Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-21T14:50:01.375Z Has data issue: false hasContentIssue false

Part VIII - Postnatal brain development

Published online by Cambridge University Press:  26 October 2017

Brian Hopkins
Affiliation:
Lancaster University
Elena Geangu
Affiliation:
Lancaster University
Sally Linkenauger
Affiliation:
Lancaster University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Further reading

Knudsen, E.I. (2004). Sensitive periods in the development of the brain and behavior. Journal of Cognitive Neuroscience, 16, 14121425.CrossRefGoogle ScholarPubMed
Malter Cohen, M., Tottenham, N., & Casey, B.J. (2013). Translational developmental studies of stress on brain and behavior: Implications for adolescent mental health and illness? Neuroscience, 249, 5362.CrossRefGoogle ScholarPubMed
Paus, T., Keshavan, M., & Giedd, J.N. (2008). Why do many psychiatric disorders emerge during adolescence? Nature Reviews: Neuroscience, 9, 947957.CrossRefGoogle ScholarPubMed
Tau, G.Z., & Peterson, B.S. (2009). Normal development of brain circuits. Neuropsychopharmacology, 35, 147168.CrossRefGoogle Scholar

References

Andersen, S.L., & Teicher, M.H. (2008). Stress, sensitive periods and maturational events in adolescent depression. Trends in Neurosciences, 31, 183191.CrossRefGoogle ScholarPubMed
Brown, T.T., & Jernigan, T.L. (2012). Brain development during the preschool years. Neuropsychology Review, 22, 313333.CrossRefGoogle ScholarPubMed
Chen, Z., Liu, M., Gross, D.W., & Beaulieu, C. (2013). Graph theoretical analysis of developmental patterns of the white matter network. Frontiers in Human Neuroscience, 7, 716.CrossRefGoogle ScholarPubMed
Chugani, H.T. (1998). A critical period of brain development: Studies of cerebral glucose utilization with PET. Preventive Medicine, 27, 184188.CrossRefGoogle ScholarPubMed
DeMaster, D., Pathman, T., Lee, J.K., & Ghetti, S. (2014). Structural development of the hippocampus and episodic memory: Developmental differences along the anterior/posterior axis. Cerebral Cortex, 24, 30363045.Google Scholar
Dennis, E.L., & Thompson, P.M. (2013). Typical and atypical brain development: A review of neuroimaging studies. Dialogues in Clinical Neuroscience, 15, 359384.CrossRefGoogle ScholarPubMed
Dennis, E.L., Jahanshad, N., McMahon, K.L., de Zubicaray, G.I., Martin, N.G., Hickie, I.B.,… & Thompson, P.N. (2013). Development of brain structural connectivity between ages 12 and 30: A 4-Tesla diffusion imaging study in 439 adolescents and adults. NeuroImage, 64, 671684.Google Scholar
Diamond, A. (2000). Close interrelation of motor development and cognitive development and of the cerebellum and prefrontal cortex. Child Development, 71, 4456.CrossRefGoogle ScholarPubMed
Dubois, J., Dehaene-Lambertz, G., Kulikova, S., Poupon, C., Hüppi, P.S., & Hertz-Pannier, L. (2014). The early development of brain white matter: A review of imaging studies in fetuses, newborns and infants. Neuroscience, 276, 4871.Google Scholar
Fair, D.A., Cohen, A.L., Power, J.D., Dosenbach, N.U.F., Church, J.A., Miezin, F.M.,… & Petersen, S.E. (2009). Functional brain networks develop from a “local to distributed” organization. PLoS Computational Biology, 5, e1000381.CrossRefGoogle Scholar
Ganguly, K., & Poo, M.-M. (2013). Activity-dependent neural plasticity from bench to bedside. Neuron, 80, 729741.CrossRefGoogle ScholarPubMed
Giedd, J.N., Raznahan, A., Alexander-Bloch, A., Schmitt, E., Gogtay, N., & Rapoport, J.L. (2015). Child psychiatry branch of the National Institute of Mental Health longitudinal structural magnetic resonance imaging study of human brain development. Neuropsychopharmacology, 40, 4349.Google Scholar
Gogtay, N., Nugent, T.F., Herman, D.H., Ordonez, A., Greenstein, D., Hayashi, K.M.,… & Thompson, P.M. (2006). Dynamic mapping of normal human hippocampal development. Hippocampus, 16, 664672.Google Scholar
Hagmann, P., Sporns, O., Madan, N., Cammoun, L., Pienaar, R., Wedeen, V.J.,… & Grant, P.E. (2010). White matter maturation reshapes structural connectivity in the late developing human brain. Proceedings of the National Academy of Sciences, 107, 1906719072.CrossRefGoogle ScholarPubMed
