categorization, 11, 661677.Google Scholar
Oakes, L. M., (2013). Infants’ visual recognition memory for a series of categorically related items. Journal of Cognition and Development, 14, 6386.CrossRefGoogle Scholar
Oakes, L. M., Madole, K. L., & Cohen, L. B. (1991). Infants’ object examining: Habituation and categorization. Cognitive Development, 6, 377392.CrossRefGoogle Scholar
Oakes, L. M., & Ribar, R. J. (2005). A comparison of infants’ categorization in paired and successive presentation familiarization tasks. Infancy, 7, 8598.CrossRefGoogle Scholar
Pascalis, O., de Haan, M., & Nelson, C. A. (2002). Is face processing species-specific during the first year of life? Science, 296, 13211323.CrossRefGoogle ScholarPubMed
Pascalis, O., Scott, L. S., Kelly, D. J., Shannon, R. W., Nicholson, E., Coleman, M., & Nelson, C. A. (2005). Plasticity of face processing in infancy. PNAS Proceedings of the National Academy of Sciences of the United States of America, 102, 52975300.CrossRefGoogle ScholarPubMed
Peykarjou, S., Wissner, J., & Pauen, S. (2017). Categorical ERP repetition effects for human and furniture items in 7-month-old infants. Infant and Child Development, 26, e2016.CrossRefGoogle Scholar
Piaget, J. (1952). Origins of intelligence in children (Cook, M., Ed.). New York, NY: International Universities Press.CrossRefGoogle Scholar
Plunkett, K., Hu, J. -F., & Cohen, L. B. (2008). Labels can override perceptual categories in early infancy. Cognitive Psychology, 106, 665681.Google ScholarPubMed
Posner, M. I., & Keele, S. W. (1968). On the genesis of abstract ideas. Journal of Experimental Psychology, 77, 353363.CrossRefGoogle ScholarPubMed
Poulin-Dubois, D., Frenkiel-Fishman, S., Samantha, N., & Johnson, S. (2006). Infants’ inductive generalization of bodily, motion, and sensory properties to animals and people. Journal of Cognition and Development, 7, 431453.CrossRefGoogle Scholar
Quinn, P. C., Doran, M. M., Reiss, J. E., & Hoffman, J. E. (2010). Neural markers of subordinate-level categorization in 6- to 7-month-old infants. Developmental Science, 13, 499507.CrossRefGoogle ScholarPubMed
Quinn, P. C., & Eimas, P. D. (1997). A reexamination of the perceptual-to-conceptual shift in mental representations. Review of General Psychology, 1, 171187.CrossRefGoogle Scholar
Quinn, P. C., Eimas, P. D., & Rosenkrantz, S. L. (1993). Evidence for representations of perceptually similar natural categories by 3- and 4-month-old infants. Perception, 22, 463475.CrossRefGoogle ScholarPubMed
Quinn, P. C., & Johnson, M. H. (2000). Global-before-basic object categorization in connectionist networks and 2-month-old infants. Infancy, 1, 3146.CrossRefGoogle ScholarPubMed
Quinn, P. C., Lee, K., Pascalis, O., & Slater, A. M. (2007). In support of an expert-novice difference in the representation of humans versus non-human animals by infants: Generalization from persons to cats occurs only with upright whole images. Cognitie Creier Comportament. Special Issue: The Development of Categorization, 11, 679694.Google Scholar
Quinn, P. C., Slater, A. M., Brown, E., & Hayes, R. A. (2001). Developmental change in form categorization in early infancy. British Journal of Developmental Psychology, 19, 207218.CrossRefGoogle Scholar
Quinn, P. C., Westerlund, A. J., & Nelson, C. A. (2006). Neural markers of categorization in 6-month-old infants. Psychological Science, 17, 5966.CrossRefGoogle ScholarPubMed
Quinn, P. C., Yahr, J., Kuhn, A., Slater, A. M., & Pascalis, O. (2002). Representation of the gender of human faces by infants: A preference for female. Perception, 31, 11091121.CrossRefGoogle ScholarPubMed
Rakison, D. H. (2007). Inductive categorization: A methodology to examine the basis for categorization and induction in infancy. Cognitie Creier Comportament. Special Issue: The Development of Categorization, 11, 773790.Google Scholar
Rakison, D. H., & Butterworth, G. E. (1998). Infants’ use of object parts in early categorization. Developmental Psychology, 34, 4962.CrossRefGoogle ScholarPubMed
Rakison, D. H., & Lupyan, G. (2008). Developing object concepts in infancy: An associative learning perspective. Monographs of the Society for Research in Child Development, 73(7), 1110.Google Scholar
Ramsey, J. L., Langlois, J. H., & Marti, N. C. (2005). Infant categorization of faces: Ladies first. Developmental Review, 25, 212246.CrossRefGoogle Scholar
Rennels, J. L., Juvrud, J., Kayl, A. J., Asperholm, M., Gredeback, G., & Herlitz, A. (2017). Caregiving experience and its relation to perceptual narrowing of face gender. Developmental Psychology, 53, 14371446.CrossRefGoogle ScholarPubMed
Rennels, J. L., & Kayl, A. J. (2017). How experience affects infants’ facial categorization. In Cohen, H. & Lefebvre, C. (Eds.), Handbook of categorization in cognitive science (Vol. 331, pp. 637652). San Diego, CA: Elsevier.CrossRefGoogle Scholar
Rennels, J. L., Kayl, A. J., Langlois, J. H., Davis, R. E., & Orlewicz, M. (2016). Asymmetries in infants’ attention toward and categorization of male faces: The potential role of experience. Journal of Experimental Child Psychology, 142, 137157.CrossRefGoogle Scholar
Ribar, R. J., Oakes, L. M., & Spalding, T. L. (2004). Infants can rapidly form new categorical representations. Psychonomic Bulletin and Review, 11, 536541.CrossRefGoogle ScholarPubMed
Roberts, K. (1988). Retrieval of a basic-level category in prelinguistic infants. Developmental Psychology, 24, 2127.CrossRefGoogle Scholar
Robinson, C. W., & Sloutsky, V. M. (2007). Linguistic label and categorization in infancy: Do labels facilitate or hinder? Infancy, 11, 233253.CrossRefGoogle Scholar
Ross, G. S. (1980). Categorization in 1- to 2-year-olds. Developmental Psychology, 16, 391396.CrossRefGoogle Scholar
Ross, N., Medin, D., Coley, J. D., & Atran, S. (2003). Cultural and experiential differences in the development of folkbiological induction. Cognitive Development, 18, 2547.CrossRefGoogle Scholar
