Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-08T22:35:44.372Z Has data issue: false hasContentIssue false

Part I - Communication and Language

Published online by Cambridge University Press:  01 July 2021

Allison B. Kaufman
Affiliation:
University of Connecticut
Josep Call
Affiliation:
University of St Andrews, Scotland
James C. Kaufman
Affiliation:
University of Connecticut
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Acquistapace, P., Aquiloni, L., Hazlett, B. A., & Gherardi, F. (2002). Multimodal communication in crayfish: Sex recognition during mate search by male Austropotamobius pallipes. Canadian Journal of Zoology, 80(11), 20412045.Google Scholar
Arnold, K. & Zuberbühler, K. (2012). Call combinations in monkeys: Compositional or idiomatic expressions? Brain and Language120(3), 303309.Google Scholar
Arriaga, G., Zhou, E. P., & Jarvis, E. D. (2012). Of mice, birds, and men: The mouse ultrasonic song system has some features similar to humans and song-learning birdsPLoS One7(10), e46610.CrossRefGoogle ScholarPubMed
Aureli, F. & Schaffner, C. M. (2002) Relationship assessment through emotional mediation. Behaviour, 139: 393420.Google Scholar
Bard, K. A., Dunbar, S., Maguire‐Herring, V., Veira, Y., Hayes, K. G., & McDonald, K. (2014). Gestures and social‐emotional communicative development in chimpanzee infantsAmerican Journal of Primatology76(1), 1429.Google Scholar
Bolhuis, J. J., Beckers, G. J., Huybregts, M. A., Berwick, R. C., & Everaert, M. B. (2018). Meaningful syntactic structure in songbird vocalizations? PLoS Biology16(6), e2005157.Google Scholar
Bradbury, J. W. & Vehrencamp, S. L. (1998). Principles of Animal Communication. Sunderland, MA: Sinauer Associates.Google Scholar
Brosnan, S. F. & De Waal, F. B. (2002). A proximate perspective on reciprocal altruismHuman Nature13(1), 129152.Google Scholar
Byrne, R. W., Cartmill, E., Genty, E., Graham, K. E., Hobaiter, C., & Tanner, J. (2017). Great ape gestures: Intentional communication with a rich set of innate signalsAnimal Cognition20(4), 755769.Google Scholar
Call, J. & Tomasello, M. (2007). The Gestural Communication of Apes and Monkeys. Hillsdale, MI: Lawrence Erlbaum Associates.Google Scholar
Cartmill, E. A. & Byrne, R. W. (2007). Orangutans modify their gestural signaling according to their audience’s comprehensionCurrent Biology17(15), 13451348.Google Scholar
Chow, C. P., Mitchell, J. F., & Miller, C. T. (2015). Vocal turn-taking in a non-human primate is learned during ontogenyProceedings of the Royal Society B: Biological Sciences282(1807), 20150069.Google Scholar
Christiansen, M. H. & Chater, N. (2016). The now-or-never bottleneck: A fundamental constraint on languageBehavioral and Brain Sciences39, E62. doi: 10.1017/S0140525X1500031XGoogle Scholar
Clark, C. J. (2009). Courtship dives of Anna’s hummingbird offer insights into flight performance limitsProceedings of the Royal Society B: Biological Sciences276(1670), 30473052.Google Scholar
Crockford, C., Wittig, R. M., Mundry, R., & Zuberbühler, K. (2012). Wild chimpanzees inform ignorant group members of dangerCurrent Biology22(2), 142146.Google Scholar
Crockford, C., Herbinger, I., Vigilant, L., & Boesch, C. (2004). Wild chimpanzees produce group-specific calls: A case for vocal learning? Ethology, 110, 221243. 110. doi: 10.1111/j.1439-0310.2004.00968.xGoogle Scholar
Crockford, C, Wittig, R. M., Langergraber, K., Ziegler, T. E., Zuberbühler, K., et al. (2013) Urinary oxytocin and social bonding in related and unrelated wild chimpanzees. Proceedings of the Royal Society B: Biological Sciences, 280( 1755), 20122765Google Scholar
Danchin, E., Giraldeau, L. A., Valone, T. J., & Wagner, R. H. (2004). Public information: From nosy neighbors to cultural evolutionScience305(5683), 487491.Google Scholar
Darst, C. R., Cummings, M. E., & Cannatella, D. C. (2006). A mechanism for diversity in warning signals: Conspicuousness versus toxicity in poison frogsProceedings of the National Academy of Sciences103(15), 58525857.CrossRefGoogle ScholarPubMed
Darwin, C. (1871). The Descent of Man and Selection in Relation to Sex. Princeton, NJ: Princeton University Press.Google Scholar
Dawkins, R. & Krebs, J. R. (1978). Animal Signals: Information or Manipulation. In Krebs, J. R. & Davies, N. B. (Eds.), Behavioural Ecology: An Evolutionary Approach (pp. 282309). Oxford: Blackwell.Google Scholar
Dawkins, R. & Krebs, J. R. (1979). Arms races between and within speciesProceedings of the Royal Society of London B205(1161), 489511.Google Scholar
Dehaene, S. & Cohen, L. (2011). The unique role of the visual word form area in readingTrends in Cognitive Sciences15(6), 254262.CrossRefGoogle ScholarPubMed
Demartsev, V., Strandburg-Peshkin, A., Ruffner, M., & Manser, M. (2018). Vocal turn-taking in meerkat group calling sessionsCurrent Biology28(22), 36613666.Google Scholar
El-Hani, C. N., Queiroz, J., & Stjernfelt, F. (2010). Firefly femmes fatales: A case study in the semiotics of deceptionBiosemiotics3(1), 3355.Google Scholar
Engesser, S., Ridley, A. R., & Townsend, S. W. (2016). Meaningful call combinations and compositional processing in the southern pied babblerProceedings of the National Academy of Sciences113(21), 59765981.CrossRefGoogle ScholarPubMed
Evans, C. S. & Evans, L. (1999). Chicken food calls are functionally referentialAnimal Behaviour58(2), 307319.CrossRefGoogle ScholarPubMed
Fröhlich, M., Kuchenbuch, P., Müller, G., Fruth, B., Furuichi, T., Wittig, R. M., & Pika, S. (2016). Unpeeling the layers of language: Bonobos and chimpanzees engage in cooperative turn-taking sequencesScientific Reports6(1), 114.Google Scholar
von Frisch, K. (1967). The Dance Language and Orientation of Bees. Cambridge, MA: Harvard University Press.Google Scholar
Fröhlich, M., Müller, G., Zeiträg, C., Wittig, R. M., & Pika, S. (2017). Gestural development of chimpanzees in the wild: The impact of interactional experienceAnimal Behaviour134, 271282.Google Scholar
Fröhlich, M., Sievers, C., Townsend, S. W., Gruber, T., & van Schaik, C. P. (2019). Multimodal communication and language origins: Integrating gestures and vocalizationsBiological Reviews94(5), 18091829.Google Scholar
Garrod, S. & Pickering, M. J. (2004). Why is conversation so easy? Trends in Cognitive Sciences8(1), 811.Google Scholar
Genty, E., Breuer, T., Hobaiter, C., & Byrne, R. W. (2009). Gestural communication of the gorilla (Gorilla gorilla): Repertoire, intentionality and possible originsAnimal Cognition12(3), 527546.Google Scholar
Girard, M. B., Kasumovic, M. M., & Elias, D. O. (2011). Multi-modal courtship in the peacock spider, Maratus volans (OP-Cambridge, 1874)PLoS One6(9), e25390.Google Scholar
Grafen, A. (1990). Biological signals as handicapsJournal of Theoretical Biology144(4), 517546.Google Scholar
Graham, K. E., Furuichi, T., & Byrne, R. W. (2017). The gestural repertoire of the wild bonobo (Pan paniscus): A mutually understood communication systemAnimal Cognition20(2), 171177.Google Scholar
Guilford, T. & Dawkins, M. S. (1991). Receiver psychology and the evolution of animal signalsAnimal Behaviour42(1), 114.Google Scholar
Halina, M., Rossano, F., & Tomasello, M. (2013). The ontogenetic ritualization of bonobo gesturesAnimal Cognition16(4), 653666.Google Scholar
Hammerschmidt, K., Reisinger, E., Westekemper, K., Ehrenreich, L., Strenzke, N. and Fischer, J. (2012). Mice do not require auditory input for the normal development of their ultrasonic vocalizationsBMC Neuroscience13(1), 40.Google Scholar
Henry, L., Craig, A. J. F. K., Lemasson, A., & Hausberger, M. (2016). Social Coordination in Animal Vocal Interactions. Is There any Evidence of Turn-Taking? The Starling as an Animal Model. In Holler, J., Casillas, M., & Levinson, S. C. (Eds.), Turn-Taking in Human Communicative Interaction. Lausanne: Frontiers Media SA.Google Scholar
Higham, J. P. & Hebets, E. A. (2013). An introduction to multimodal communication. Behavioral Ecology and Sociobiology, 67(9), 13811388.Google Scholar
Hobaiter, C. & Byrne, R. W. (2011a). Serial gesturing by wild chimpanzees: Its nature and function for communicationAnimal Cognition14(6), 827838.Google Scholar
Hobaiter, C. & Byrne, R. W. (2011b). The gestural repertoire of the wild chimpanzeeAnimal Cognition14(5), 745767.Google Scholar
Hobaiter, C. & Byrne, R. W. (2014). The meanings of chimpanzee gesturesCurrent Biology24(14), 15961600.CrossRefGoogle ScholarPubMed
Hockett, C. F. (1960). The origin of speechScientific American203(3), 8897.Google Scholar
Huxley, J. S. (1914) The courtship habits of the great crested grebe (Podiceps cristatus): With an addition to the theory of sexual selectionProceedings of the Zoological Society of London, 35, 491562.CrossRefGoogle Scholar
Isack, H. A. & Reyer, H. U. (1989). Honeyguides and honey gatherers: interspecific communication in a symbiotic relationship. Science, 243(4896), 13431346.Google Scholar
Janik, V. M. & Slater, P. J. (2000). The different roles of social learning in vocal communicationAnimal Behaviour60(1), 111.Google Scholar
Johnstone, R. A. (1997). The Evolution of Animal Signals. In Krebs, J. R. & Davies, N. B. (Eds.), Behavioural Ecology: An Evolutionary Approach, 155178. Oxford: Blackwell.Google Scholar
Kaufhold, S. P. & Rossano, F. (2020). Proximate mechanisms and relational history: The interdependence of food transfers in socially housed orang-utans (Pongo abelii). Animal Behaviour, 167, 243253.Google Scholar
Kays, R., Crofoot, M. C., Jetz, W., & Wikelski, M. (2015). Terrestrial animal tracking as an eye on life and planetScience348(6240), aaa2478.CrossRefGoogle ScholarPubMed
Kendon, A. (2004). Gesture: Visible Action as Utterance. Cambridge: Cambridge University Press.Google Scholar
Laidre, M. E. & Johnstone, R. A. (2013). Animal signals. Current Biology, 23(18), R829R833.CrossRefGoogle ScholarPubMed
Lameira, A. R. (2017). Bidding evidence for primate vocal learning and the cultural substrates for speech evolutionNeuroscience & Biobehavioral Reviews83, 429439.Google Scholar
Lattenkamp, E. Z. & Vernes, S. C. (2018). Vocal learning: A language-relevant trait in need of a broad cross-species approachCurrent Opinion in Behavioral Sciences21, 209215.Google Scholar
Leavens, D. A., Hostetter, A. B., Wesley, M. J., & Hopkins, W. D. (2004). Tactical use of unimodal and bimodal communication by chimpanzees, Pan troglodytes. Animal Behaviour, 67, 467476.CrossRefGoogle Scholar
Leavens, D. A., Russell, J. L., & Hopkins, W. D. (2010). Multimodal communication by captive chimpanzees (Pan troglodytes)Animal Cognition13(1), 3340.CrossRefGoogle ScholarPubMed
Lemasson, A., Glas, L., Barbu, S., Lacroix, A., Guilloux, M., Remeuf, K., & Koda, H. (2011). Youngsters do not pay attention to conversational rules: Is this so for nonhuman primates? Scientific Reports 1,  22(2011), https://doi.org/10.1038/srep00022Google Scholar