Herholz, S.C., & Zatorre, R.J. (2012). Musical training as a framework for brain plasticity: Behavior, function, and structure. Neuron, 76, 485502.CrossRefGoogle ScholarPubMed
van den Heuvel, M.P., Kersbergen, K.J., de Reus, M.A., Keunen, K., Kahn, R.S., Groenendaal, F., … Benders, , M.J.N.L. (2015). The neonatal connectome during preterm brain development. Cerebral Cortex, 25, 30003013.CrossRefGoogle ScholarPubMed
Hibi, M., & Shimizu, T. (2012). Development of the cerebellum and cerebellar neural circuits. Developmental Neurobiology, 72, 282301.CrossRefGoogle ScholarPubMed
Lupien, S.J., McEwen, B.S., Gunnar, M.R., & Heim, C. (2009). Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nature Reviews: Neuroscience, 10, 434445.Google Scholar
Panizzon, M., Fennema-Notestine, C., & Eyler, L. (2009). Distinct genetic influences on cortical surface area and cortical thickness. Cerebral Cortex, 19, 27282735.Google Scholar
Peper, J.S., Hulshoff Pol, H.E., Crone, E.A., & van Honk, J. (2011). Sex steroids and brain structure in pubertal boys and girls: A mini-review of neuroimaging studies. Neuroscience, 191, 2837.CrossRefGoogle ScholarPubMed
Qin, S., Young, C.B., Supekar, K., Uddin, L.Q., & Menon, V. (2012). Immature integration and segregation of emotion-related brain circuitry in young children. Proceedings of the National Academy of Sciences, 109, 79417946.CrossRefGoogle ScholarPubMed
Raznahan, A., Shaw, P., Lalonde, F., Stockman, M., Wallace, G.L., Greenstein, D., … & Giedd, J. (2011). How does your cortex grow? Journal of Neuroscience, 31, 71747177.Google Scholar
Scherf, K.S., Smyth, J.M., & Delgado, M.R. (2013). The amygdala: An agent of change in adolescent neural networks. Hormones and Behavior, 64, 298313.Google Scholar
Shaw, P., Greenstein, D., Lerch, J., Clasen, L., Lenroot, R., Gogtay, N., … & Giedd, J. (2006). Intellectual ability and cortical development in children and adolescents. Nature, 440, 676679.CrossRefGoogle ScholarPubMed
Sheridan, M.A., Sarsour, K., Jutte, D., D’Esposito, M., & Boyce, W.T. (2012). The impact of social disparity on prefrontal function in childhood. PLoS ONE, 7, e35744.Google Scholar
Somerville, L.H., & Casey, B.J. (2010). Developmental neurobiology of cognitive control and motivational systems. Current Opinion in Neurobiology, 20, 236241.CrossRefGoogle ScholarPubMed
Steele, C.J., Bailey, J.A., Zatorre, R.J., & Penhune, V.B. (2013). Early musical training and white-matter plasticity in the corpus callosum: Evidence for a sensitive period. Journal of Neuroscience, 33, 12821290.CrossRefGoogle ScholarPubMed
Thomas, K.M., King, S.W., Franzen, P.L., Welsh, T.F., Berkowitz, A.L., Noll, D.C., … & Casey, B.J. (1999). A developmental functional MRI study of spatial working memory. NeuroImage, 10, 327338.Google Scholar
Tiemeier, H., Lenroot, R.K., Greenstein, D.K., Tran, L., Pierson, R., & Giedd, J.N. (2010). Cerebellum development during childhood and adolescence: A longitudinal morphometric MRI study. NeuroImage, 49, 6370.CrossRefGoogle ScholarPubMed
Tottenham, N., & Sheridan, M.A. (2009). A review of adversity, the amygdala and the hippocampus: A consideration of developmental timing. Frontiers in Human Neuroscience, 3, 68.Google ScholarPubMed
Uddin, L.Q., Supekar, K.S., Ryali, S., & Menon, V. (2011). Dynamic reconfiguration of structural and functional connectivity across core neurocognitive brain networks with development. Journal of Neuroscience, 31, 1857818589.Google Scholar
Wierenga, L.M., Langen, M., Oranje, B., & Durston, S. (2014). Unique developmental trajectories of cortical thickness and surface area. NeuroImage, 87C, 120126.CrossRefGoogle Scholar
de Zeeuw, P., Zwart, F., Schrama, R., van Engeland, H., & Durston, S. (2012). Prenatal exposure to cigarette smoke or alcohol and cerebellum volume in attention-deficit/hyperactivity disorder and typical development. Translational Psychiatry, 2, e84.CrossRefGoogle ScholarPubMed