Scott, L. S., & Monesson, A. (2009). The origin of biases in face perception. Psychological Science, 20, 676680.Google ScholarPubMed
Slater, A. M., Mattock, A., & Brown, E. (1990). Size constancy at birth: Newborn infants’ responses to retinal and real size. Journal of Experimental Child Psychology, 322, 314322.CrossRefGoogle Scholar
Slater, A. M., & Morison, V. (1985). Shape constancy and slant perception at birth. Perception, 14, 337344.CrossRefGoogle ScholarPubMed
Sloutsky, V. M., & Deng, W. S. (2017). Categories, concepts, and conceptual development. Language, Cognition and Neuroscience, 34(10), 12841297.CrossRefGoogle ScholarPubMed
Smith, E. E., & Medin, D. L. (1981). Categories and concepts. Cambridge, MA: Harvard University Press.Google Scholar
Smith, J. D., & Minda, J. P. (1998). Prototypes in the mist: The early epochs of category learning. Journal of Experimental Psychology: Learning Memory and Cognition, 24, 14111436.Google Scholar
Smith, L. B., Jones, S. S., & Landau, B. (1996). Naming in young children: A dumb attentional mechanism? Cognitive Psychology, 60, 143171.Google ScholarPubMed
Smith, L. B., Jones, S. S., Landau, B., Gershkoff-Stowe, L., & Samuelson, L. K. (2002). Object name learning provides on-the-job training for attention. Psychological Science, 13, 1319.CrossRefGoogle Scholar
Träuble, B., & Pauen, S. (2007). The role of functional information for infant categorization. Cognition, 105, 362379.Google ScholarPubMed
Turati, C., Simion, F., & Zanon, L. (2003). Newborns’ perceptual categorization for closed and open geometric forms. Infancy, 4, 309325.CrossRefGoogle Scholar
Waxman, S. R., & Braun, I. (2005). Consistent (but not variable) names as invitations to form object categories: New evidence from 12-month-old infants. Cognitive Psychology, 95, B59B68.Google ScholarPubMed
Waxman, S. R., & Markow, D. B. (1995). Words as invitations to form categories: Evidence from 12- to 13-month-old infants. Cognitive Psychology, 29, 257302.CrossRefGoogle ScholarPubMed
Weber, M., Thompson-Schill, S. L., Osherson, D., Haxby, J., & Parsons, L. (2009). Predicting judged similarity of natural categories from their neural representations. Neuropsychologia, 47, 859868.Google ScholarPubMed
Welder, A. N., & Graham, S. A. (2001). The influences of shape similarity and shared labels on infants’ inductive inferences about nonobvious object properties. Child Development, 72, 16531673.CrossRefGoogle Scholar
Westermann, G., & Mareschal, D. (2012). Mechanisms of developmental change in infant categorization. Cognitive Development, 27, 367382.CrossRefGoogle Scholar
Wiesen, S. E., Watkins, R. M., & Needham, A. W. (2016). Active motor training has long-term effects on infants’ object exploration. Frontiers in Psychology, 7, 599.CrossRefGoogle ScholarPubMed
Yoshida, H., & Smith, L. B. (2001). Early noun lexicons in English and Japanese. Cognitive Psychology, 82, B63B74.Google ScholarPubMed
Younger, B. A. (1985). The segregation of items into categories by ten-month-old infants. Child Development, 56, 15741583.CrossRefGoogle ScholarPubMed
Younger, B. A. (1990). Infant categorization: Memory for category-level and specific item information. Journal of Experimental Child Psychology, 50, 131155.CrossRefGoogle ScholarPubMed
Acredolo, L. P. (1978). Development of spatial orientation in infancy. Developmental Psychology, 14(3), 224234.CrossRefGoogle Scholar
Addyman, C., Rocha, S., & Mareschal, D. (2014). Mapping the origins of time: Scalar errors in infant time estimation. Developmental Psychology, 50(8), 20302035CrossRefGoogle ScholarPubMed
Adolph, K. E., & Tamis-LeMonda, C. S. (2014). The costs and benefits of development: The transition from crawling to walking. Child Development Perspectives, 8(4), 187192.CrossRefGoogle ScholarPubMed
Amalric, M., & Dehaene, S. (2016). Origins of the brain networks for advanced mathematics in expert mathematicians. Proceedings of the National Academy of Sciences, 113(18), 49094917.CrossRefGoogle ScholarPubMed
Ansari, D., & Karmiloff-Smith, A. (2002). Atypical trajectories of number development: A neuroconstructivist perspective. Trends in Cognitive Sciences 6, 511516.Google ScholarPubMed
Aslin, R. N., & Newport, E. L. (2012). Statistical learning: From acquiring specific items to forming general rules. Current Directions in Psychological Science, 21, 170176.CrossRefGoogle ScholarPubMed
Balcomb, F., Newcombe, N. S., & Ferrara, K. (2011). Finding where and saying where: Developmental relationships between place learning and language in the first year. Journal of Cognition and Development, 12(3), 315331.CrossRefGoogle Scholar
Barner, D., Brooks, N., & Bale, A. (2011). Accessing the unsaid: The role of scalar alternatives in children’s pragmatic inference. Cognition, 118(1), 8493.CrossRefGoogle ScholarPubMed
Barry, C., & Burgess, N. (2014). Neural mechanisms of self-location. Current Biology, 24(8), R330R339.CrossRefGoogle ScholarPubMed
Berkowitz, T., Schaeffer, M. W., Maloney, E. A., Peterson, L., Gregor, C., Levine, S. C., & Beilock, S. L. (2015). Math at home adds up to achievement in school. Science, 350(6257), 196198.CrossRefGoogle Scholar
Brannon, E. M., Lutz, D., & Cordes, S. (2006). The development of area discrimination and its implications for numerical abilities in infancy. Development Science, 9(6), F59F64.CrossRefGoogle Scholar
Brannon, E. M., Suanda, S., & Libertus, K., (2007). Temporal discrimination increases in precision over development and parallels the development of numerosity discrimination. Developmental Science, 10(6), 770777.CrossRefGoogle ScholarPubMed
Bremner, J. G., & Bryant, P. E. (1977). Place versus response as the basis of spatial errors made by young infants. Journal of Experimental Child Psychology, 23(1), 162171.CrossRefGoogle ScholarPubMed
Brown, A. A., Spetch, M. L., & Hurd, P. L. (2007). Growing in circles: Rearing environment alters spatial navigation in fish. Psychological Science, 18(7), 569573.CrossRefGoogle ScholarPubMed