Levinson, S. C. (2016). Turn-taking in human communication–origins and implications for language processingTrends in Cognitive Sciences20(1), 614.CrossRefGoogle ScholarPubMed
Liebal, K., Call, J., & Tomasello, M. (2004a). Use of gesture sequences in chimpanzeesAmerican Journal of Primatology64(4), 377396.Google Scholar
Liebal, K., Call, J., Tomasello, M., & Pika, S. (2004b). To move or not to move: How apes adjust to the attentional state of othersInteraction Studies5(2), 199219.CrossRefGoogle Scholar
Liebal, K., Schneider, C., & Errson-Lembeck, M. (2019). How primates acquire their gestures: Evaluating current theories and evidenceAnimal Cognition22(4), 473486.Google Scholar
Lloyd, J. E. (1983). Bioluminescence and communication in insectsAnnual Review of Entomology28(1), 131160.Google Scholar
Lorenz, K. (1941). Kant’s Lehre vom Apriorischen im Lichte gegenwärtiger Biologie. Blätter für Deutsche Philosophie, 15, 94125.Google Scholar
Lorenz, K. Z. (1966). Evolution of ritualization in the biological and cultural spheresPhilosophical Transactions of the Royal Society of London. Series B, Biological Sciences251(772), 273284.Google Scholar
Lorenz, K. (1973). Die Rückseite des Spiegels. Munich: Piper.Google Scholar
Marler, P. (1961). The logical analysis of animal communication. Journal of Theoretical Biology, 1, 295317.Google Scholar
Marler, P. (1965). Communication in Monkeys and Apes. In DeVore, I. & Hall, K. R. L. (Eds.), Primate Behavior (pp. 544586). New York: Holt Rinehardt & Winston.Google Scholar
Martins, P. T. & Boeckx, C. (2020). Vocal learning: Beyond the continuumPLoS Biology18(3), e3000672.CrossRefGoogle ScholarPubMed
Maynard Smith, W. J. (1977). The Behavior of Communicating. Harvard, MA: Harvard University Press.Google Scholar
McLennan, D. A. (2003). The importance of olfactory signals in the gasterosteid mating system: Sticklebacks go multimodalBiological Journal of the Linnean Society80(4), 555572.CrossRefGoogle Scholar
Mitchell, R. W. (1986). A Framework for Discussing Deception. In Mitchell, R. W. & Thompson, N. S. (Eds.), Deception: Perspectives on Human and Nonhuman Deceit (pp. 340). Albany: State University of New York.Google Scholar
Morris, D. (1957). “Typical intensity” and its relation to the problem of ritualisationBehaviour, 11(1), 112.Google Scholar
Ouattara, K., Lemasson, A., & Zuberbühler, K. (2009). Campbell’s monkeys concatenate vocalizations into context-specific call sequencesProceedings of the National Academy of Sciences106(51), 2202622031.Google Scholar
Owings, D. H. & Morton, E. S. 1997. The Role of Information in Communication: An Assessment/Management Approach. In Owings, D. H., Beecher, M. D., & Thompson, N. S. (Eds.). Perspectives in Ethology: Vol. 12, Communication, (pp. 359390). Boston: Springer.Google Scholar
Owings, D. H. & Morton, E. S. 1998. Animal Vocal Communication: A New Approach. Cambridge: Cambridge University Press.Google Scholar
Owren, M. J., Rendall, D., & Ryan, M. J. (2010). Redefining animal signaling: Influence versus information in communicationBiology & Philosophy25(5), 755780.CrossRefGoogle Scholar
Partan, S. & Marler, P. (1999). Communication goes multimodal. Science, 283(5406), 12721273.Google Scholar
Partan, S. R. & Marler, P. (2005). Issues in the classification of multimodal communication signals. American Naturalist, 166(2), 231245.Google Scholar
Pearce, J. M. & Bouton, M. E. (2001). Theories of associative learning in animalsAnnual Review of Psychology52(1), 111139.Google Scholar
Petkov, C. I. & Jarvis, E. (2012). Birds, primates, and spoken language origins: Behavioral phenotypes and neurobiological substratesFrontiers in Evolutionary Neuroscience4, 12.Google Scholar
Pika, S., Wilkinson, R., Kendrick, K. H., & Vernes, S. C. (2018). Taking turns: Bridging the gap between human and animal communicationProceedings of the Royal Society B: Biological Sciences285(1880), 20180598.Google Scholar
Potvin, D. A., Ratnayake, C. P., Radford, A. N., & Magrath, R. D. (2018). Birds learn socially to recognize heterospecific alarm calls by acoustic association. Current Biology28(16), 26322637.Google Scholar
Rendall, D., Owren, M. J., & Ryan, M. J. (2009). What do animal signals mean? Animal Behaviour78(2), 233240.CrossRefGoogle Scholar
Rossano, F. (2013). Sequence organization and timing of bonobo mother-infant interactionsInteraction Studies, 14(2), 160189.Google Scholar
Rossano, F. (2018). Social manipulation, turn-taking and cooperation in apes ImplicationsInteraction Studies19, 12.Google Scholar
Rossano, F. (2019). The Structure and Timing of Human versus Primate Social Interaction. In Hagoort, P. (Ed.), Human Language: From Genes and Brains to Behavior (pp. 201219). Cambridge: MIT Press.CrossRefGoogle Scholar
Russon, A. E. & Galdikas, B. M. (1993). Imitation in free-ranging rehabilitant orangutans (Pongo pygmaeus)Journal of Comparative Psychology107(2), 147161.Google Scholar
Russon, A. E. & Galdikas, B. M. (1995). Constraints on great apes’ imitation: Model and action selectivity in rehabilitant orangutan (Pongo pygmaeus) imitationJournal of Comparative Psychology109(1), 5.Google Scholar
Sacks, H., Schegloff, E. A., & Jefferson, G. (1974). A simplest systematics for the organization of turn-taking for conversation. Language, 50, 696735.Google Scholar
Santos, J. C., Coloma, L. A., & Cannatella, D. C. (2003). Multiple, recurring origins of aposematism and diet specialization in poison frogsProceedings of the National Academy of Sciences100(22), 1279212797.Google Scholar
Schaefer, H. M. & Ruxton, G. D. (2011). Plant–Animal Communication. Oxford: Oxford University Press.Google Scholar
Schel, A. M., Townsend, S. W., Machanda, Z., Zuberbühler, K., & Slocombe, K. E. (2013). Chimpanzee alarm call production meets key criteria for intentionalityPLoS One8(10), e76674.Google Scholar
Schino, G. & Aureli, F. (2009) Reciprocal altruism in primates: Partner choice, cognition, and emotions. Advanced Study of Behavior, 39, 4569. pmid:20862268CrossRefGoogle Scholar
Schino, G. & Aureli, F. (2010). Primate reciprocity and its cognitive requirementsEvolutionary Anthropology: Issues, News, and Reviews19(4), 130135.Google Scholar
Schneider, C., Call, J., & Liebal, K. (2012). What role do mothers play in the gestural acquisition of bonobos (Pan paniscus) and chimpanzees (Pan troglodytes)? International Journal of Primatology33(1), 246262.CrossRefGoogle Scholar
Searcy, W. A. & Nowicki, S. (2005). The Evolution of Animal Communication: Reliability and Deception in Signaling Systems. Princeton, NJ: Princeton University Press.Google Scholar
Seyfarth, R. M., Cheney, D. L., & Marler, P. (1980). Monkey responses to three different alarm calls: Evidence of predator classification and semantic communicationScience210(4471), 801803.Google Scholar
Seyfarth, R. M. & Cheney, D. L. (2003). Signalers and receivers in animal communicationAnnual Review of Psychology54(1), 145173.CrossRefGoogle ScholarPubMed
Seyfarth, R. M. & Cheney, D. L. (2010). Production, usage, and comprehension in animal vocalizationsBrain and Language115(1), 92100Google Scholar
Seyfarth, R. M. & Cheney, D. L. (2017). The origin of meaning in animal signalsAnimal Behaviour124, 339346.Google Scholar
Shannon, C. E. & Weaver, W. (1949). The Mathematical Theory of Communication. Urbana: University of Illinois Press.Google Scholar
Silk, J. B., Kaldor, E., & Boyd, R. (2000). Cheap talk when interests conflictAnimal Behaviour59(2), 423432.Google Scholar
Slobodchikoff, C. N., Kiriazis, J., Fischer, C., & Creef, E. (1991). Semantic information distinguishing individual predators in the alarm calls of Gunnison’s prairie dogsAnimal Behaviour42(5), 713719.Google Scholar
Slobodchikoff, C. N., Perla, B. S., & Verdolin, J. L. (2009). Prairie Dogs: Communication and Community in an Animal Society. Harvard, MA: Harvard University Press.CrossRefGoogle Scholar
Slocombe, K. E. & Zuberbühler, K. (2005). Functionally referential communication in a chimpanzeeCurrent Biology15(19), 17791784.Google Scholar
Slocombe, K. E., Waller, B. M., & Liebal, K. (2011). The language void: The need for multimodality in primate communication researchAnimal Behaviour81(5), 919924.Google Scholar
Smith, M. J. & Harper, D. G. (1995). Animal signals: Models and terminology. Journal of Theoretical Biology, 177(3), 305311.Google Scholar
Spottiswoode, C. N., Begg, K. S., & Begg, C. M. (2016). Reciprocal signaling in honeyguide-human mutualismScience353(6297), 387389.CrossRefGoogle ScholarPubMed
Stegmann, U. E. (2005). John Maynard Smith’s notion of animal signalsBiology and Philosophy20(5), 10111025.Google Scholar
Stevens, M. & Ruxton, G. D. (2011). Linking the evolution and form of warning coloration in nature. Proceedings of the Royal Society of London B: Biological Sciences, 279(1728), 417426, rspb20111932.Google Scholar
Stivers, T., Enfield, N. J., Brown, P., Englert, C., Hayashi, M., Heinemann, T., … & Levinson, S. C. (2009). Universals and cultural variation in turn-taking in conversationProceedings of the National Academy of Sciences106(26), 1058710592.Google Scholar
Suzuki, T. N., Wheatcroft, D., & Griesser, M. (2016). Experimental evidence for compositional syntax in bird callsNature Communications7(1), 17.Google Scholar
Takahasi, M. & Okanoya, K. (2010). Song learning in wild and domesticated strains of white‐rumped munia, lonchura striata, compared by cross‐fostering procedures: Domestication increases song variability by decreasing strain‐specific biasEthology116(5), 396405.Google Scholar
Takahashi, D. Y., Fenley, A. R., & Ghazanfar, A. A. (2016). Early development of turn-taking with parents shapes vocal acoustics in infant marmoset monkeysPhilosophical Transactions of the Royal Society B: Biological Sciences371(1693), 20150370.Google Scholar
Tanner, J. E., Patterson, F. G., & Byrne, R. W. (2006) The development of spontaneous gestures in zoo-living gorillas and sign-taught gorillas: From action and location to object representation. Journal of Development Processes, 1, 69102Google Scholar
Tennie, C., Call, J., & Tomasello, M. (2006). Push or pull: Imitation vs. emulation in great apes and human childrenEthology112(12), 11591169.CrossRefGoogle Scholar
Tinbergen, N. (1952). “Derived” activities: Their causation, biological significance, origin, and emancipation during evolutionThe Quarterly Review of Biology27(1), 132.Google Scholar
Tinbergen, N. (1963). On aims and methods of ethologyZeitschrift für tierpsychologie20(4), 410433.Google Scholar
Tomasello, M., Call, J., Nagell, C., Olguin, R., & Carpenter, M. (1994) The learning and use of gestural signals by young chimpanzees: A trans-generational study. Primates 35, 137154Google Scholar