Further reading

Andersen, S.L., & Pine, D.S. (Eds.) (2014). The neurobiology of childhood. Heidelberg, Germany: Springer.CrossRefGoogle Scholar
Fahrbach, S.E. (2013). Developmental neuroscience:. A concise introduction. Princeton, NJ: Princeton University Press.Google Scholar
Johnson, M.H., & de Haan, M. (2015). Developmental cognitive neuroscience: An introduction (4th ed.). Oxford, UK: Wiley-Blackwell.Google Scholar
Nelson, C.A., & Luciana, M. (2008). Handbook of developmental cognitive neuroscience (2nd ed.). Cambridge, MA: MIT Press.Google Scholar
Stiles, J. (2008). Fundamentals of brain development: Integrating nature and nurture. Cambridge, MA: Harvard University Press.Google Scholar

References

Bressler, S.L., & Menon, V. (2010). Large-scale brain networks in cognition: Emerging methods and principles. Trends in Cognitive Sciences, 14, 277290.CrossRefGoogle ScholarPubMed
Bukach, C.M., Gauthier, I., & Tarr, M.J. (2006). Beyond faces and modularity: The power of an expertise framework. Trends in Cognitive Sciences, 10, 159166.Google Scholar
Coltheart, M. (2006). What has functional neuroimaging told us about the mind (so far)? Cortex, 42, 323331.Google Scholar
Csibra, G., Kushnerenko, E., & Grossmann, T. (2008). Electrophysiological methods in studying infant cognitive development. In Nelson, C.A. & Luciana, M. (Eds.), Handbook of developmental cognitive neuroscience (2nd ed., pp. 247262). Cambridge, MA: MIT Press.Google Scholar
Gauthier, I., Skudlarski, P., Gore, J.C., & Anderson, A.W. (2000). Expertise for cars and birds recruits brain areas involved in face recognition. Nature Neuroscience, 3, 191197.Google Scholar
Grice, S.J., Spratling, M.W., Karmiloff-Smith, A., Halit, H., Csibra, G., de Haan, M., & Johnson, M.H. (2001). Disordered visual processing and oscillatory brain activity in autism and Williams syndrome. Neuroreport, 12, 26972700.CrossRefGoogle ScholarPubMed
Hackman, D.A., Farah, M.J., & Meaney, M.J. (2010). Socioeconomic status and the brain: Mechanistic insights from human and animal research. Nature Reviews: Neuroscience, 11, 651659.CrossRefGoogle ScholarPubMed
Johnson, M.H. (2001). Functional brain development in humans. Nature Reviews Neuroscience, 2, 475483.CrossRefGoogle ScholarPubMed
Johnson, M.H., Gliga, T., Jones, E., & Charman, T. (2015). Annual research review: Infant development, autism, and ADHD – Early pathways to emerging disorders. Journal of Child Psychology and Psychiatry, 56, 228247.Google Scholar
Karmiloff-Smith, A. (1998). Development itself is the key to understanding developmental disorders. Trends in Cognitive Sciences, 2, 389398.CrossRefGoogle ScholarPubMed
Kral, A., & Eggermont, J.J. (2007). What’s to lose and what’s to learn: Development under auditory deprivation, cochlear implants and limits of cortical plasticity. Brain Research Review, 56, 259269.CrossRefGoogle ScholarPubMed
Le Grand, R., Mondloch, C.J., Maurer, D., & Brent, H.P. (2001). Early visual experience and face processing. Nature, 410, 890.Google Scholar
Pascalis, O., Scott, L.S., Kelly, D.J., Shannon, R.W., Nicholson, E., Coleman, M., & Nelson, C. (2005). Plasticity of face processing in infancy. Proceedings of the National Academy of Sciences, 102, 52975300.Google Scholar
Posner, M.I. (2002). Convergence of psychological and biological development. Developmental Psychobiology, 40, 339343.CrossRefGoogle ScholarPubMed
Raizada, R.D.S., Richards, T.L., Meltzoff, A., & Kuhl, P.K. (2008). Socioeconomic status predicts hemispheric specialisation of the left inferior frontal gyrus in young children. NeuroImage, 40, 13921401.Google Scholar
Richlan, F. (2014). Functional neuroanatomy of developmental dyslexia: The role of orthographic depth. Frontiers in Human Neuroscience, 8, 347.Google Scholar
Robbins, R., & McKone, E. (2007). No face-like processing for objects-of-expertise in three behavioural tasks. Cognition, 103, 3479.CrossRefGoogle ScholarPubMed
Scherf, K.S., Behrmann, M., Humphreys, K., & Luna, B. (2007). Visual category-selectivity for faces, places and objects emerges along different developmental trajectories. Developmental Science, 10, F15F30.Google Scholar
Sowell, E.R., Delis, D., Stiles, J., & Jernigan, T.L. (2001). Improved memory functioning and frontal lobe maturation between childhood and adolescence: A structural MRI study. Journal of the International Neuropsychological Society, 7, 312322.Google Scholar
Stoeckel, M.C., Seitz, R.J., & Buetefisch, C.M. (2009). Congenitally altered motor experience alters somatotopic organization of human primary motor cortex. Proceedings of the National Academy of Sciences of the United States of America, 106, 23952400.Google Scholar
Ungerleider, L.G., Doyon, J., & Karni, A. (2002). Imaging brain plasticity during motor skill learning. Neurobiology of Learning and Memory, 78, 553564.CrossRefGoogle ScholarPubMed