Bullens, J., Nardini, M., Doeller, C. F., Braddick, O., Postma, A., & Burgess, N. (2010). The role of landmarks and boundaries in the development of spatial memory. Developmental Science, 13(1), 170180.CrossRefGoogle ScholarPubMed
Burgess, N. (2006). Spatial memory: How egocentric and allocentric combine. Trends in Cognitive Sciences, 10(12), 551557.CrossRefGoogle ScholarPubMed
Bushnell, E. W., McKenzie, B. E., Lawrence, D. A., & Connell, S. (1995). The spatial coding strategies of one-year-old infants in a locomotor search task. Child Development, 66(4), 937958.CrossRefGoogle Scholar
Byrne, P., Becker, S., & Burgess, N. (2007). Remembering the past and imagining the future: A neural model of spatial memory and imagery. Psychological Review, 114(2), 340375.CrossRefGoogle ScholarPubMed
Campos, J. J., Anderson, D. I., Barbu-Roth, M. A., Hubbard, E. M., Hertenstein, M. J., & Witherington, D. (2000). Travel broadens the mind. Infancy, 1(2), 149219.CrossRefGoogle ScholarPubMed
Cantlon, J. F., & Brannon, E. M. (2006). Shared system for ordering small and large numbers in monkeys and humans. Psychological Science, 17(5), 401406.CrossRefGoogle ScholarPubMed
Cantrell, L., Boyer, T. W., Cordes, S., & Smith, L. B. (2015). Signal clarity: An account of the variability in infant quantity discrimination tasks. Developmental Science, 18(6), 877893.CrossRefGoogle ScholarPubMed
Cantrell, L., & Smith, L. B. (2013). Open questions and a proposal: A critical review of the evidence on infant numerical abilities. Cognition, 128(3), 331352.CrossRefGoogle Scholar
Casasola, M., Bhagwat, J., Doan, S. N., & Love, H. (2017). Getting some space: Infants’ and caregivers’ containment and support spatial constructions during play. Journal of Experimental Child Psychology, 159, 110128.CrossRefGoogle ScholarPubMed
Castaldi, E., Piazza, M., Dehaene, S., Vignaud, A., & Eger, E. (2019). Attentional amplification of neural codes for number independent of other quantities along the dorsal visual stream. bioRxiv, 527119. http://dx.doi.org/10.7554/eLife.45160Google ScholarPubMed
Chen, G., Manson, D., Cacucci, F., & Wills, T. J. (2016). Absence of visual input results in the disruption of grid cell firing in the mouse. Current Biology, 26(17), 23352342.CrossRefGoogle ScholarPubMed
Cheng, K. (1986). A purely geometric module in the rat’s spatial representation. Cognition, 23(2), 149178.CrossRefGoogle ScholarPubMed
Cheng, K., & Newcombe, N. S. (2005). Is there a geometric module for spatial orientation? Squaring theory and evidence. Psychonomic Bulletin and Review, 12, 123.CrossRefGoogle Scholar
Chiandetti, C., & Vallortigara, G. (2008). Is there an innate geometric module? Effects of experience with angular geometric cues on spatial re-orientation based on the shape of the environment. Animal Cognition, 11(1), 139146.CrossRefGoogle ScholarPubMed
Chiandetti, C., (2010). Experience and geometry: Controlled-rearing studies with chicks. Animal Cognition, 13(3), 463470.CrossRefGoogle ScholarPubMed
Clearfield, M. W. (2004). The role of crawling and walking experience in infant spatial memory. Journal of Experimental Child Psychology, 89(3), 214241.Google ScholarPubMed
Clearfield, M. W., & Mix, K. S. (1999). Number versus contour length in infants’ discrimination of small visual sets. Psychological Science, 10(5), 408411.CrossRefGoogle Scholar
Constantinescu, M., Moore, D. S., Johnson, S. P., & Hines, M. (2018). Early contributions to infants’ mental rotation abilities. Developmental Science, 21(4), e12613.CrossRefGoogle ScholarPubMed
Dean, A. L., & Harvey, W. O. (1979). An information-processing analysis of a Piagetian imagery task. Developmental Psychology, 15(4), 474475.CrossRefGoogle Scholar
de Hevia, M. D., Izard, V., Coubart, A., Spelke, E. S., & Streri, A. (2014). Representations of space, time, and number in neonates. Proceedings of the National Academy of Sciences, 111(13), 48094813.CrossRefGoogle ScholarPubMed
de Hevia, M. D., & Spelke, E. S. (2010). Number-space mapping in human infants. Psychological Science, 21(5), 653660.CrossRefGoogle ScholarPubMed
DeLoache, J. S. (1987). Rapid change in the symbolic functioning of very young children. Science, 238(4833), 15561557.CrossRefGoogle ScholarPubMed
Diamond, A. (1998). Understanding the A-not-B error: Working memory vs. reinforced response, or active trace vs. latent trace. Developmental Science, 1(2), 185189.CrossRefGoogle Scholar
Dilks, D. D., Hoffman, J. E., & Landau, B. (2008). Vision for perception and vision for action: Normal and unusual development. Developmental Science, 11(4), 474486.CrossRefGoogle ScholarPubMed
Dolscheid, S., Hunnius, S., Casasanto, D., & Majid, A. (2014). Prelinguistic infants are sensitive to space–pitch associations found across cultures. Psychological Science, 25(6), 12561261.CrossRefGoogle ScholarPubMed
Estes, D. (1998). Young children’s awareness of their mental activity: The case of mental rotation. Child Development, 69(5), 13451360.CrossRefGoogle ScholarPubMed
Feigenson, L., & Carey, S. (2003). Tracking individuals via object-files: Evidence from infants’ manual search. Developmental Science, 6(5), 568584.CrossRefGoogle Scholar
Feigenson, L., Carey, S., & Spelke, E. (2002). Infants’ discrimination of number vs. continuous extent. Cognitive Psychology, 44(1), 3366.CrossRefGoogle ScholarPubMed
Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in Cognitive Sciences, 8(7), 307314.CrossRefGoogle Scholar
Fisher, C. B. (1979). Children’s memory for orientation in the absence of external cues. Child Development, 50(4), 10881092.CrossRefGoogle ScholarPubMed
Frick, A. (2019). Spatial transformation abilities and their relation to later mathematics performance. Psychological Research, 83, 14651484.Google ScholarPubMed
Frick, A., Daum, M. M., Walser, S., & Mast, F. W. (2009). Motor processes in children’s mental rotation. Journal of Cognition and Development, 10(1–2), 1840.CrossRefGoogle Scholar