Tomasello, M., Call, J., Warren, J., Frost, G. T., Carpenter, M., & Nagell, K. (1997). The ontogeny of chimpanzee gestural signals: A comparison across groups and generationsEvolution of Communication1(2), 223259.Google Scholar
Tomasello, M. & Zuberbühler, K. (2002). Primate Vocal and Gestural Communication. In Bekoff, M.Allen, C., & Burghardt, G. M. (Eds.), The Cognitive Animal (pp. 293299). Cambridge, MA: MIT Press.Google Scholar
Townsend, S. W., Engesser, S., Stoll, S., Zuberbühler, K., & Bickel, B. (2018). Compositionality in animals and humansPLoS Biology16(8), e2006425.Google Scholar
Uetz, G. W., Roberts, J. A., & Taylor, P. W. (2009). Multimodal communication and mate choice in wolf spiders: Female response to multimodal versus unimodal signals. Animal Behaviour, 78(B2), 299305.Google Scholar
de Waal, F. B. M. (2000). Attitudinal reciprocity in food sharing among brown capuchin monkeysAnimal Behaviour60(2), 253261.Google Scholar
Wallis, J. (1992). Chimpanzee genital swelling and its role in the pattern of sociosexual behaviorAmerican Journal of Primatology28(2), 101113.Google Scholar
Watson, S. K., Townsend, S. W., Schel, A. M., Wilke, C., Wallace, E. K., Cheng, L., West, V., & Slocombe, K. E. (2015). Vocal learning in the functionally referential food grunts of chimpanzeesCurrent Biology25(4), 495499.Google Scholar
Wheeler, B. C. & Fischer, J. (2012). Functionally referential signals: A promising paradigm whose time has passedEvolutionary Anthropology: Issues, News, and Reviews21(5), 195205.Google Scholar
Wiener, N. (1948). Cybernetics or Control and Communication in the Animal and the Machine. Technology Press. New York: Wiley.Google Scholar
Wirthlin, M., Chang, E. F., Knörnschild, M., Krubitzer, L. A., et al. (2019). A modular approach to vocal learning: Disentangling the diversity of a complex behavioral traitNeuron104(1), 8799.Google Scholar
Zahavi, A. (1975). Mate selection – A selection for a handicapJournal of Theoretical Biology53(1), 205214.Google Scholar
Zuberbühler, K. (2000a). Referential labelling in Diana monkeysAnimal Behaviour59(5), 917927.Google Scholar
Zuberbühler, K. (2000b). Interspecies semantic communication in two forest primatesProceedings of the Royal Society of London. Series B: Biological Sciences267(1444), 713718.Google Scholar

References

Ache, B. W. & Young, J. M. (2005). Olfaction: Diverse species, conserved principles. Neuron, 48(3), 417430. https://doi.org/10.1016/j.neuron.2005.10.022Google Scholar
Agbogba, C. (1991). Observations sur les signaux préparatoires à l’alimentation des larves chez la fourmi ponérine Pachycondyla caffraria (Smith). Insectes Sociaux, 38(4), 439442. https://doi.org/10.1007/BF01241877Google Scholar
Agosti, D. & Johnson, N. F. (Eds.) (2005). Antbase. World Wide Web electronic publication. antbase.org, version (05/2005).Google Scholar
Andel, D. & Wehner, R. (2004). Path integration in desert ants, Cataglyphis: How to make a homing ant run away from home. Proceedings of the Royal Society B: Biological Sciences, 271(1547), 14851489. https://doi.org/10.1098/rspb.2004.2749Google Scholar
Ayasse, M., Paxton, R. J., & Tengö, J. (2001). Mating behaviour and chemical communication in the order Hymenoptera. Ecological Research, 46(1), 3178. https://doi.org/10.1063/1.1420510Google Scholar
Banks, A. N. & Srygley, R. B. (2003). Orientation by magnetic field in leaf-cutter ants, Atta colombica (Hymenoptera: Formicidae). Ethology, 109(10), 835846. https://doi.org/10.1046/j.0179-1613.2003.00927.xGoogle Scholar
Billen, J. & Šobotník, J. (2015). Insect exocrine glands. Arthropod Structure and Development, 44(5), 399400. https://doi.org/10.1016/j.asd.2015.08.010Google Scholar
Blum, M. S. (1985). Alarm Pheromone in Comparative Insect Physiology, Biochemistry and Pharmacology. In Kerkut, G. A. & Gilbert, L. I. (Eds.), Alarm Pheromone (Comparativ, pp. 193224). Oxford: Pergamon.Google Scholar
Bosmia, A. N., Griessenauer, C. J., Haddad, V., & Shane Tubbs, R. (2015). Ritualistic envenomation by bullet ants among the Sateré-Mawé Indians in the Brazilian Amazon. Wilderness and Environmental Medicine, 26(2), 271273. https://doi.org/10.1016/j.wem.2014.09.003Google Scholar
Boulay, R., Hefetz, A., Soroker, V., & Lenoir, A. (2000). Camponotus fellah colony integration: Worker individuality necessitates frequent hydrocarbon exchanges. Animal Behaviour, 59(6), 11271133. https://doi.org/10.1006/anbe.2000.1408Google Scholar
Bourke, A. F. & Franks, N. R. (1995). Social Evolution in Ants. Princeton, NJ: Princeton University Press.Google Scholar
Bradbury, J. & Vehrencamp, S. (1998). Principles of Animal Communication. Sunderland, MA: Sinauer Associates.Google Scholar
Branstetter, M. G., Danforth, B. N., Pitts, J. P., Faircloth, B. C., Ward, P. S., Buffington, M. L., … Brady, S. G. (2017). Phylogenomic insights into the evolution of stinging wasps and the origins of ants and bees. Current Biology, 27(7), 10191025. https://doi.org/10.1016/j.cub.2017.03.027Google Scholar
Brunner, E. & Heinze, J. (2009). Worker dominance and policing in the ant Temnothorax unifasciatus. Insectes Sociaux, 56(4), 397404. https://doi.org/10.1007/s00040–009-0037-xGoogle Scholar
Butenandt, A., Beckmann, R., Stamm, D., & Hecker, E. (1959). Über den Sexual-Lockstoff des Seidensspinners Bombyx mori. Naturforsch., 14(b), 283284.Google Scholar
Carter, G. G. & Wilkinson, G. S. (2013). Food sharing in vampire bats: Reciprocal help predicts donations more than relatedness or harassment. Proceedings of the Royal Society B: Biological Sciences, 280(1753). https://doi.org/10.1098/rspb.2012.2573Google ScholarPubMed
Creemers, B., Billen, J., & Gobin, B. (2003). Larval begging behaviour in the ant Myrmica rubra. Ethology Ecology and Evolution, 15(3), 261272. https://doi.org/10.1016/j.tet.2011.12.053Google Scholar
David, M. E. (2009). Trail pheromones of ants. Physiological Entomology, 34(1), 117. https://doi.org/10.1111/j.1365-3032.2008.00658.xGoogle Scholar
Dearborn, D. C. (1998). Begging behavior and food acquisition by brown-headed cowbird nestlings. Behavioral Ecology and Sociobiology, 43(4–5), 259270. https://doi.org/10.1007/s002650050490Google Scholar
Denis, D., Chameron, S., Costille, L., Pocheville, A., Châline, N., & Fresneau, D. (2008). Workers agonistic interactions in queenright and queenless nests of a polydomous ant society. Animal Behaviour, 75(3), 791800. https://doi.org/10.1016/j.anbehav.2007.06.016Google Scholar
di Mauro, G., Perez, M., Lorenzi, M. C., Guerrieri, F. J., Millar, J. G., & d’Ettorre, P. (2015). Ants discriminate between different hydrocarbon concentrations. Frontiers in Ecology and Evolution, 3(November), 111. https://doi.org/10.3389/fevo.2015.00133Google Scholar
Dorigo, M. & Gambardella, L. M. (1997). Ant colonies for the travelling salesman problem. Bio Systems, 43(2), 7381. https://doi.org/10.1016/S0303-2647(97)01708-5Google Scholar
d’Ettorre, P. (2016). Genomic and brain expansion provide ants with refined sense of smell. Proceedings of the National Academy of Sciences, 113(49), 1394713949. https://doi.org/10.1073/pnas.1617405113Google Scholar
d’Ettorre, P. & Heinze, J. (2005). Individual recognition in ant queens. Current Biology, 15(23), 21702174. https://doi.org/10.1016/j.cub.2005.10.067Google Scholar
Ferreira, R. S., Cros, E., Fresneau, D., & Rybak, F. (2014). Behavioural contexts of sound production in Pachycondyla ants (Formicidae: Ponerinae). Acta Acustica United with Acustica, 100(4), 739747. https://doi.org/10.3813/AAA.918753Google Scholar
Franks, N. R. & Richardson, T. (2006). Teaching in tandem-running ants. Nature, 439(7073), 153. https://doi.org/10.1038/439153aGoogle Scholar
von Frisch, K. (1974). Decoding the language of the bee. Science, 185(4152), 663668. Retrieved from www.jstor.org/stable/1738718Google Scholar
Gibbs, A. (1998). Water-proofing properties of cuticular lipids. American Psychologist, 38, 471482. https://doi.org/https://www.jstor.org/stable/4620168Google Scholar
Giurfa, M. & Sandoz, J.-C. (2012). Invertebrate learning and memory: Fifty years of olfactory conditioning of the proboscis extension response in honeybees. Learning & Memory, 19(2), 5466. https://doi.org/10.1101/lm.024711.111Google Scholar
Golden, T. M. J. & Hill, P. S. M. (2016). The evolution of stridulatory communication in ants, revisited. Insectes Sociaux, 63(2), 309319. https://doi.org/10.1007/s00040-016-0470-6Google Scholar
Goss, S., Aron, S., Deneubourg, J. L., & Pasteels, J. M. (1989). Self-organized shortcuts in the Argentine ant. Naturwissenschaften, 76(12), 579581. https://doi.org/10.1007/BF00462870Google Scholar
Greenberg, L., Tröger, A. G., Francke, W., McElfresh, J. S., Topoff, H., Aliabadi, A., & Millar, J. G. (2007). Queen sex pheromone of the slave-making ant, Polyergus breviceps. Journal of Chemical Ecology, 33(5), 935945. https://doi.org/10.1007/s10886-007-9269-2Google Scholar
Guerrieri, F. J. & d’Ettorre, P. (2008). The mandible opening response: Quantifying aggression elicited by chemical cues in ants. Journal of Experimental Biology, 211(7), 11091113. https://doi.org/10.1242/jeb.008508Google Scholar
Guerrieri, F. J. & d’Ettorre, P. (2010). Associative learning in ants: Conditioning of the maxilla-labium extension response in Camponotus aethiops. Journal of Insect Physiology, 56(1), 8892. https://doi.org/10.1016/j.jinsphys.2009.09.007Google Scholar
Hager, F. A., Kirchner, L., & Kirchner, W. H. (2017). Directional vibration sensing in the leafcutter ant Atta sexdens. Biology Open, 6(12), 19491952. https://doi.org/10.1242/bio.029587Google Scholar
Hölldobler, B. (1971). Sex pheromone in the ant Xenomyrmex floridanus. Journal of Insect Physiology, 17(8), 14971499. https://doi.org/10.1016/0022-1910(71)90158-2Google Scholar
Hölldobler, B. (1976). Behavioral ecology of mating in harvester ants. Behavoral &. Ecological Sociobiology, 1, 405423.Google Scholar
Hölldobler, B. & Wilson, E. O. (1990). The Ants. (Belknap, , Ed.). Cambridge, MA: Harvard University Press.Google Scholar
Holman, L., Jørgensen, C. G., Nielsen, J., & d’Ettorre, P. (2010). Identification of an ant queen pheromone regulating worker sterility. Proceedings of the Royal Society B: Biological Sciences, 277(1701), 37933800. https://doi.org/10.1098/rspb.2010.0984Google Scholar
Kaptein, N., Billen, J., & Gobin, B. (2005). Larval begging for food enhances reproductive options in the ponerine ant Gnamptogenys striatula. Animal Behaviour, 69(2), 293299. https://doi.org/10.1016/j.anbehav.2004.04.012Google Scholar
Khalife, A., Keller, R. A., Billen, J. et al. (2018). Skeletomuscular adaptations of head and legs of Melissotarsus ants for tunnelling through living wood. Frontiers in Zoology, 15(30). https://doi.org/10.1186/s12983-018-0277-6Google Scholar