Further reading

Mareschal, D., Butterworth, B., & Tolmie, A. (2013). Educational neuroscience. Cambridge, UK: Wiley-Blackwell.Google Scholar
Simmonds, A. (2014). How neuroscience is affecting education: Report of teacher and parent surveys. London, UK: Wellcome Trust.Google Scholar
Sousa, D.A., & Ansari, D. (2010). Mind, brain & education: Neuroscience implications for the classroom. Bloomington, IN: Solution Tree Press.Google Scholar
Thomas, M.S.C. (2013). Educational neuroscience in the near and far future: Predictions from the analogy with the history of medicine. Trends in Neuroscience and Education, 2, 2326.CrossRefGoogle Scholar

References

Asbury, K., & Plomin, R. (2014). G is for genes. Chichester, UK: Wiley.Google Scholar
Bavelier, D., Green, C.S., Pouget, A., & Schrater, P. (2012). Brain plasticity through the life span: Learning to learn and action video games. Annual Review of Neuroscience, 35, 391416.Google Scholar
Bishop, D.V.M., Badcock, N.A., & Holt, G. (2010). Assessment of cerebral lateralization in children using functional transcranial Doppler ultrasound (fTCD). Journal of Visualized Experiments, 43, e2161.Google Scholar
Bruer, J.T. (1997). Education and the brain: A bridge too far. Educational Researcher, 26, 416.Google Scholar
Clegg, J., Hollis, C., Mawhood, L., & Rutter, M. (2005). Developmental language disorders – A follow-up in later adult life: Cognitive, language and psychosocial outcomes. Journal of Child Psychology and Psychiatry, 46, 128149.Google Scholar
Cohen Kadosh, R., Soskic, S., Iuculano, T., Kanai, R., & Walsh, V. (2010). Modulating neuronal activity produces specific and long-lasting changes in numerical competence. Current Biology, 20, 20162020.Google Scholar
Cohen Kadosh, R., Levy, N., O’Shea, J., Shea, N., & Savulescu, J. (2012). The neuroethics of non-invasive brain stimulation. Current Biology, 22, R108R111.Google Scholar
Dahaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20, 487506.Google Scholar
Delazer, M., Ischebeck, A., Domahs, F., Zamarian, L., Koppelstaetter, F., Siednetopf, C.M.,… & Felber, S. (2005). Learning by strategies and learning by drill: Evidence from an fMRI study. NeuroImage, 25, 838849.Google Scholar
De Smedt, B., Verschaffel, L., & Ghesquière, P. (2009). The predictive value of numerical magnitude comparison for individual differences in mathematics achievement. Journal of Experimental Child Psychology, 103, 469479.Google Scholar
Fugelsang, J.A., & Dunbar, K. (2005). Brain-based mechanisms underlying causal reasoning. In Kraft, E., Guylas, B., & Poppel, E. (Eds.), Neural correlates of thinking (pp. 269279). Berlin, Germany: Springer.Google Scholar
Griggs, R.A., & Cox, J.R. (1982). The elusive thematics material effect in Wason’s selection task. British Journal of Psychology, 73, 407420.Google Scholar
Houdé, O. (2000). Inhibition and cognitive development: Object, number, categorization, and reasoning. Cognitive Development, 15, 6373.Google Scholar
Johnson, M.H., & de Haan, M. (2015). Developmental cognitive neuroscience (4th ed.). Cambridge, UK: Blackwell.Google Scholar
Mareschal, D., Johnson, M.H., Sirois, S., Spratling, M., Thomas, M., & Westermann, G. (2007). Neuroconstructivism-I: How the brain constructs cognition. Oxford, UK: Oxford University Press.Google Scholar
Masson, S., Potvin, P., Riopel, M., & Foisy, L.-M.B. (2014). Differences in brain activation between novices and experts in science during a task involving a common misconception in electricity. Mind, Brain, and Education, 8, 4455.Google Scholar
Michotte, A. (1963). The perception of causality. New York, NY: Basic Books.Google Scholar
Reed, S.K., Ernst, G.W., & Banerji, R. (1974). The role of analogy in transfer between similar problem states. Cognitive Psychology, 6, 437450.Google Scholar
Tallal, P. (2004). Improving language and literacy is a matter of time. Nature Reviews Neuroscience, 5, 721728.Google Scholar
Thomas, M.S.C., Forrester, N.A., & Ronald, A. (2013). Modeling socioeconomic status effects on language development. Developmental Psychology, 49, 23252343.CrossRefGoogle ScholarPubMed
Wason, P. (1968). Reasoning about a rule. Quarterly Journal of Experimental Psychology, 20, 273281.Google Scholar
Zimmerman, C. (2007). The development of scientific thinking skills in elementary and middle school. Developmental Review, 27, 172223.CrossRefGoogle Scholar

Further reading

Nelson, E. E., Jarcho, J. M., & Guyer, A. E. (2016). Social re-orientation and brain development: an expanded and updated view. Developmental Cognitive Neuroscience, 17, 118–127.Google Scholar