Frick, A., Ferrara, K., & Newcombe, N. S. (2013). Using a touch-screen paradigm to assess the development of mental rotation between 3½ and 5½ years of age. Cognitive Processing, 14(2), 117127.CrossRefGoogle Scholar
Frick, A., Hansen, M. A., & Newcombe, N. S. (2013). Development of mental rotation in 3- to 5-year-old children. Cognitive Development, 28(4), 386399.CrossRefGoogle Scholar
Frick, A., & Möhring, W. (2013). Mental object rotation and motor development in 8- and 10-month-old infants. Journal of Experimental Child Psychology, 115(4), 708720.CrossRefGoogle ScholarPubMed
Frick, A., & Wang, S. H. (2014). Mental spatial transformations in 14- and 16-month-old infants: Effects of action and observational experience. Child Development, 85(1), 278293.CrossRefGoogle ScholarPubMed
Gallistel, C. R. (1990). The organization of learning (Vol. 336). Cambridge, MA: MIT Press.Google Scholar
Galloway, J. C. C., Ryu, J. C., & Agrawal, S. K. (2008). Babies driving robots: Self-generated mobility in very young infants. Intelligent Service Robotics, 1(2), 123134.CrossRefGoogle Scholar
Gerson, S. A., & Woodward, A. L. (2014). Learning from their own actions: The unique effect of producing actions on infants’ action understanding. Child Development, 85(1), 264277.CrossRefGoogle ScholarPubMed
Gunderson, E. A., & Levine, S. C. (2011). Some types of parent number talk count more than others: Relations between parents’ input and children’s cardinal-number knowledge. Developmental Science, 14(5), 10211032.CrossRefGoogle ScholarPubMed
Gunderson, E. A., Ramirez, G., Beilock, S. L., & Levine, S. C. (2012). The relation between spatial skill and early number knowledge: The role of the linear number line. Developmental Psychology, 48(5), 12291241.CrossRefGoogle ScholarPubMed
Halberda, J., Mazzocco, M. M., & Feigenson, L. (2008). Individual differences in non-verbal number acuity correlate with maths achievement. Nature, 455(7213), 665668.CrossRefGoogle ScholarPubMed
Hamamouche, K., & Cordes, S. (2019). Number, time, and space are not singularly represented: Evidence against a common magnitude system beyond early childhood. Psychonomic Bulletin & Review, 26, 122.CrossRefGoogle Scholar
Hawes, Z., LeFevre, J. A., Xu, C., & Bruce, C. D. (2015). Mental rotation with tangible three-dimensional objects: A new measure sensitive to developmental differences in 4- to 8-year-old children. Mind, Brain, and Education, 9(1), 1018.CrossRefGoogle Scholar
Hawes, Z., Moss, J., Caswell, B., Seo, J., & Ansari, D. (2019). Relations between numerical, spatial, and executive function skills and mathematics achievement: A latent-variable approach. Cognitive Psychology, 109, 6890.CrossRefGoogle ScholarPubMed
Hawes, Z., Sokolowski, H. M., Ononye, C. B., & Ansari, D. (2019). Neural underpinnings of numerical and spatial cognition: An fMRI meta-analysis of brain regions associated with symbolic number, arithmetic, and mental rotation. Neuroscience & Biobehavioral Reviews, 103, 316336.CrossRefGoogle ScholarPubMed
Hermer, L., & Spelke, E. (1996). Modularity and development: The case of spatial reorientation. Cognition, 61(3), 195232.CrossRefGoogle ScholarPubMed
Hermer-Vazquez, L., Moffet, A., & Munkholm, P. (2001). Language, space, and the development of cognitive flexibility in humans: The case of two spatial memory tasks. Cognition, 79(3), 263299.CrossRefGoogle ScholarPubMed
Hespos, S. J., Dora, B., Rips, L. J., & Christie, S. (2012). Infants make quantity discriminations for substances. Child Development, 83(2), 554567.CrossRefGoogle ScholarPubMed
Huttenlocher, J., Newcombe, N., & Sandberg, E. (1994). The coding of spatial location in young children. Cognitive Psychology, 27, 115147.CrossRefGoogle ScholarPubMed
Jacobs, L. F., & Menzel, R. (2014). Navigation outside of the box: what the lab can learn from the field and what the field can learn from the lab. Movement Ecology, 2(1), 122.CrossRefGoogle Scholar
Johnson, S. P., & Aslin, R. N. (1995). Perception of object unity in 2-month-old infants. Developmental Psychology, 31(5), 739745.CrossRefGoogle Scholar
Jung, W. P., Kahrs, B. A., & Lockman, J. J. (2015). Manual action, fitting, and spatial planning: Relating objects by young children. Cognition, 134, 128139.CrossRefGoogle ScholarPubMed
Jung, W. P., Kahrs, B. A., (2018). Fitting handled objects into apertures by 17- to 36-month-old children: The dynamics of spatial coordination. Developmental Psychology, 54(2), 228239.CrossRefGoogle ScholarPubMed
Karmiloff-Smith, A. (1992). Beyond modularity: A developmental perspective on cognitive science. Cambridge, MA: MIT Press.Google Scholar
Kaufman, J., & Needham, A. (2011). Spatial expectations of young human infants, following passive movement. Developmental Psychobiology, 53(1), 2336.CrossRefGoogle ScholarPubMed
Keen, R. (2003). Representation of objects and events: Why do infants look so smart and toddlers look so dumb? Current Directions in Psychological Science, 12(3), 7983.CrossRefGoogle Scholar
Klibanoff, R. S., Levine, S. C., Huttenlocher, J., Vasilyeva, M., & Hedges, L. V. (2006). Preschool children’s mathematical knowledge: The effect of teacher “math talk.” Developmental Psychology, 42(1), 5969.CrossRefGoogle ScholarPubMed
Landau, B., & Ferrara, K. (2013). Space and language in Williams syndrome: Insights from typical development. Wiley Interdisciplinary Reviews: Cognitive Science, 4(6), 693706.Google ScholarPubMed
Landau, B., Smith, L., & Jones, S. (1998). Object perception and object naming in early development. Trends in Cognitive Sciences, 2(1), 1924.CrossRefGoogle ScholarPubMed
Laurance, H. E., Learmonth, A. E., Nadel, L., & Jacobs, W. J. (2003). Maturation of spatial navigation strategies: Convergent findings from computerized spatial environments and self-report. Journal of Cognition and Development, 4(2), 211238.CrossRefGoogle Scholar