Larabee, F. J., Smith, A. A., & Suarez, A. V. (2018). Snap-jaw morphology is specialized for high-speed power amplification in the Dracula ant, Mystrium camillae. Royal Society Open Science, 5(12). https://doi.org/10.1098/rsos.181447Google Scholar
Larsen, J., Nehring, V., d’Ettorre, P., & Bos, N. (2016). Task specialization influences nestmate recognition ability in ants. Behavioral Ecology and Sociobiology, 70(9), 14331440. https://doi.org/10.1007/s00265-016-2152-9Google Scholar
Leboeuf, A. C., Waridel, P., Brent, C. S., Gonçalves, A. N., Menin, L., Ortiz, D., … Keller, L. (2016). Oral transfer of chemical cues, growth proteins and hormones in social insects. ELife, 5(November 2016), 127. https://doi.org/10.7554/eLife.20375Google Scholar
Lenoir, A. & Jaisson, P. (1982). Evolution et rôle des communications antennaires chez les insectes sociaux. In Jaisson, P. (Ed.), Social Insects in the Tropics (pp. 157180). Paris: Université Paris-Nord.Google Scholar
Lenoir, A., Fresneau, D., Errard, C., & Hefetz, A. (1999). Individuality and Colonial Identity in Ants: The Emergence of the Social Representation Concept. In Detrain, C., Deneubourg, J. L., & Pasteels, J. M. (Eds.), Information Processing in Social Insects (pp. 219237). Basel: Birkhäuser. https://doi.org/10.1007/978-3-0348-8739-7_12Google Scholar
Löfqvist, J. (1976). Formic acid and saturated hydrocarbons as alarm pheromones for the ant Formica rufa. Journal of Insect Physiology, 22(10), 13311346. https://doi.org/10.1016/0022-1910(76)90155-4Google Scholar
Macquart, D., Garnier, L., Combe, M. et al. (2006). Ant navigation en route to the goal: Signature routes facilitate way-finding of Gigantiops destructor. Journal of Comparative Physiology A, 192, 221234. https://doi.org/10.1007/s00359-005-0064-7Google Scholar
Manser, M. B., Madden, J. R., Kunc, H. P., English, S., & Clutton-Brock, T. (2008). Signals of need in a cooperatively breeding mammal with mobile offspring. Animal Behaviour, 76(6), 18051813. https://doi.org/10.1016/j.anbehav.2008.07.027Google Scholar
Markl, H. (1973). The Evolution of Stridulatory Communication in Ants. In International Union for the Study of Social Insect (pp. 258265), Congress 1973. Proceedings IUSSI VIIth International Congress, London, 10–15 September, 1973. Southampton: University of Southampton.Google Scholar
McElligott, A., Gammell, M., Harty, H. et al. (2001). Sexual size dimorphism in fallow deer (Dama dama): Do larger, heavier males gain greater mating success? Behavioral & Ecological Sociobiology, 49, 266272. https://doi.org/10.1007/s002650000293Google Scholar
Mercier, J. L., Lenoir, J. C., Eberhardt, A., Frohschammer, S., Williams, C., & Heinze, J. (2007). Hammering, mauling, and kissing: Stereotyped courtship behavior in Cardiocondyla ants. Insectes Sociaux, 54(4), 403411. https://doi.org/10.1007/s00040-007-0960-7Google Scholar
Monnin, T. & Peeters, C. (1999). Dominance hierarchy and reproductive conflicts among subordinates in a monogynous queenless ant. Behavioral Ecology, 10(3), 323332. https://doi.org/10.1093/beheco/10.3.323Google Scholar
Monnin, T., Ratnieks, F. L. W., Jones, G. R., & Beard, R. (2002). Pretender punishment induced by chemical signalling in a queenless ant. Nature, 419(6902), 6165. https://doi.org/10.1038/nature00932Google Scholar
Nash, D. R., Als, T. D., Maile, R., Jones, G. R., & Boomsma, J. J. (2008). A mosaic of chemical coevolution in a large blue butterfly. Science, 319(5859), 8890. https://doi.org/10.1126/science.1149180Google Scholar
Penick, C. A., Prager, S. S., & Liebig, J. (2012). Juvenile hormone induces queen development in late-stage larvae of the ant Harpegnathos saltator. Journal of Insect Physiology, 58(12), 16431649. https://doi.org/10.1016/j.jinsphys.2012.10.004Google Scholar
Perez, M., Rolland, U., Giurfa, M., & D’Ettorre, P. (2013). Sucrose responsiveness, learning success, and task specialization in ants. Learning and Memory, 20(8), 417420. https://doi.org/10.1101/lm.031427.113Google Scholar
Perez, M., Giurfa, M. & d’Ettorre, P. (2015). The scent of mixtures: Rules of odour processing in ants. Science Reports, 5, 8659. DOI:10.1038/srep08659Google Scholar
Pintea, C. M., Pop, P. C., & Chira, C. (2017). The generalized traveling salesman problem solved with ant algorithms. Complex Adaptive Systems Modeling, 5(8). https://doi.org/10.1186/s40294-017-0048-9Google Scholar
Piqueret, B., Sandoz, J. C., & d’Ettorre, P. (2019). Ants learn fast and do not forget: Associative olfactory learning, memory and extinction in Formica fusca. Royal Society Open Science, 6. https://doi.org/10.1098/rsos.190778Google Scholar
Provecho, Y. & Josens, R. (2009). Olfactory memory established during trophallaxis affects food search behaviour in ants. Journal of Experimental Biology, 212(20), 32213227. https://doi.org/10.1242/jeb.033506Google Scholar
Rossi, N., Baracchi, D., Giurfa, M., & d’Ettorre, P. (2018). Pheromone-induced accuracy of nestmate recognition in carpenter ants: Simultaneous decrease in type I and type II errors. The American Naturalist, 193(2), 267278. https://doi.org/10.1086/701123Google Scholar
Sala, M., Casacci, L. Pietro, Balletto, E., Bonelli, S., & Barbero, F. (2014). Variation in butterfly larval acoustics as a strategy to infiltrate and exploit host ant colony resources. PLoS One, 9(4), 2023. https://doi.org/10.1371/journal.pone.0094341Google Scholar
Sandoz, J. C. (2011). Behavioral and neurophysiological study of olfactory perception and learning in honeybees. Frontiers in Systems Neuroscience, 5. https://doi.org/10.3389/fnsys.2011.00098Google Scholar
Santos, J. C., Korndörfer, A. P., & Del-Claro, K. (2005). Defensive behavior of the weaver ant Camponotus (Myrmobrachys) senex (Formicidae: Formicinae): Drumming and mimicry. Sociobiology, 46(2), 279288. https://doi.org/www.csuchico.edu/biol/Sociobiology/sociobiologyindex.htmlGoogle Scholar
Schiappa, J. & Van Hee, R. (2012). From ants to staples: History and ideas concerning suturing techniques. Acta Chirurgica Belgica, 112(5), 395402. https://doi.org/10.1080/00015458.2012.11680861Google Scholar
Schultz, T. R. (2000). In search of ant ancestors. Proceedings of the National Academy of Sciences, 97(26), 1402814029. https://doi.org/10.1073/pnas.011513798Google Scholar
Shokouhi, M., Shadab Mehr, H., Mafi, E., & Rahnama, M. (2016). Optimization of main public transport paths based on accessibility – case study: Mashhad, Iran. Journal of Public Transportation, 19(1), 114128. https://doi.org/10.5038/2375-0901.19.1.8Google Scholar
Soroker, V., Vienne, C., Hefetz, A., & Nowbahari, E. (1994). The postpharyngeal gland as a “gestalt” organ for nestmate recognition in the ant Cataglyphis niger. Naturwissenschaften, 81(11), 510513. https://doi.org/10.1007/BF01132686Google Scholar
Topoff, H. & Greenberg, L. (1988). Mating behavior of the socially-parasitic ant Polyergus breviceps: The role of the mandibular glands. Psyche (New York), 95(1–2), 8187. https://doi.org/10.1155/1988/62921Google Scholar
Tumlinson, J. H., Silverstein, R. M., Moser, J. C., Brownlee, R. G., & Ruth, J. M. (1971). Identification of the trail pheromone of a leaf-cutting ant, Atta texana. Nature, 234(5328), 348349. https://doi.org/10.1038/234348b0Google Scholar
Walter, F., Fletcher, D. J. C., Chautems, D., Cherix, D., Keller, L., Francke, W., … Vargo, E. L. (1993). Identification of the sex pheromone of an ant, Formica lugubris (Hymenoptera, Formicidae). Naturwissenschaften, 80(1), 3034. https://doi.org/10.1007/BF01139755Google Scholar
Wenseleers, T., Helanterä, H., Hart, A., & Ratnieks, F. L. W. (2004). Worker reproduction and policing in insect societies: An ESS analysis. Journal of Evolutionary Biology, 17(5), 10351047. https://doi.org/10.1111/j.1420-9101.2004.00751.xGoogle Scholar
Wheeler, D. E. (1986). Developmental and physiological determinants of caste in social hymenoptera: Evolutionary implications. The American Naturalist, 128(1), 1334. https://doi.org/10.1086/284536Google Scholar
Wheeler, D. E. & Buck, N. A. (1992). Protein, lipid and carbohydrate use during metamorphosis in the fire ant, Solenopsis xyloni. Physiological Entomology, 17(4), 397403. https://doi.org/10.1111/j.1365-3032.1992.tb01038.xGoogle Scholar
Wyatt, T. D. (2014). Pheromones and Animal Behavior. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9781139030748Google Scholar
Zahavi, A. (2008). The Handicap Principle and Signalling in Collaborative Systems. In d’Ettorre, P. & Hughes, D. P. (Eds.), Sociobiology of Commmunication: An Interdisciplinary Perspective (pp. 19). Oxford: Oxford University Press.Google Scholar
Van Zweden, J. S., Fürst, M. A., Heinze, J., & d’Ettorre, P. (2007). Specialization in policing behaviour among workers in the ant Pachycondyla inversa. Proceedings of the Royal Society B: Biological Sciences, 274(1616), 14211428. https://doi.org/10.1098/rspb.2007.0113Google Scholar
van Zweden, J. S. & d’Ettorre, P. (2010). Nestmate Recognition in Social Insects and the Role of Hydrocarbons. In Blomquist, G. & Bagnères, A. (Eds.), Insect Hydrocarbons: Biology, Biochemistry, and Chemical Communication (pp. 222243). Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511711909Google Scholar
Ziegelbecker, A., Richter, F., & Sefc, K. M. (2018). Colour pattern predicts outcome of female contest competition in a sexually monomorphic fish. Biological Letters, 1420180480. http://doi.org/10.1098/rsbl.2018.0480Google Scholar

References

Chakraborty, M., Walløe, S., Nedergaard, S., Fridel, E. E., Dabelsteen, T., Pakkenberg, B., et al. (2015). Core and shell song systems unique to the parrot brain. PLoS One, 10(6), e0118496. doi: 10.1371/journal.pone.0118496.Google Scholar
Clements, K., Gray, S. L., Gross, B., & Pepperberg, I. M. (2018). Initial evidence for probabilistic learning by a Grey parrot (Psittacus erithacus). Journal of Comparative Psychology, 132, 166177.Google Scholar
Denison, S., Bonawitz, E., Gopnik, A., & Griffiths, T. L. (2013). Rational variability in children’s causal inferences: The Sampling Hypothesis. Cognition, 126, 285300.Google Scholar
Denison, S. & Xu, F. (2014). The origins of probabilistic inference in human infants. Cognition, 130, 335347.Google Scholar
Driver, R. (1978) When is a stage not a stage? A critique of Piaget’s theory of cognitive development and its application to science education. Educational Research, 21, 5461,Google Scholar
Eckert, J., Rakoczy, H., & Call, J. (2017). Are great apes able to reason from multi-item samples to populations of food items? American Journal of Primatology, 79(10). https://doi.org/10.1002/ ajp.22693Google Scholar
Eckert, J., Call, J., Hermes, J., Herman, E., & Rakoczy, H. (2018a). Intuitive statistical inferences in chimpanzees and humans follow Weber’s law. Cognition, 180, 99107.Google Scholar