References

Adolphs, R. (2009). The social brain: Neural basis of social knowledge. Annual Review of Psychology, 60, 693716.Google Scholar
Blakemore, S.J., & Mills, K.L. (2014). Is adolescence a sensitive period for sociocultural processing? Annual Review of Psychology, 65, 187207.Google Scholar
Bolling, D.Z., Pitskel, N.B., Deen, B., Crowley, M.J., Mayes, L.C., & Pelphrey, K.A. (2011). Development of neural systems for processing social exclusion from childhood to adolescence. Developmental Science, 14, 14311444.Google Scholar
Chein, J., Albert, D., O’Brien, L., Uckert, K., & Steinberg, L. (2011). Peers increase adolescent risk taking by enhancing activity in the brain’s reward circuitry. Developmental Science, 14, F1F10.Google Scholar
Crone, E.A., & Dahl, R.E. (2012). Understanding adolescence as a period of social–affective engagement and goal flexibility. Nature Reviews Neuroscience, 13, 636650.Google Scholar
De Haan, M., & Gunnar, M.R. (Eds.) (2011). Handbook of developmental social neuroscience. New York, NY: Guilford Press.Google Scholar
Dégeilh, F., Guillery‐Girard, B., Dayan, J., Gaubert, M., Chételat, G., Egler, P.J., … & Viard, A. (2015). Neural correlates of Self and its interaction with memory in healthy adolescents. Child Development, 86, 19661983.Google Scholar
Grossmann, T. (2015). The development of social brain functions in infancy. Psychological Bulletin, 141, 12661287.Google Scholar
Guyer, A.E., Choate, V.R., Pine, D.S., & Nelson, E.E. (2012). Neural circuitry underlying affective response to peer feedback in adolescence. Social Cognitive and Affective Neuroscience, 7, 8192.Google Scholar
Gweon, H., Dodell‐Feder, D., Bedny, M., & Saxe, R. (2012). Theory of mind performance in children correlates with functional specialization of a brain region for thinking about thoughts. Child Development, 83, 18531868.Google Scholar
Mahy, C.E., Moses, L.J., & Pfeifer, J.H. (2014). How and where: Theory-of-mind in the brain. Developmental Cognitive Neuroscience, 9, 6881.Google Scholar
Marshall, P.J., & Meltzoff, A.N. (2015). Body maps in the infant brain. Trends in Cognitive Sciences, 19, 499505.Google Scholar
Masten, C.L., Eisenberger, N.I., Borofsky, L.A., Pfeifer, J.H., McNealy, K., Mazziotta, J.C., & Dapretto, M. (2009). Neural correlates of social exclusion during adolescence: Understanding the distress of peer rejection. Social Cognitive and Affective Neuroscience, 4, 143157.Google Scholar
Mills, K.L., Lalonde, F., Clasen, L.S., Giedd, J.N., & Blakemore, S.J. (2014). Developmental changes in the structure of the social brain in late childhood and adolescence. Social Cognitive and Affective Neuroscience, 9, 123131.Google Scholar