Learmonth, A. E., Nadel, L., & Newcombe, N. S. (2002). Children’s use of landmarks: Implications for modularity theory. Psychological Science, 13(4), 337341.CrossRefGoogle ScholarPubMed
Learmonth, A. E., Newcombe, N. S., & Huttenlocher, J. (2001). Toddlers’ use of metric information and landmarks to reorient. Journal of Experimental Child Psychology, 80(3), 225244.CrossRefGoogle ScholarPubMed
Learmonth, A. E., Newcombe, N. S., Sheridan, N., & Jones, M. (2008). Why size counts: Children’s spatial reorientation in large and small enclosures. Developmental Science, 11(3), 414426.CrossRefGoogle ScholarPubMed
Leibovich, T., Katzin, N., Harel, M., & Henik, A. (2017). From “sense of number” to “sense of magnitude”: The role of continuous magnitudes in numerical cognition. Behavioral and Brain Sciences, 40, 162.CrossRefGoogle Scholar
Lew, A. R. (2011). Looking beyond the boundaries: Time to put landmarks back on the cognitive map? Psychological Bulletin, 137(3), 484507.CrossRefGoogle ScholarPubMed
Lew, A. R., Foster, K. A., Crowther, H. L., & Green, M. (2004). Indirect landmark use at 6 months of age in a spatial orientation task. Infant Behavior and Development, 27(1), 8190.CrossRefGoogle Scholar
Libertus, K., Joh, A. S., & Needham, A. W. (2016). Motor training at 3 months affects object exploration 12 months later. Developmental Science, 19(6), 10581066.CrossRefGoogle ScholarPubMed
Lourenco, S. F., & Longo, M. R. (2010). General magnitude representation in human infants. Psychological Science, 21(6), 873881.CrossRefGoogle ScholarPubMed
McKenzie, B. E., Day, R. H., & Ihsen, E. (1984). Localization of events in space: Young infants are not always egocentric. British Journal of Developmental Psychology, 2(1), 19.CrossRefGoogle Scholar
Meck, W. H., & Church, R. M. (1983). A mode control model of counting and timing processes. Journal of Experimental Psychology: Animal Behavior Processes, 9(3), 320334.Google ScholarPubMed
Mix, K. S. (2009). How Spencer made number: First uses of the number words. Journal of Experimental Child Psychology, 102(4), 427444.CrossRefGoogle ScholarPubMed
Mix, K. S., Huttenlocher, J., & Levine, S. C. (2002). Multiple cues for quantification in infancy: Is number one of them? Psychological Bulletin, 128(2), 278294.CrossRefGoogle ScholarPubMed
Mix, K. S., Levine, S. C., & Newcombe, N. S. (2016). Development of quantitative thinking across correlated dimensions. In Henik, A. & Fias, W. (Eds.), Continuous issues in numerical cognition (pp. 133). London: Academic Press.Google Scholar
Möhring, W., & Frick, A. (2013). Touching up mental rotation: Effects of manual experience on 6-month-old infants’ mental object rotation. Child Development, 84(5), 15541565.CrossRefGoogle ScholarPubMed
Möhring, W., Libertus, M., & Bertin, E. (2012). Speed discrimination in 6- and 10-month-old infants follows Weber’s law. Journal of Experimental Child Psychology, 111, 405418.CrossRefGoogle ScholarPubMed
Montello, D. R. (1993). Scale and multiple psychologies of space. In Frank, A. U. & Campari, I. (Eds.), Spatial information theory: A theoretical basis for GIS (pp. 312321). European Conference on Spatial Information Theory, Berlin: Springer.CrossRefGoogle Scholar
Moore, D. S., & Johnson, S. P. (2008). Mental rotation in human infants: A sex difference. Psychological Science, 19(11), 10631066.CrossRefGoogle ScholarPubMed
Moore, D. S., & Johnson, S. P. (2011). Mental rotation of dynamic, three-dimensional stimuli by 3-month-old infants. Infancy, 16(4), 435445.CrossRefGoogle ScholarPubMed
Morris, R. G. M., Garrud, P., Rawlins, J. A., & O’Keefe, J. (1982). Place navigation impaired in rats with hippocampal lesions. Nature, 297(5868), 681683.CrossRefGoogle ScholarPubMed
Muessig, L., Hauser, J., Wills, T. J., & Cacucci, F. (2015). A developmental switch in place cell accuracy coincides with grid cell maturation. Neuron, 86(5), 11671173.CrossRefGoogle ScholarPubMed
Munakata, Y., McClelland, J. L., Johnson, M. H., & Siegler, R. S. (1997). Rethinking infant knowledge: Toward an adaptive process account of successes and failures in object permanence tasks. Psychological Review, 104(4), 686713.CrossRefGoogle ScholarPubMed
Nazareth, A., Weisberg, S. M., Margulis, K., & Newcombe, N. S. (2018). Charting the development of cognitive mapping. Journal of Experimental Child Psychology, 170, 86106.CrossRefGoogle ScholarPubMed
Needham, A., Barrett, T., & Peterman, K. (2002). A pick-me-up for infants’ exploratory skills: Early simulated experiences reaching for objects using “sticky mittens” enhances young infants’ object exploration skills. Infant Behavior and Development, 25(3), 279295.CrossRefGoogle Scholar
Newcombe, N. S. (2017). Harnessing spatial thinking to support STEM learning. OECD Education Working Papers, No. 161. Paris: OECD Publishing.Google Scholar
Newcombe, N. S., & Huttenlocher, J. (2000). Making space: The development of spatial representation and reasoning. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Newcombe, N. S., (2006). Development of spatial cognition. In Kuhn, D. & Siegler, R. S. (Eds.), Handbook of child psychology (6th ed., pp. 734776). Hoboken, NJ: John Wiley & Sons.Google Scholar
Newcombe, N. S., Huttenlocher, J., Drummey, A. B., & Wiley, J. (1998). The development of spatial location coding: Place learning and dead reckoning in the second and third years. Cognitive Development, 13, 185201.CrossRefGoogle Scholar
Odic, D., Hock, H., & Halberda, J. (2014). Hysteresis affects approximate number discrimination in young children. Journal of Experimental Psychology: General, 143(1), 255265.CrossRefGoogle ScholarPubMed
Örnkloo, H., & von Hofsten, C. (2007). Fitting objects into holes: On the development of spatial cognition skills. Developmental Psychology, 43(2), 404416.CrossRefGoogle ScholarPubMed
Overman, W. H., Pate, B. J., Moore, K., & Peuster, A. (1996). Ontogeny of place learning in children as measured in the radial arm maze, Morris search task, and open field task. Behavioral Neuroscience, 110(6), 12051228.CrossRefGoogle ScholarPubMed