Eckert, J., Rakoczy, H., Call, J., Hermann, E., & Hanus, D. (2018b). Chimpanzees consider humans’ psychological states when drawing statistical inferences. Current Biology, 28, 19591963.Google Scholar
Gardner, R. A. & Gardner, B. T. (1969). Teaching sign language to a chimpanzee. Science, 187, 644672.Google Scholar
Griffin, D. (1976). The Question of Animal Awareness. New York: Rockefeller University Press.Google Scholar
Gutiérrez-Ibáñez, C., Iwaniuk, A. N., & Wylie, D. R. (2018). Parrots have evolved a primate-like telencephalic-midbrain-cerebellar circuit. Scientific Reports, 8, 9960. doi: 10.1038/s41598-018-28301-4.Google Scholar
Hedges, S. B., Parker, P. H., Sibley, C. G., & Kumar, S. (1996). Continental breakup and the ordinal diversification of birds and mammals. Nature, 381, 226229.Google Scholar
Hsee, C. K. (1998). Less is better: When low-value options are valued more highly than high-value options. Journal of Behavioral Decision Making, 11, 107121.Google Scholar
Jarvis, E. D., Yu, J., Rivas, M. V., Horita, H., Feenders, G. et al. (2013). Global view of the functional molecular organization of the avian cerebrum: Mirror images and functional columns. Journal of Comparative Neurology, 521, 36143665.Google Scholar
Kanizsa, G. (1955/1987). Margini quasi-percettivi in campi con stimulazione omogenea. Rivista di Psicologia, 49, 730 [translated in Petry, S. & Meyer, G. (Eds.), 1987. The Perception of Illusory Contours. New York: Springer].Google Scholar
Kanizsa, G. (1979). Organization in Vision: Essays on Gestalt Perception. Santa Barbara, CA: Praeger Publishers.Google Scholar
Karmiloff-Smith, A. (1992). Beyond Modularity: A Developmental Perspective on Cognitive Science. Cambridge, MA: MIT Press/Bradford Books.Google Scholar
Mazengenya, P., Bhagwandin, A., Manger, P. R., & Ihunwo, A. O. (2018). Putative adult neurogenesis in Old World parrots: The Congo African Grey parrot (Psittacus erithacus) and the timneh Grey parrot (Psittacus timneh). Frontiers in Neuroanatomy, 12,7, doi: 10.3389/fnana.2018.00007.Google Scholar
Miles, H. L. (1978). Language Acquisition in Apes and Children. In Peng, F. C. C. (Ed.), Sign Language and Language Acquisition in Man and Ape (pp. 108120). Boulder, CO: Westview Press.Google Scholar
Minini, L. & Jeffery, K. J. (2006). Do rats use shape to solve “shape discriminations”? Learning & Memory, 13, 287297.Google Scholar
Morgane, P. J., Jacobs, M. S., & Galaburda, A. (1986). Evolutionary Morphology of the Dolphin Brain. In Schusterman, R. J., Thomas, J. A., & Wood, F. G. (Eds.), Dolphin Cognition and Behavior: A Comparative Approach (pp. 529). Hillsdale, NJ: Erlbaum.Google Scholar
Müller, J. & Reisz, R. R. (2005). Four well-constrained calibrations from the vertebrate fossil record for molecular clock estimates. BioEssays, 27, 10691075.Google Scholar
Nagasaka, Y., Brooks, D. I., & Wasserman, E. A. (2010). Amodal completion in bonobos. Learning & Motivation, 41, 174186.Google Scholar
Olkowicz, S., Kocourek, M., Lŭcan, R. K., Porteš, M., Fitch, W. T., Herculano- Houzel, S., et al. (2016). Birds have primate-like numbers of neurons in the forebrain. Proceedings of the National Academy of Sciences, U.S.A., 113, 72557260.Google Scholar
Pattison, K. F. & Zentall, T. R. (2014). Suboptimal choice by dogs: When less is better than more. Animal Cognition, 17, 10191022.Google Scholar
Pepperberg, I. M. (1981). Functional vocalizations by an African Grey parrot (Psittacus erithacus). Zeitschrift für Tierpsychologie, 55, 139160.Google Scholar
Pepperberg, I. M. (1999). The Alex Studies. Cambridge, MA: Harvard University Press.Google Scholar
Pepperberg, I. M. (2006a). Grey parrot (Psittacus erithacus) numerical abilities: Addition and further experiments on a zero-like concept. Journal of Comparative Psychology, 120, 111.Google Scholar
Pepperberg, I. M. (2006b). Ordinality and inferential abilities of a Grey parrot (Psittacus erithacus). Journal of Comparative Psychology, 120, 205216.Google Scholar
Pepperberg, I. M. (2007). Grey parrots do not always “parrot”: Roles of imitation and phonological awareness in the creation of new labels from existing vocalizations. Language Sciences, 29, 113.Google Scholar
Pepperberg, I. M. (2009). Grey parrot vocal learning: Creation of new labels from existing vocalizations and issues of imitation. LACUS Forum, 34, 2130.Google Scholar
Pepperberg, I. M. (2012). Symbolic Communication in the Grey Parrot. In Vonk, J. & Shackelford, T. (Eds.), Oxford Handbook of Comparative Evolutionary Psychology (pp. 772834). Oxford: Oxford University Press.Google Scholar
Pepperberg, I. M. (2017). Review of studies on visual perception in Grey parrots (Psittacus erithacus): The Müller-Lyer illusion, amodal and modal completion. Animal Behavior and Cognition, 4, 378395.Google Scholar
Pepperberg, I. M. & Gordon, J. D. (2005). Number comprehension by a Grey parrot (Psittacus erithacus), including a zero-like concept. Journal of Comparative Psychology, 119, 197209.Google Scholar
Pepperberg, I. M., Vicinay, J., & Cavanagh, P. (2008). The Müller-Lyer illusion is processed by a Grey parrot (Psittacus erithacus). Perception, 37, 765781.Google Scholar
Pepperberg, I. M. & Carey, S. (2012). Grey parrot number acquisition: The inference of cardinal value from ordinal position on the numeral list. Cognition, 125, 219232.Google Scholar
Pepperberg, I. M. & Nakayama, K. (2016). Robust representation of shape in a Grey parrot (Psittacus erithacus). Cognition, 153, 146160.Google Scholar
Piaget, J. & Inhelder, B. (1975). The Origin of the Idea of Chance in Children (Leake, L., Trans.). New York, NY: Norton.Google Scholar
Premack, D. (1978). On the Abstractness of Human Concepts: Why It Would Be Difficult to Talk to a Pigeon. In Hulse, S. H., Fowler, H. & Honig, W. K. (Eds.), Cognitive Processes in Animal Behavior (pp. 421451). Hillsdale, NJ: Erlbaum.Google Scholar
Rakoczy, H., Clüver, A., Saucke, L., Stoffregen, N., Gräener, A., Migura, J., & Call, J. (2014). Apes are intuitive statisticians. Cognition, 131, 6068.Google Scholar
Regolin, L. & Vallortigara, G. (1995). Perception of partly occluded objects in young chicks. Perception and Psychophysics, 57, 971976.Google Scholar
Richards, D. G., Woltz, J. P., & Herman, L. M. (1984). Vocal mimicry of computer-generated sounds and labeling of objects by a bottle-nosed dolphin (Tursiops truncatus). Journal of Comparative Psychology, 98, 1028.Google Scholar
Rubinstein, A. (2002). Irrational diversification in multiple decision problems. European Economic Review, 46, 13691378.Google Scholar
Rumbaugh, D. (Ed.). (1977). Language Learning by a Chimpanzee: The LANA Project. New York: Academic. Eds. Oakley, D. A. & Plotkin, H. C.. London: Methuen, 126153.Google Scholar
Sarich, V. M. & Cronin, J. E. (1977). Generation length and rates of hominid evolution. Nature, 269, 354355.Google Scholar
Shinskey, J. L. & Munakata, Y. (2005). Familiarity breeds searching: Infants reverse their novelty preferences when reaching for hidden objects. Psychological Science, 16, 596600.Google Scholar
Tecwyn, E. C., Denison, S., Messer, E. J. E., & Buchsbaum, D. (2017). Intuitive probabilistic inference in capuchin monkeys. Animal Cognition, 20, 244256.Google Scholar
Téglás, E., Vul, E., Girotto, V., Gonzalez, M., Tenenbaum, J. B., & Bonatti, L. L. (2011). Pure reasoning in 12-month-old infants as probabilistic inference. Science, 332, 10541059.Google Scholar
Téglás, E., Ibanez-Lillo, A., Costa, A., & Bonatti, L. L. (2015). Numerical representations and intuitions of probabilities at 12 months. Developmental Science, 18, 183193.Google Scholar

References

Agnetta, B., Hare, B., & Tomasello, M. (2000). Cues to food location that domestic dogs (Canis familiaris) of different ages do and do not use. Animal Cognition, 3 (2), 107112.Google Scholar
Albuquerque, N., Guo, K., Wilkinson, A., Savalli, C., Otta, E., & Mills, D. (2016). Dogs recognize dog and human emotions. Biology Letters, 12(1), 20150883.Google Scholar
Albuquerque, N., Guo, K., Wilkinson, A., Resende, B., & Mills, D. S. (2018). Mouth-licking by dogs as a response to emotional stimuli. Behavioural Processes, 146, 4245.Google Scholar
Allen, W. F. (1937). Olfactory and trigeminal conditioned reflexes in dogs. American Journal of Physiology, 118, 532540.Google Scholar
Andics, A., Gábor, A., Gácsi, M., Faragó, T., Szabó, D., & Miklósi, Á. (2016). Neural mechanisms for lexical processing in dogs. Science, 353 (6303), 10301032.Google Scholar
Andics, A. & Miklósi, Á. (2018). Neural processes of vocal social perception: Dog-human comparative fMRI studies. Neuroscience & Biobehavioral Reviews, 85, 5464.Google Scholar
Asa, C. S., Mech, L. D., & Seal, U. S. (1985). The use of urine, faeces, and anal-gland secretions in scent-marking by a captive wolf (Canis lupus) pack. Animal Behaviour, 33(3), 10341036.Google Scholar
Asa, C. S., Mech, L. D., Seal, U. S., & Plotka, E. D. (1990). The influence of social and endocrine factors on urine-marking by captive wolves (Canis lupus). Hormones and Behavior, 24 (4), 497509.Google Scholar
Ashmead, D. H., Clifton, R. K., & Reese, E. P. (1986). Development of auditory localization in dogs: Single source and precedence effect sounds. Developmental Psychobiology, 19(2), 91103.Google Scholar
Barber, A. L. A., Randi, D., Müller, C. A., & Huber, L. (2016). The processing of human emotional faces by pet and lab dogs: Evidence for lateralization and experience effects. PLoS One, 11(4), e0152393.Google Scholar
Baun, M. M., Bergstrom, N., & Langston, N. F. L. T. (1984). Physiological effects of human/companion animal bonding. Nursing Research, 33(3), 126129.Google Scholar
Bekoff, M. (1974). Social play in coyotes, wolves and dogs. BioScience, 24(4), 225230.Google Scholar
Bence, M., Elek, Z., Kis, A., Kubinyi, E., Lakatos, G., Miklósi, Á., … Rónai, Z. (2013). Analysis of oxytocin receptor gene as putative component of social behavior in family dogs. Behavior Genetics, 43(6), 509.Google Scholar
Bleicher, N. (1963). Physical and behavioral analysis of dog vocalizations. American Journal of Veterinary Research, 24, 415427.Google Scholar
Bognár, Z., Iotchev, I. B., & Kubinyi, E. (2018). Sex, skull length, breed, and age predict how dogs look at faces of humans and conspecifics. Animal Cognition, 21 (4), 447456.Google Scholar
Bradshaw, J. W. & Nott, H. M. (1995). Social and Communication Behaviour of Companion Dogs. In Serpell, J. A. (Ed.), The Domestic Dog: Its Evolution, Behavior and Interactions with People (pp. 115130). Cambridge: Cambridge University Press.Google Scholar
Bradshaw, J. W. & Rooney, N. I. C. O. L. A. (2016). Dog Social Behavior and Communication. In Serpell, J. A. (Ed.), The Domestic Dog: Its Evolution, Behavior and Interactions with People. 2nd ed. (pp. 133159). Cambridge: Cambridge University Press.Google Scholar