Overgaauw, S., van Duijvenvoorde, A.C., Moor, B.G., & Crone, E.A. (2015). A longitudinal analysis of neural regions involved in reading the mind in the eyes. Social Cognitive and Affective Neuroscience, 10, 619627.Google Scholar
Peake, S.J., Dishion, T.J., Stormshak, E.A., Moore, W.E., & Pfeifer, J.H. (2013). Risk-taking and social exclusion in adolescence: Neural mechanisms underlying peer influences on decision-making. NeuroImage, 82, 2334.CrossRefGoogle ScholarPubMed
Pfeifer, J.H., & Allen, N.B. (2016). The audacity of specificity: Moving adolescent developmental neuroscience towards more powerful scientific paradigms and translatable models. Developmental Cognitive Neuroscience, 17, 131137.CrossRefGoogle ScholarPubMed
Pfeifer, J.H., & Blakemore, S.J. (2012). Adolescent social cognitive and affective neuroscience: Past, present, and future. Social Cognitive and Affective Neuroscience, 7, 110.Google Scholar
Pfeifer, J.H., Kahn, L.E., Merchant, J.S., Peake, S.J., Veroude, K., Masten, C.L., … & Dapretto, M. (2013). Longitudinal change in the neural bases of adolescent social self-evaluations: Effects of age and pubertal development. Journal of Neuroscience, 33, 74157419.Google Scholar
Picci, G., & Scherf, K.S. (2014). A two-hit model of autism: Adolescence as the second hit. Clinical Psychological Science, 3, 349371.Google Scholar
Sebastian, C.L., Fontaine, N.M., Bird, G., Blakemore, S.J., De Brito, S.A., McCrory, E.J., & Viding, E. (2012). Neural processing associated with cognitive and affective Theory of Mind in adolescents and adults. Social Cognitive and Affective Neuroscience, 7, 5363.CrossRefGoogle ScholarPubMed
Somerville, L.H., Jones, R.M., Ruberry, E.J., Dyke, J.P., Glover, G., & Casey, B.J. (2013). The medial prefrontal cortex and the emergence of self-conscious emotion in adolescence. Psychological Science, 24, 15541562.Google Scholar
Telzer, E.H., Flannery, J., Humphreys, K.L., Goff, B., Gabard-Durman, L., Gee, D.G., & Tottenham, N. (2015). “The cooties effect”: Amygdala reactivity to opposite-versus same-sex faces declines from childhood to adolescence. Journal of Cognitive Neuroscience, 27, 16851696.Google Scholar
Van Duijvenvoorde, A.C., & Crone, E.A. (2013). The teenage brain: A neuroeconomic approach to adolescent decision making. Current Directions in Psychological Science, 22, 108113.Google Scholar
Zeeland, S.V., Ashley, A., Dapretto, M., Ghahremani, D.G., Poldrack, R.A., & Bookheimer, S.Y. (2010). Reward processing in autism. Autism Research, 3, 5367.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×