Pica, P., Lemer, C., Izard, V., & Dehaene, S. (2004). Exact and approximate arithmetic in an Amazonian indigene group. Science, 306(5695), 499503.CrossRefGoogle Scholar
Poulter, S., Hartley, T., & Lever, C. (2018). The neurobiology of mammalian navigation. Current Biology, 28(17), R1023R1042.CrossRefGoogle ScholarPubMed
Pruden, S. M., Levine, S. C., & Huttenlocher, J. (2011). Children’s spatial thinking: Does talk about the spatial world matter? Developmental Science, 14(6), 14171430.CrossRefGoogle ScholarPubMed
Quinn, P. C., & Liben, L. S. (2008). A sex difference in mental rotation in young infants. Psychological Science, 19(11), 10671070.CrossRefGoogle ScholarPubMed
Quinn, P. C., (2014). A sex difference in mental rotation in infants: Convergent evidence. Infancy, 19(1), 103116.CrossRefGoogle Scholar
Ratliff, K. R., & Newcombe, N. S. (2008). Reorienting when cues conflict: Evidence for an adaptive-combination view. Psychological Science, 19(12), 13011307.CrossRefGoogle ScholarPubMed
Raudies, F., Gilmore, R. O., Kretch, K. S., Franchak, J. M., & Adolph, K. E. (2012, November). Understanding the development of motion processing by characterizing optic flow experienced by infants and their mothers. Paper presented at the Development and Learning and Epigenetic Robotics (ICDL), 2012 IEEE International Conference, San Diego, CA.CrossRefGoogle Scholar
Ribordy, F., Jabès, A., Lavenex, P. B., & Lavenex, P. (2013). Development of allocentric spatial memory abilities in children from 18 months to 5 years of age. Cognitive Psychology, 66(1), 129.CrossRefGoogle ScholarPubMed
Saxe, G. B. (2015). Culture and cognitive development: Studies in mathematical understanding. New York, NY: Psychology Press.CrossRefGoogle Scholar
Schneider, M., Beeres, K., Coban, L., Merz, S., Schmidt, S., Stricker, J., & de Smedt, B. (2017). Associations of non-symbolic and symbolic numerical magnitude processing with mathematical competence: A meta-analysis. Developmental Science, 20(3), e12372.CrossRefGoogle ScholarPubMed
Schwarzer, G., Freitag, C., Buckel, R., & Lofruthe, A. (2013). Crawling is associated with mental rotation ability by 9-month-old infants. Infancy, 18(3), 432441.CrossRefGoogle Scholar
Seed, A., & Byrne, R. (2010). Animal tool use. Current Biology, 20(23), R1032R1039.CrossRefGoogle ScholarPubMed
Shusterman, A., Lee, S. A., & Spelke, E. S. (2011). Cognitive effects of language on human navigation. Cognition, 120(2), 186201.CrossRefGoogle ScholarPubMed
Sluzenski, J., Newcombe, N. S., & Satlow, E. (2004). Knowing where things are in the second year of life: Implications for hippocampal development. Journal of Cognitive Neuroscience, 16, 14431451.CrossRefGoogle ScholarPubMed
Smith, L. B., & Kemler, D. G. (1978). Levels of experienced dimensionality in children and adults. Cognitive Psychology, 10(4), 502532.CrossRefGoogle ScholarPubMed
Smith, L. B., Thelen, E., Titzer, R., & McLin, D. (1999). Knowing in the context of acting: The task dynamics of the A-not-B error. Psychological Review, 106(2), 235260.CrossRefGoogle ScholarPubMed
Smith, L. B., Yu, C., & Pereira, A. F. (2011). Not your mother’s view: The dynamics of toddler visual experience. Developmental Science, 14(1), 917.CrossRefGoogle ScholarPubMed
Sokolowski, H. M., Fias, W., Ononye, C. B., & Ansari, D. (2017). Are numbers grounded in a general magnitude processing system? A functional neuroimaging meta-analysis. Neuropsychologia, 105, 5069.CrossRefGoogle Scholar
Soska, K. C., Adolph, K. E., & Johnson, S. P. (2010). Systems in development: motor skill acquisition facilitates three-dimensional object completion. Developmental Psychology, 46(1), 129138.CrossRefGoogle ScholarPubMed
Spelke, E. S. (1990). Principles of object perception. Cognitive Science, 14(1), 2956.CrossRefGoogle Scholar
Spelke, E. S., & Kinzler, K. D. (2007). Core knowledge. Developmental Science, 10(1), 8996.CrossRefGoogle ScholarPubMed
Srinivasan, M., & Carey, S. (2010). The long and the short of it: On the nature and origin of functional overlap between representations of space and time. Cognition, 116(2), 217241.CrossRefGoogle Scholar
Starkey, P., Spelke, E. S., & Gelman, R. (1983). Detection of intermodal numerical correspondences by human infants. Science, 222(4620), 179181.CrossRefGoogle ScholarPubMed
Street, S. Y., James, K. H., Jones, S. S., & Smith, L. B. (2011). Vision for action in toddlers: The posting task. Child Development, 82(6), 20832094.CrossRefGoogle ScholarPubMed
Sutton, J. E., & Newcombe, N. S. (2014). The hippocampus is not a geometric module: Processing environment geometry during reorientation. Frontiers in Human Neuroscience, 8, 16.CrossRefGoogle Scholar
Tan, H. M., Bassett, J. P., O’Keefe, J., Cacucci, F., & Wills, T. J. (2015). The development of the head direction system before eye opening in the rat. Current Biology, 25(4), 479483.CrossRefGoogle ScholarPubMed
Tan, H. M., Wills, T. J., & Cacucci, F. (2017). The development of spatial and memory circuits in the rat. Wiley Interdisciplinary Reviews: Cognitive Science, 8(3). doi: 10.1002/wcs.1424.Google ScholarPubMed
Thelen, E., & Smith, L. B. (1994). A dynamic systems approach to the development of perception and action. Cambridge, MA: MIT Press.Google Scholar
Twyman, A. D., Friedman, A., & Spetch, M. L. (2007). Penetrating the geometric module: Catalyzing children’s use of landmarks. Developmental Psychology, 43(6), 15231530.CrossRefGoogle ScholarPubMed
Twyman, A. D., Newcombe, N. S., & Gould, T. J. (2013). Malleability in the development of spatial reorientation. Developmental Psychobiology, 55(3), 243255.CrossRefGoogle ScholarPubMed
Verdine, B. N., Golinkoff, R. M., Hirsh-Pasek, K., & Newcombe, N. S. (2017). I. Spatial skills, their development, and their links to mathematics. Monographs of the Society for Research in Child Development, 82(1), 730.CrossRefGoogle ScholarPubMed