Bräuer, J., Schönefeld, K., & Call, J. (2013). When do dogs help humans? Applied Animal Behaviour Science, 148 (1), 138149.Google Scholar
Brisbin, I. L. Jr & Austad, S. N. (1991). Testing the individual odour theory of canine olfaction. Animal Behaviour, 42(1), 6369.Google Scholar
Brown, D. S. & Johnston, R. E. (1983). Individual Discrimination on the Basis of Urine in Dogs and Wolves. In Müller-Schwarze, D. (Ed.), Chemical Signals in Vertebrates 3 (pp. 343346). New York: Plenum Press.Google Scholar
Byosiere, S. E., Chouinard, P. A., Howell, T. J., & Bennett, P. C. (2018). What do dogs (Canis familiaris) see? A review of vision in dogs and implications for cognition research. Psychonomic Bulletin & Review, 25 (5), 17981813.Google Scholar
Charnetski, C. J., Riggers, S., & Brennan, F. X. (2004). Effect of petting a dog on immune system function. Psychological Reports, 95, 10871091.Google Scholar
Chen, M., Daly, M., Williams, N., Williams, S., Williams, C., & Williams, G. (2000). Non-invasive detection of hypoglycaemia using a novel, fully biocompatible and patient friendly alarm system. BMJ, 321 (7276), 15651566.Google Scholar
Clutton-Brock, J. (1997). Origins of the Dog: Domestication and Early History. In Serpell, J. (Ed.), The Domestic Dog: Its Evolution, Behavior and Interactions with People (219). Cambridge: Cambridge University Press.Google Scholar
Cohen, J. A. & Fox, M. W. (1976). Vocalization in wild canids and possible effects of domestication. Behavioural Processes, 1(1), 7792.Google Scholar
Coppinger, R.. & Coppinger, L. (2001). Dogs: A Startling New Understanding of Canine Origin, Behavior & Evolution. New York: Simon and Schuster.Google Scholar
Coscia, E. M., Phillips, D. P., & Fentress, J. C. (1991). Spectral analysis of neonatal wolf Canis lupus vocalizations. Bioacoustics, 3 (4), 275293.Google Scholar
Coscia, M., A. (1995). Ontogeny of Timber Wolf Vocalizations: Acoustic Properties and Behavioural Contexts. Doctoral Dissertation, Dalhousie University, Halifax, Canada.Google Scholar
Csibra, G. & Gergely, G. (2006). Social Learning and Social Cognition: The Case for Pedagogy. In Munakata, Y. & Johnson, M. H. (Eds.), Processes of Change in Brain and Cognitive Development: Attention and Performance XXI (pp. 249274). Oxford: Oxford University Press.Google Scholar
Dale, R., Palma-Jacinto, S., Marshall-Pescini, S., & Range, F. (2019). Wolves, but not dogs, are prosocial in a touch screen task. PLoS One 14 (5), e0215444.Google Scholar
D’Aniello, B., Scandurra, A., Alterisio, A., Valsecchi, P., & Prato-Previde, E. (2016). The importance of gestural communication: A study of human–dog communication using incongruent information. Animal Cognition, 19 (6), 12311235.Google Scholar
D’Aniello, B., Semin, G. R., Alterisio, A., Aria, M., & Scandurra, A. (2018). Interspecies transmission of emotional information via chemosignals: From humans to dogs (Canis lupus familiaris). Animal Cognition, 21 (1), 6778.Google Scholar
Derix, R. R. W. M. (1994). The Social Organisation of Wolves and African Wild Dogs: An Empirical and Model-Theoretical Approach. Doctoral Dissertation, University of Utrecht, Utrecht, Netherlands.Google Scholar
Faragó, T., Andics, A., Devecseri, V., Kis, A., Gácsi, M., & Miklósi, Á. (2014). Humans rely on the same rules to assess emotional valence and intensity in conspecific and dog vocalizations. Biology Letters, 10 (1), 20130926.Google Scholar
Faragó, T., Takács, N., Miklósi, Á., & Pongrácz, P. (2017). Dog growls express various contextual and affective content for human listeners. Royal Society Open Science, 4(5), 170134.Google Scholar
Feddersen-Petersen, D. U. (2000). Vocalisation of European wolves (Canis lupus lupus L.) and various dog breeds (Canis lupus f. familiaris). Archiv für Tierzucht, 43, 387397.Google Scholar
Feddersen-Petersen, D. U. (2007). Social Behaviour of Dogs and Related Canids. In: Jensen, P. (Ed.), The Behavioural Biology of Dogs, Wallington, UK: CAB, International.Google Scholar
Fox, M. (1970). A comparative study of the development of facial expressions in canids: Wolf, coyote and foxes. Behaviour, 36 (1–2), 4973.Google Scholar
Fox, M. (1971). Behaviour of Wolves, Dogs and Related Canids. London: Jonathan Cape.Google Scholar
Gácsi, M., Kara, E., Belényi, B., Topál, J., & Miklósi, Á. (2009). The effect of development and individual differences in pointing comprehension of dogs. Animal Cognition, 12 (3), 471479.Google Scholar
Gergely, A., Faragó, T., Galambos, Á., & Topál, J. (2017). Differential effects of speech situations on mothers’ and fathers’ infant-directed and dog-directed speech: An acoustic analysis. Scientific Reports, 7 (1), 13739.Google Scholar
Goodwin, D., Bradshaw, J. W., & Wickens, S. M. (1997). Paedomorphosis affects agonistic visual signals of domestic dogs. Animal Behaviour, 53 (2), 297304.Google Scholar
Halpin, Z. T. (1986). Individual odors among mammals: Origins and functions. Advances in the Study of Behavior, 16, 39-70.Google Scholar
Hardin, D. S., Anderson, W., & Cattet, J. (2015). Dogs can be successfully trained to alert to hypoglycemia samples from patients with type 1 diabetes. Diabetes Therapy, 6 (4), 509517.Google Scholar
Harrington, F. H. & Mech, L. D. (1979). Wolf howling and its role in territory maintenance. Behaviour, 68 (3), 207-249.Google Scholar
Heffner, H. E. (1983). Hearing in large and small dogs: Absolute thresholds and size of the tympanic membrane. Behavioral Neuroscience, 97 (2), 310318.Google Scholar
Hepper, P. G. (1994). Long term retention of kinship recognition established during infancy in the domestic dog. Behavioural Processes, 33 (1–2), 314.Google Scholar
Hirsh-Pasek, K. & Treiman, R. (1982). Doggerel: Motherese in a new context. Journal of Child Language, 9 (1), 229237.Google Scholar
Jacobs, G. H. (1993). The distribution and nature of colour vision among the mammals. Biological Reviews, 68 (3), 413471.Google Scholar
Jensen, P., Persson, M. E., Wright, D., Johnsson, M., Sundman, A. S., & Roth, L. S. V. (2016). The genetics of how dogs became our social allies. Current Directions in Psychological Science, 25(5), 334338.Google Scholar
Kaminski, J., Call, J., & Fischer, J. (2004). Word learning in a domestic dog: Evidence for” fast mapping.” Science, 304 (5677), 16821683.Google Scholar
Kaminski, J., Hynds, J., Morris, P., & Waller, B. M. (2017). Human attention affects facial expressions in domestic dogs. Scientific Reports, 7, 12914.Google Scholar
Kaminski, J., Neumann, M., Bräuer, J., Call, J., & Tomasello, M. (2011). Dogs, Canis familiaris, communicate with humans to request but not to inform. Animal Behaviour, 82 (4), 651658.Google Scholar
Kaminski, J. & Nitzschner, M. (2013). Do dogs get the point? A review of dog–human communication ability. Learning and Motivation, 44 (4), 294302.Google Scholar
Kaminski, J., Schulz, L., & Tomasello, M. (2012). How dogs know when communication is intended for them. Developmental Science, 15 (2), 222232.Google Scholar
Kaminski, J. & Piotti, P. (2016). Current trends in dog-human communication: Do dogs inform? Current Directions in Psychological Science, 25 (5), 322326.Google Scholar
Kis, A., Ciobica, A., & Topál, J. (2017). The effect of oxytocin on human-directed social behaviour in dogs (Canis familiaris). Hormones and Behaviour, 94, 4052.Google Scholar
Kis, A., Bence, M., Lakatos, G., Pergel, E., Turcsán, B., Pluijmakers, J., … Kubinyi, E. (2014). Oxytocin receptor gene polymorphisms are associated with human directed social behavior in dogs (Canis familiaris). PLoS One, 9(1), e83993.Google Scholar
Kleiman, D. (1966 ). Scent marking in the Canidae. Symposia of the Zoological Society of London, 18, 167177.Google Scholar
Kostarczyk, E. & Fonberg, E. (1981). Heart rate mechanisms in instrumental conditioning reinforced by petting in dogs. Physiology & Behavior, 28 (1), 2730.Google Scholar
Kubinyi, E., Virányi, Z., & Miklósi, Á. (2007). Comparative social cognition: From wolf and dog to humans. Comparative Cognition & Behavior Reviews, 2(1), 2646.Google Scholar
Kuhne, F., Hoessler, J. C., & Struwe, R. (2012). Affective behavioural responses by dogs to tactile human-dog interactions. Berliner und Munchener Tierarztliche Wochenschrift, 125, 371378.Google Scholar
Leaver, S. D. A. & Reimchen, T. E. (2008). Behavioural responses of Canis familiaris to different tail lengths of a remotely-controlled life-size. Behaviour, 145(3), 377390.Google Scholar
McGreevy, P., Grassi, T. D., & Harman, A. M. (2004). A strong correlation exists between the distribution of retinal ganglion cells and nose length in the dog. Brain, Behavior and Evolution, 63(1), 1322.Google Scholar
Mech, L. D. & Boitani, L. (2010). Wolves: Ecology, Behavior and Conservation. Chicago: University of Chicago Press.Google Scholar
Mech, L. D. (2001). “Standing over” and “hugging” in wild wolves. Canadian Field-Naturalist, 115, 179181.Google Scholar
Merola, I., Prato-Previde, E., & Marshall-Pescini, S. (2012). Social referencing in dog-owner dyads? Animal Cognition, 15(2), 175185.Google Scholar
Miklósi, Á. (2015). Dog Behaviour, Evolution, and Cognition. 2nd ed. Oxford: Oxford University Press.Google Scholar
Miklósi, Á., Polgárdi, R., Topál, J., & Csányi, V. (2000). Intentional behaviour in dog-human communication: An experimental analysis of “showing” behaviour in the dog. Animal Cognition, 3(3), 159166.Google Scholar
Miklósi, Á. & Topál, J. (2013). What does it take to become ‘best friends’? Evolutionary changes in canine social competence. Trends in Cognitive Sciences, 17(6), 287294.Google Scholar
Miller, P. E. & Murphy, C. J. (1995). Vision in dogs. Journal-American Veterinary Medical Association, 207(12), 16231634.Google Scholar
Mills, D. S., Ramos, D., Estellés, M. G., & Hargrave, C. (2006). A triple blind placebo-controlled investigation into the assessment of the effect of dog appeasing pheromone (DAP) on anxiety related behaviour of problem dogs in the veterinary clinic. Applied Animal Behaviour Science, 98(1-2), 114126.Google Scholar
Molnár, C., Pongrácz, P., Faragó, T., Dóka, A., & Miklósi, Á. (2009). Dogs discriminate between barks: The effect of context and identity of the caller. Behavioural Processes, 82(2), 198201.Google Scholar
Morton, E. S. (1977). On the occurrence and significance of motivation-structural rules in some bird and mammal sounds. The American Naturalist,111(981), 855869.Google Scholar
Müller, C. A., Schmitt, K., Barber, A. L., & Huber, L. (2015). Dogs can discriminate emotional expressions of human faces. Current Biology, 25(5), 601605.Google Scholar
Neitz, J., Geist, T., & Jacobs, G. H. (1989). Color vision in the dog. Visual Neuroscience, 3(2), 119125.Google Scholar
Ostojić, L. & Clayton, N. S. (2014). Behavioural coordination of dogs in a cooperative problem-solving task with a conspecific and a human partner. Animal Cognition, 17(2), 445459.Google Scholar