Vieites, V., Nazareth, A., Reeb-Sutherland, B. C., & Pruden, S. M. (2015). A new biomarker to examine the role of hippocampal function in the development of spatial reorientation in children: A review. Frontiers in Psychology, 6, 490.CrossRefGoogle ScholarPubMed
Voyer, D., Voyer, S., & Bryden, M. P. (1995). Magnitude of sex differences in spatial abilities: A meta-analysis and consideration of critical variables. Psychological Bulletin, 117(2), 250270.CrossRefGoogle ScholarPubMed
Wang, R. F., & Spelke, E. S. (2002). Human spatial representation: Insights from animals. Trends in Cognitive Sciences, 6(9), 376382.CrossRefGoogle ScholarPubMed
Weisberg, S. M., Marchette, S. A., & Chatterjee, A. (2018). Behavioral and neural representations of spatial directions across words, schemas, and images. Journal of Neuroscience, 38 (21), 49965007.CrossRefGoogle ScholarPubMed
Weisberg, S. M., & Newcombe, N.S. (2016). How do (some) people make a cognitive map? Routes, places and working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 42, 768785.Google ScholarPubMed
Wilcox, T., & Biondi, M. (2015). Object processing in the infant: Lessons from neuroscience. Trends in Cognitive Sciences, 19(7), 406413. doi:10.1016/j.tics.2015.04.009CrossRefGoogle ScholarPubMed
Wills, T. J., Cacucci, F., Burgess, N., & O’Keefe, J. (2010). Development of the hippocampal cognitive map in preweanling rats. Science, 328(5985), 15731576.CrossRefGoogle ScholarPubMed
Wolbers, T., & Wiener, J. M. (2014). Challenges for identifying the neural mechanisms that support spatial navigation: the impact of spatial scale. Frontiers in Human Neuroscience, 8(571), 112.CrossRefGoogle ScholarPubMed
Xu, F., & Spelke, E. S. (2000). Large number discrimination in 6-month-old infants. Cognition, 74(1), B1B11.CrossRefGoogle ScholarPubMed
Xu, F., Spelke, E. S., & Goddard, S. (2005). Number sense in human infants. Developmental Science, 8(1), 88101.CrossRefGoogle ScholarPubMed
Xu, Y., Regier, T., & Newcombe, N. S. (2017). An adaptive cue combination model of human spatial reorientation. Cognition, 163, 5666.CrossRefGoogle ScholarPubMed
Adamson, L. B., & Frick, J. E. (2003). The still face: A history of a shared experimental paradigm. Infancy, 4, 451473.CrossRefGoogle Scholar
American Academy of Pediatrics (AAP) Committee on Public Education (1999). Media education. Pediatrics, 104, 341343. doi: 10.1542/peds.104.2.341CrossRefGoogle Scholar
American Academy of Pediatrics (AAP) Council on Communications and Media (2016). Children and adolescents and digital media. Pediatrics, 138. doi: 10.1542/peds.2016–2593Google Scholar
Anderson, D. R., & Davidson, M. C. (2019). Receptive versus interactive video screens: A role for the brain’s default mode network in learning from media. Computers in Human Behavior, 99, 168180. https://doi.org/10.1016/j.chb.2019.05.008CrossRefGoogle Scholar
Anderson, D. R., Fite, K. V., Petrovich, N., & Hirsch, J. (2006). Cortical activation while watching video montage: An fMRI study. Media Psychology, 8, 724.CrossRefGoogle Scholar
Anderson, D. R., & Hanson, K. G. (2017). Screen media and parent–child interactions. In Barr, R. & Linebarger, D. N. (Eds.), Media exposure during infancy and early childhood: The effects of content and context on learning and development (pp. 173194). Cham, Switzerland: Springer.CrossRefGoogle Scholar
Anderson, D. R., & Pempek, T. A. (2005). Television and very young children. American Behavioral Scientist, 48, 505522.CrossRefGoogle Scholar
Aslin, R. N. (2012). Questioning the questions that have been asked about the infant brain using near-infrared spectroscopy. Cognitive Neuropsychology, 29, 733.CrossRefGoogle ScholarPubMed
Bank, A. M., Barr, R., Calvert, S. L., Parrott, W. G., McDonough, S. C., & Rosenblum, K. (2012). Maternal depression and family media use: A questionnaire and diary analysis. Journal of Child and Family Studies, 21, 208216. doi: 10.1007/s10826-011-9464-1.CrossRefGoogle ScholarPubMed
Barnett, S. M., & Ceci, S. J. (2002). When and where do we apply what we learn? A taxonomy for far transfer. Psychological Bulletin, 128, 612637. doi:10.1037/0033-2909.128.4.612.CrossRefGoogle Scholar
Barr, R. (2010). Transfer of learning between 2D and 3D sources during infancy: Informing theory and practice. Developmental Review, 30, 128154. doi:10.1016/j.dr.2010.03.001.CrossRefGoogle ScholarPubMed
Barr, R. (2013). Memory constraints on infant learning from picture books, television, and touch-screens. Child Development Perspectives, 7, 205210. doi:10.1111/cdep.12041.Google Scholar
Barr, R., & Hayne, H. (1999). Developmental changes in imitation from television during infancy. Child Development, 70, 10671081.CrossRefGoogle ScholarPubMed
Barr, R., Kirkorian, H., Radesky, J., Coyne, S., Nichols, D., Blanchfield, O., Rusnak, S., Stockdale, L., Ribner, A., Durnez, J., Epstein, M., Heimann, M., Koch, F.-S., Sundqvist, A., Birberg-Thornberg, U., Konrad, C., Slussareff, M., Bus, A., Bellagamba, F., Fitzpatrick, C. and CAFE Consortium Key Investigators (in revision). Beyond Screen Time: A synergistic approach to a more comprehensive assessment of family media exposure during early childhood.Google Scholar
Barr, R., Lauricella, A., Zack, E., & Calvert, S. L. (2010). The relation between infant exposure to television and executive functioning, cognitive skills, and school readiness at age four. Merrill Palmer Quarterly, 56, 2148.CrossRefGoogle Scholar
Barr, R., & Linebarger, D. N. (Eds.) (2017). Media exposure during infancy and early childhood: The effects of content and context on learning and development. Cham, Switzerland: Springer.CrossRefGoogle Scholar
Barr, R., McClure, E., & Palarkain, R. (2018). What the research says about the impact of media on children aged 0–3 years old. Retrieved from www.zerotothree.org/resources/series/screen-sense.Google Scholar
Barr, R., Muentener, P., & Garcia, A. (2007). Age-related changes in deferred imitation from television by 6- to 18-month-olds. Developmental Science, 10, 910921.CrossRefGoogle ScholarPubMed