Pageat, P. & Gaultier, E. (2003). Current research in canine and feline pheromones. Veterinary Clinics: Small Animal Practice, 33(2), 187211.Google Scholar
Petterson, H., Kaminski, J., Herrmann, E., & Tomasello, M. (2011). Understanding of human communicative motives in domestic dogs. Applied Animal Behaviour Science, 133(3-4), 235245.Google Scholar
Pilley, J. W. (2013). Border collie comprehends sentences containing a prepositional object, verb, and direct object. Learning and Motivation, 44(4), 229240.Google Scholar
Pinc, L., Bartoš, L., Reslová, A., & Kotrba, R. (2011). Dogs discriminate identical twins. PLoS One, 6(6), 47.Google Scholar
Piotti, P. & Kaminski, J. (2016). Do dogs provide information helpfully? PLoS One, 11(8), e0159797.Google Scholar
Polgár, Z., Kinnunen, M., Újváry, D., Miklósi, Á., & Gácsi, M. (2016). A test of canine olfactory capacity: Comparing various dog breeds and wolves in a natural detection task. PLoS One, 11(5), e0154087.Google Scholar
Pongrácz, P., Molnár, C., Dóka, A., & Miklósi, Á. (2011). Do children understand man’s best friend? Classification of dog barks by pre-adolescents and adults. Applied Animal Behaviour Science, 135(1-2), 95102.Google Scholar
Pongrácz, P., Molnár, C., & Miklósi, Á. (2010). Barking in family dogs: An ethological approach. Veterinary Journal, 183(2), 141147.Google Scholar
Pongrácz, P., Molnár, C., Miklósi, Á., & Csányi, V. (2005). Human listeners classify dog barks in different situations. Journal of Comparative Psychology, 119(2), 136144.Google Scholar
Pongrácz, P., Molnár, C., & Miklósi, Á. (2006). Acoustic parameters of dog barks carry emotional information for humans. Applied Animal Behaviour Science, 100(3-4), 228-240.Google Scholar
Range, F. & Virányi, Z. (2015). Tracking the evolutionary origins of dog-human cooperation: The “Canine Cooperation Hypothesis.” Frontiers in Psychology, 5, 1582.Google Scholar
Raymer, J., Wiesler, D., Novotny, M., Asa, C., Seal, U. S., & Mech, L. D. (1985). Chemical investigations of wolf (Canis lupus) anal-sac secretion in relation to breeding season. Journal of Chemical Ecology, 11(5), 593608.Google Scholar
Riedel, J., Schumann, K., Kaminski, J., Call, J., & Tomasello, M. (2008). The early ontogeny of human–dog communication. Animal Behaviour, 75(3), 10031014.Google Scholar
Rooney, N. J., Bradshaw, J. W. S., & Robinson, I. H. (2001). Do dogs respond to play signals given by humans? Animal Behaviour, 61(4), 715722.Google Scholar
Savalli, C., Resende, B., & Gaunet, F. (2016). Eye contact is crucial for referential communication in pet dogs. PLoS One, 11(9), e0162161.Google Scholar
Schassburger, R. M. (1987). Wolf vocalization: An integrated model of structure, motivation and ontogeny. In Frank, H. (Ed.), Man and Wolf, Dordrecht, The Netherlands: Dr. W. Junk Publishers.Google Scholar
Schassburger, R. M. (1993). Vocal Communication in the Timber Wolf, Canis Lupus, Linnaeus: Structure, Motivation, and Ontogeny. Advances in Ethology, no. 30. Berlin/Hamburg: Paul Parey Scientific Publishers.Google Scholar
Schenkel, R. (1947). Expression studies of wolves. Behaviour,1(8), 1129.Google Scholar
Siniscalchi, M., d’Ingeo, S., & Quaranta, A. (2016). The dog nose “KNOWS” fear: Asymmetric nostril use during sniffing at canine and human emotional stimuli. Behavioural Brain Research, 304, 34-41.Google Scholar
Siniscalchi, M., d’Ingeo, S., & Quaranta, A. (2018). Orienting asymmetries and physiological reactivity in dogs’ response to human emotional faces. Learning & Behavior, 46(4), 574585.Google Scholar
Serpell, J. (2017). The Domestic Dog: Its Evolution, Behavior and Interactions with People. 2nd ed. Cambridge, UK: Cambridge University Press.Google Scholar
Somppi, S., Törnqvist, H., Hänninen, L., Krause, C., & Vainio, O. (2014). How dogs scan familiar and inverted faces: An eye movement study. Animal Cognition, 17(3), 793803.Google Scholar
Somppi, S., Törnqvist, H., Topál, J., Koskela, A., Hänninen, L., Krause, C. M., & Vainio, O. (2017). Nasal oxytocin administration alters the gazing behavior and pupil dilatation in domestic dogs. Frontiers in Psychology, 8, 1854.Google Scholar
Strain, G. M., Tedford, B. L., & Jackson, R. M. (1991). Postnatal development of the brain stem auditory-evoked potential in dogs. American Journal of Veterinary Research, 52(3), 410415.Google Scholar
Tauzin, T., Csík, A., Kis, A., Kovács, K., & Topál, J. (2015). The order of ostensive and referential signals affects dogs’ responsiveness when interacting with a human. Animal Cognition, 18(4), 975979.Google Scholar
Téglás, E., Gergely, A., Kupán, K., Miklósi, Á., & Topál, J. (2012). Dogs’ gaze following is tuned to human communicative signals. Current Biology, 22(3), 209212.Google Scholar
Topál, J., Kis, A., & Oláh, K. (2014). Dogs’ sensitivity to human ostensive cues: A unique adaptation? In Kaminski, J., Marshall-Pescini, S. (Eds.), The Social Dog: Behaviour and Cognition (pp. 319346). London UK: Elsevier.Google Scholar
Topál, J., Miklósi, Á., Gácsi, M., Dóka, A., Pongrácz, P., Kubinyi, E., … & Csányi, V. (2009). The dog as a model for understanding human social behavior. Advances in the Study of Behavior, 39, 71116.Google Scholar
Udell, M. A. R., & Wynne, C. D. L. (2010). Ontogeny and phylogeny: Both are essential to human-sensitive behavior in the genus Canis. Animal Behaviour, 79(2), 914.Google Scholar
van Hooff, J. A. R. A. M. & Wensing, J. A. B. (1987). Dominance and its Behavioral Measures in a Captive Wolf Pack. In Frank, H. (Ed.), Man and Wolf (pp. 219252), Dordrecht, the Netherlands: Dr. W. Junk Publishers.Google Scholar
Virányi, Z., Gácsi, M., Kubinyi, E., Topál, J., Belényi, B., Ujfalussy, D., & Miklósi, Á. (2008). Comprehension of human pointing gestures in young human-reared wolves (Canis lupus) and dogs (Canis familiaris). Animal Cognition, 11(3), 373387.Google Scholar
Virányi, Z., Topál, J., Gácsi, M,, Miklósi, Á., & Csányi, V. (2004). Dogs respond appropriately to cues of humans’ attentional focus. Behavioural Processes, 66(2), 161172.Google Scholar
Vormbrock, J. K., & Grossberg, J. M. (1988). Cardiovascular effects of human–pet dog interactions. Journal of Behavioral Medicine, 11(5), 509517.Google Scholar
Wang, G. D., Zhai, W., Yang, H. C., Wang, L., Zhong, L., Liu, Y. H., … Zhang, Y. P. (2016). Out of southern East Asia: The natural history of domestic dogs across the world. Cell Research, 26, 2133.Google Scholar
Worsley, H. K. & O’Hara, S. J. (2018). Cross-species referential signalling events in domestic dogs (Canis familiaris). Animal Cognition, 21(4), 457465.Google Scholar
Wysocki, C. J. (1979). Neurobehavioral evidence for the involvement of the vomeronasal system in mammalian reproduction. Neuroscience & Biobehavioral Reviews, 3(4), 301341.Google Scholar
Zimen, E. (1981). The Wolf: His Place in the Natural World. London: Souvenir Press.Google Scholar

References

Adams, F. & Beighley, S. M. (2013). Information, meaning and animal communication. In Stegmann, U. E. (Ed.), Animal Communication Theory: Information and Influence, (399420), Cambridge: Cambridge University Press.Google Scholar
Andrieu, J., Penny, S. G., Bouchet, H., Malaivijitnond, S., Reichard, U. H., & Zuberbühler, K. (2020). White-handed gibbons discriminate context-specific song compositionsPeerJ, 8, e9477. doi: 10.7717/peerj.9477Google Scholar
Arnold, K. & Zuberbühler, K. (2006a). Semantic combinations in primate calls. Nature, 441(7091), 303.Google Scholar
Arnold, K. & Zuberbühler, K. (2006b). The alarm-calling system of adult male putty-nosed monkeys, Cercopithecus nictitans martini. Animal Behavior, 72, 643653.Google Scholar
Arnold, K. & Zuberbühler, K. (2008). Meaningful call combinations in a non-human primate. Current Biology, 18(5), R202R203. https://doi.org/Doi 10.1016/J.Cub.2008.01.040Google Scholar
Arnold, K. & Zuberbühler, K. (2012). Call combinations in monkeys: Compositional or idiomatic expressions? Brain and Language, 120(3), 303309. https://doi.org/Doi 10.1016/J.Bandl.2011.10.001Google Scholar
Arnold, K. & Zuberbühler, K. (2013). Female putty-nosed monkeys use experimentally altered contextual information to disambiguate the cause of male alarm calls. PLoS One, 8(6), Article e65660. https://doi.org/10.1371/journal.pone.0065660Google Scholar
Berthet, M., Neumann, C., Mesbahi, G., Casar, C., & Zuberbühler, K. (2018). Contextual encoding in titi monkey alarm call sequences. Behavioral Ecology and Sociobiology, 72(1), Article Unsp 8. https://doi.org/10.1007/s00265-017-2424-zGoogle Scholar
Caesar, C., Byrne, R., Young, R. J., & Zuberbühler, K. (2012). The alarm call system of wild black-fronted titi monkeys, Callicebus nigrifrons. Behavioral Ecology and Sociobiology, 66(5), 653667. https://doi.org/10.1007/s00265-011-1313-0Google Scholar
Caesar, C., Byrne, R. W., Hoppitt, W., Young, R. J., & Zuberbüehler, K. (2012). Evidence for semantic communication in titi monkey alarm calls. Animal Behaviour, 84(2), 405411. https://doi.org/10.1016/j.anbehav.2012.05.010Google Scholar
Cheney, D., Seyfarth, R., & Silk, J. (1995). The responses of female baboons (Papio cynocephalus ursinus) to anomalous social interactions: Evidence for causal reasoning? Journal of Comparative Psychology, 109(2), 134141.Google Scholar
Clarke, E., Reichard, U., & Zuberbühler, K. (2006). The syntax and meaning of wild gibbon songs. PLoS One, 1(1), e73.Google Scholar
Clay, Z. & Zuberbühler, K. (2009). Food-associated calling sequences in bonobos. Animal Behaviour, 77(6), 13871396. https://doi.org/Doi10.1016/J.Anbehav.2009.02.016 Google Scholar
Clay, Z., Archbold, J., & Zuberbühler, K. (2015). Functional flexibility in wild bonobo vocal behaviour. PeerJ, 3, e1124. https://doi.org/10.7717/peerj.1124Google Scholar
Coye, C., Ouattara, K., Zuberbühler, K., & Lemasson, A. (2015). Suffixation influences receivers’ behaviour in non-human primates. Proceedings of the Royal Society B-Biological Sciences, 282(1807), 50265.Google Scholar
Crockford, C., Gruber, T., & Zuberbühler, K. (2018). Chimpanzee quiet hoo variants differ according to context. Royal Society Open Science, 5(5), Article 172066. https://doi.org/10.1098/rsos.172066Google Scholar
Engesser, S., Crane, J. M. S., Savage, J. L., Russell, A. F., & Townsend, S. W. (2015). Experimental evidence for phonemic contrasts in a nonhuman vocal system. PLoS Biology, 13(6), Article e1002171. https://doi.org/10.1371/journal.pbio.1002171Google Scholar
Engesser, S., Ridley, A., & Townsend, S. (2016). Meaningful call combinations and compositional processing in the southern pied babbler. Proceedings of the National Academy of Sciences, 113(21), 59765981. https://doi.org/10.1073/pnas.1600970113Google Scholar
Engh, A. L., Hoffmeier, R. R., Cheney, D. L., & Seyfarth, R. M. (2006). Who, me? Can baboons infer the target of vocalizations? Animal Behaviour, 71, 381387.Google Scholar
Fedurek, P., Zuberbühler, K., & Dahl, C. D. (2016). Sequential information in a great ape utterance. Scientific Reports, 6, Article 38226. https://doi.org/10.1038/srep38226Google Scholar
Kaminski, J., Call, J., & Fischer, J. (2004). Word learning in a domestic dog: Evidence for “fast mapping.” Science, 304(5677), 16821683.Google Scholar
Kersken, V., Zuberbühler, K., & Gomez, J.-C. (2017). Listeners can extract meaning from non-linguistic infant vocalisations cross-culturally. Scientific Reports, 7, Article 41016. https://doi.org/10.1038/srep41016Google Scholar
Laporte, M. N. C. & Zuberbühler, K. (2010). Vocal greeting behaviour in wild chimpanzee females. Animal Behaviour, 80(3), 467473. https://doi.org/10.1016/j.anbehav.2010.06.005Google Scholar
Locke, J. (1690/1959). An Essay Concerning Human Understanding. New York: Dover.Google Scholar
Manser, M. B. (2016). Referents and Semantics in Animal Vocalizations. In Bee, M. A. & Miller, C. T. (Eds.), Psychological Mechanisms in Animal Communication, (Vol. 5, 223249). https://doi.org/10.1007/978-3-319-48690-1_8Google Scholar
Ogden, C. K. & Richards, I. A. (1959). The Meaning of Meaning. New York: Harcourt.Google Scholar
Oller, D. K., Buder, E. H., Ramsdell, H. L., Warlaumont, A. S., Chorna, L., & Bakeman, R. (2013). Functional flexibility of infant vocalization and the emergence of language. Proceedings of the National Academy of Sciences of the United States of America, 110(16), 63186323. https://doi.org/10.1073/pnas.1300337110Google Scholar
Ouattara, K., Lemasson, A., & Zuberbühler, K. (2009). Campbell’s monkeys use affixation to alter call meaning. PLoS One, 4(11), e7808.Google Scholar
Palmer, M. S. & Gross, A. (2018). Eavesdropping in an African large mammal community: Antipredator responses vary according to signaller reliability. Animal Behaviour, 137, 19. https://doi.org/10.1016/j.anbehav.2017.12.018Google Scholar
Price, T. & Fischer, J. (2014). Meaning attribution in the West African green monkey: Influence of call type and context. Animal Cognition, 17(2), 277286. https://doi.org/10.1007/s10071-013-0660-9Google Scholar
Price, T., Ndiaye, O., Hammerschmidt, K., & Fischer, J. (2014). Limited geographic variation in the acoustic structure of and responses to adult male alarm barks of African green monkeys. Behavioral Ecology and Sociobiology, 68(5), 815825. https://doi.org/10.1007/s00265-014-1694-yGoogle Scholar
Price, T., Wadewitz, P., Cheney, D., Seyfarth, R., Hammerschmidt, K., & Fischer, J. (2015). Vervets revisited: A quantitative analysis of alarm call structure and context specificity. Scientific Reports, 5, Article 13220. https://doi.org/10.1038/srep13220Google Scholar
Rendall, D. & Owren, M. J. (2013 ). Communication without Meaning or Information: Abandoning Language-Based and Informational Constructs in Animal Communication Theory. In Stegmann, U. E. (Ed.), Animal Communication Theory: Information and Influence, (151188), New York: Macmillan.Google Scholar
Rescorla, R. A. & Wagner, A. R. (1972). A Theory of Pavlovian Conditioning: Variations in the Effectiveness of Reinforcement and Nonreinforcement. In Black, A. & Prokasy, W., (Eds.), Classical Conditioning II: Current Research and Theory, (6469), New York: Appleton-Century-Crofts.Google Scholar
Ristau, C. A. (2013). Cognitive ethology. Wiley Interdisciplinary Reviews-Cognitive Science, 4(5), 493509. https://doi.org/10.1002/wcs.1239Google Scholar
Schamberg, I., Wittig, R. M., & Crockford, C. (2018). Call type signals caller goal: A new take on ultimate and proximate influences in vocal production. Biological Reviews, 93(4), 20712082. https://doi.org/10.1111/brv.12437Google Scholar
Schel, A. M. & Zuberbühler, K. (2009). Responses to leopards are independent of experience in Guereza colobus monkeys. Behaviour, 146, 17091737.Google Scholar
Schlenker, P., Chemla, E., Schel, A. M., Fuller, J., Gautier, J. P., Kuhn, J., Veselinovic, D., Arnold, K., Casar, C., Keenan, S., Lemasson, A., Ouattara, K., Ryder, R., & Zuberbühler, K. (2016a). Formal monkey linguistics. Theoretical Linguistics, 42(1–2), 190. https://doi.org/10.1515/tl-2016-0001Google Scholar
Schlenker, P., Chemla, E., Schel, A. M., Fuller, J., Gautier, J. P., Kuhn, J., Veselinovic, D., Arnold, K., Casar, C., Keenan, S., Lemasson, A., Ouattara, K., Ryder, R., & Zuberbühler, K. (2016b). Formal monkey linguistics: The debate. Theoretical Linguistics, 42(1–2), 173201. https://doi.org/10.1515/tl-2016-0010Google Scholar
Schlenker, P., Chemla, E., & Zuberbühler, K. (2016c). What do monkey calls mean? Trends in Cognitive Sciences, 20(12), 894904. https://doi.org/10.1016/j.tics.2016.10.004Google Scholar
Seyfarth, R. M. & Cheney, D. L. (1980). The ontogeny of vervet monkey alarm calling behavior – a preliminary-report. Zeitschrift Fur Tierpsychologie-Journal of Comparative Ethology, 54(1), 3756.Google Scholar
Seyfarth, R. M., Cheney, D. L., & Marler, P. (1980a). Monkey responses to three different alarm calls: Evidence of predator classification and semantic communication. Science, 210, 801803.Google Scholar
Seyfarth, R. M., Cheney, D. L., & Marler, P. (1980b). Vervet monkey alarm calls: Semantic communication in a free-ranging primate. Animal Behaviour, 28(4), 10701094.Google Scholar
Seyfarth, R. M. & Cheney, D. L. (1990). The assessment by vervet monkeys of their own and another species’ alarm calls. Animal Behaviour, 40(4), 754764.Google Scholar
Seyfarth, R. M. & Cheney, D. L. (2017). The origin of meaning in animal signals. Animal Behaviour, 124, 339346. https://doi.org/10.1016/j.anbehav.2016.05.020Google Scholar
Seyfarth, R. & Cheney, D. (2018). Pragmatic flexibility in primate vocal production. Current Opinion in Behavioral Sciences, 21, 5661. https://doi.org/10.1016/j.cobeha.2018.02.005Google Scholar
Sievers, C. & Gruber, T. (2016). Reference in human and non-human primate communication: What does it take to refer? Animal Cognition, 19(4), 759768. https://doi.org/10.1007/s10071-016-0974-5Google Scholar
Slocombe, K. E. & Zuberbühler, K. (2005). Agonistic screams in wild chimpanzees (Pan troglodytes schweinfurthii) vary as a function of social role. Journal of Comparative Psychology, 119(1), 6777.Google Scholar
Slocombe, K. E. & Zuberbühler, K. (2006). Food-associated calls in chimpanzees: Responses to food types or food preferences? Animal Behaviour, 72, 989999.Google Scholar
Slocombe, K. E., Townsend, S. W., & Zuberbühler, K. (2009). Wild chimpanzees (Pan troglodytes schweinfurthii) distinguish between different scream types: Evidence from a playback study. Animal Cognition, 12(3), 441449. https://doi.org/10.1007/s10071-008-0204-xGoogle Scholar
Slocombe, K. E., Kaller, T., Call, J., & Zuberbühler, K. (2010). Chimpanzees extract social information from agonistic screams. PLoS One, 5(7), Article e11473. https://doi.org/10.1371/journal.pone.0011473Google Scholar
Smith, W. J. (1977). The Behavior of Communicating: An Ethological Approach. Cambridge, MA: Harvard University Press.Google Scholar
Stephan, C. & Zuberbühler, K. (2008). Predation increases acoustic complexity in primate alarm calls. Biology Letters, 4(6), 641644. https://doi.org/10.1098/rsbl.2008.0488Google Scholar
Stephan, C. & Zuberbühler, K. (2014). Predation affects alarm call usage in female Diana monkeys (Cercopithecus diana diana). Behavioral Ecology and Sociobiology, 68(2), 321331. https://doi.org/10.1007/s00265-013-1647-xGoogle Scholar
Stephan, C. & Zuberbühler, K. (2016). Social familiarity affects Diana monkey (Cercopithecus diana diana) alarm call responses in habitat-specific ways. Royal Society open science, 3(2), Article 150639. https://doi.org/10.1098/rsos.150639Google Scholar
Suzuki, T. N., Wheatcroft, D., & Griesser, M. (2016). Experimental evidence for compositional syntax in bird calls. Nature Communications, 7, Article 10986. https://doi.org/10.1038/ncomms10986Google Scholar
Szabó, Z. G. (2017). Compositionality. In Zalta, E. N. (Ed.), The Stanford Encyclopedia of Philosophy (Summer 2017 Edition ed.). Available at: https://plato.stanford.edu/cgi-bin/encyclopedia/archinfo.cgi?entry=compositionalityGoogle Scholar
Thorndike, E. L. (1898). Animal Intelligence: An Experimental Study of the Associative Processes in Animals. London: The Macmillan Company.Google Scholar
Townsend, S. W., Engesser, S., Stoll, S., Zuberbühler, K., & Bickel, B. (2018). Compositionality in animals and humans. PLoS Biology, 16(8), Article e2006425. https://doi.org/10.1371/journal.pbio.2006425Google Scholar
Wegdell, F., Hammerschmidt, K., & Fischer, J. (2019). Conserved alarm calls but rapid auditory learning in monkey responses to novel flying objects. Nature Ecology & Evolution, 3(7), 10391042. https://doi.org/10.1038/s41559-019-0903-5Google Scholar
Wittig, R. M., Crockford, C., Langergraber, K. E., & Zuberbühler, K. (2014). Triadic social interactions operate across time: A field experiment with wild chimpanzees. Proceedings of the Royal Society B-Biological Sciences, 281(1779). https://doi.org/Artn 20133155 Doi 10.1098/Rspb.2013.3155Google Scholar
Zuberbühler, K. (2000a). Causal knowledge of predators’ behaviour in wild Diana monkeys. Animal Behaviour, 59, 209220. https://doi.org/10.1006/anbe.1999.1296Google Scholar
Zuberbühler, K. (2000b). Interspecies semantic communication in two forest primates. Proceedings of the Royal Society B-Biological Sciences, 267(1444), 713718. https://doi.org/10.1098/rspb.2000.1061Google Scholar
Zuberbühler, K. (2009). Survivor signals: The biology and psychology of animal alarm calling. Advances in the Study of Behavior, 40, 277–322. https://doi.org/Doi 10.1016/S0065–3454(09)40008-1Google Scholar
Zuberbühler, K. (2016). Social Concepts and Communication in Nonhuman Primates. In Bee, M. A. & Miller, C. T. (Eds.), Psychological Mechanisms in Animal Communication, (Vol. 5, 251270). https://doi.org/10.1007/978-3-319-48690-1_9Google Scholar
Zuberbühler, K., Cheney, D. L., & Seyfarth, R. M. (1999). Conceptual semantics in a nonhuman primate. Journal of Comparative Psychology, 113(1), 3342. https://doi.org/10.1037/0735-7036.113.1.33Google Scholar
Zuberbühler, K. (2000). Causal cognition in a non-human primate: Field playback experiments with Diana monkeys. Cognition, 76, 195207.Google Scholar
Zuberbühler, K. (2002). A syntactic rule in forest monkey communication. Animal Behaviour, 63, 293299.Google Scholar
Zuberbühler, K. (2019). Evolutionary roads to syntax. Animal Behaviour, 151, 259265. https://doi.org/10.1016/j.anbehav.2019.03.006Google Scholar
Zuberbühler, K. (2020). Syntax and compositionality in animal communication. Philosophical Transactions of the Royal Society B-Biological Sciences, 375(1789). doi: 10.1098/rstb.2019.0062Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×