Barr, R., Muentener, P., Garcia, A., Fujimoto, M., & Chávez, V. (2007). The effect of repetition on imitation from television during infancy. Developmental Psychobiology, 49, 196207.CrossRefGoogle ScholarPubMed
Barr, R., Shuck, L., Salerno, K., Atkinson, E., & Linebarger, D. L. (2010). Music interferes with learning from television during infancy. Infant and Child Development: An International Journal of Research and Practice, 19, 313331.CrossRefGoogle Scholar
Barr, R., Zack, E., Garcia, A., & Muentener, P. (2008). Infants’ attention and responsiveness to television increases with prior exposure and parental interaction. Infancy, 13, 3056.CrossRefGoogle Scholar
Bornstein, M. H., & Tamis-LeMonda, C. S. (2008). Mother–infant interaction. In Bremner, J. G. & Wachs, T. D. (Eds.), The Wiley-Blackwell handbook of infant development (pp. 269295). Malden, MA: Wiley-Blackwell.Google Scholar
Bortfeld, H., Wruck, E., & Boas, D. A. (2007). Assessing infants’ cortical response to speech using near-infrared spectroscopy. Neuroimage, 34, 407415.CrossRefGoogle ScholarPubMed
Bus, A. G., Takacs, Z. K., & Kegel, C. A. T. (2015). Affordances and limitations of electronic storybooks for young children’s emergent literacy. Developmental Review, 35, 7997.Google Scholar
Buss, A. T., Fox, N., Boas, D. A., & Spencer, J. P. (2014). Probing the early development of visual working memory capacity with functional near-infrared spectroscopy. Neuroimage, 85, 314325, doi: 10.1016/j.neuroimage.2013.05.034CrossRefGoogle ScholarPubMed
Calvert, S. L., Rideout, V. J., Woolard, J. L., Barr, R. F., & Strouse, G. A. (2005). Age, ethnicity, and socioeconomic patterns in early computer use: A national survey. American Behavioral Scientist, 48, 590607.CrossRefGoogle Scholar
Carver, L. J., Meltzoff, A. N., & Dawson, G. (2006). Event-related potential (ERP) indices of infants’ recognition of familiar and unfamiliar objects in two and three dimensions. Developmental Science, 9, 5162.CrossRefGoogle ScholarPubMed
Choi, J. H., Mendelsohn, A. L, Weisleder, A., Brockmeyer Cates, C., Canfield, C., Seery, A., … Tomopoulos, S. (2018). Real-world usage of educational media does not promote parent–child cognitive stimulation activities. Academic Pediatrics, 18, 172178. doi: 10.1016/j.acap.2017.04.020.CrossRefGoogle Scholar
Christakis, D. A., Gilkerson, J., Richards, J. A., Zimmerman, F. J., Garrison, M. M., Xu, D., … Yapanel, U. (2009). Audible television and decreased adult words, infant vocalizations, and conversational turns: A population-based study. Archives of Pediatric & Adolescent Medicine, 163, 554558.CrossRefGoogle ScholarPubMed
Connell, S. L., Lauricella, A. R., & Wartella, E. (2015). Parental co-use of media technology with their parents in the U.S.A. Journal of Children and Media, 9, 521.CrossRefGoogle Scholar
Courage, M. L., Murphy, A. N., Goulding, S., & Setliff, A. E. (2010). When the television is on: The impact of infant-directed video on 6- and 18-month-olds’ attention during toy play and on parent–infant interaction. Infant Behavior and Development, 33, 176188.CrossRefGoogle ScholarPubMed
Cristia, A., & Seidl, A. (2015) Parental reports on touch screen use in early childhood. PLoS ONE, 10. https://doi.org/10.1371/journal.pone.0128338CrossRefGoogle ScholarPubMed
Cuevas, K., Cannon, E. N., Yoo, K., & Fox, N. A. (2013). The infant EEG Mu rhythm: Methodological considerations and best practices. Developmental Review, 34, 2643.CrossRefGoogle Scholar
Dayanim, S., & Namy, L. L. (2015). Infants learn baby signs from video. Child Development, 86, 800811.CrossRefGoogle ScholarPubMed
DeLoache, J. S. (1995). Early symbol understanding and use. Psychology of Learning and Motivation, 33, 65116.CrossRefGoogle Scholar
DeLoache, J. S., Chiong, C., Sherman, K., Islam, N., Vanderborght, M., Troseth, G. L., … O’Doherty, K. (2010). Do babies learn from baby media?. Psychological Science, 21, 15701574.CrossRefGoogle ScholarPubMed
DeLoache, J. S., Strauss, M. S., & Maynard, J. (1979). Picture perception in infancy. Infant Behavior and Development, 2, 7789.CrossRefGoogle Scholar
Demers, L. B., Hanson, K. G., Kirkorian, H. L., Pempek, T. A., & Anderson, D. R. (2013). Infant gaze following during parent–infant coviewing of baby videos. Child Development, 84, 591603. doi: 10.1111/j.1467-8624.2012.01868.xCrossRefGoogle ScholarPubMed
Dickerson, K., Gerhardstein, P., & Moser, A. (2017). The role of the human mirror neuron system in supporting communication in a digital world. Frontiers in Psychology, 8, 698.CrossRefGoogle Scholar
Dickerson, K., Gerhardstein, P., Zack, E., & Barr, R. (2013). Age-related changes in learning across early childhood: A new imitation task. Developmental Psychobiology, 55, 719732. doi:10.1002/dev.21068.Google ScholarPubMed
Dirks, J., & Gibson, E. (1977). Infants’ perception of similarity between live people and their photographs. Child Development, 48(1), 124130.CrossRefGoogle ScholarPubMed
Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) (2018). Media exposure and early child development workshop. Retrieved from www.nichd.nih.gov/about/meetings/2018/012518.Google Scholar
Fair, D. A., Cohen, A. L., Dosenbach, N. U. F., Church, J. A., Miezin, F. M., Barch, D. M., … Schlaggar, B. L. (2008). The maturing architecture of the brain’s default network. Proceedings of the National Academy of Sciences, 105, 40284032.CrossRefGoogle ScholarPubMed
Fenstermacher, S. K., Barr, R., Brey, E., Pempek, T. A, Ryan, M., Calvert, S., … Linebarger, D. (2010). Interactional quality depicted in infant-directed videos: Where are the interactions? Infant and Child Development, 19, 594612. doi: 10.1002/icd.714CrossRefGoogle Scholar
Fenstermacher, S. K., Barr, R., Salerno, K., Garcia, A., Shwery, C. E., Calvert, S. L., & Linebarger, D. L. (2010). Infant-directed media: An analysis of product information and claims. Infant & Child Development, 19, 557576.CrossRef