Skip to main content Accessibility help
Hostname: page-component-56f9d74cfd-rpbls Total loading time: 3.975 Render date: 2022-06-26T21:56:19.554Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Part IX - Developmental pathology

Published online by Cambridge University Press:  26 October 2017

Brian Hopkins
Lancaster University
Elena Geangu
Lancaster University
Sally Linkenauger
Lancaster University
Get access


Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Charney, D.S. (2004). Psychobiological mechanisms of resilience and vulnerability: Implications for successful adaptation to extreme stress. American Journal of Psychiatry, 161, 195216.CrossRefGoogle ScholarPubMed
Haggerty, R.J., Sherrod, L.R., Garmezy, N., & Rutter, M. (Eds.) (1996). Stress, risk and resilience in children and adolescents: Processes, mechanisms and interventions. New York, NY: Cambridge University Press.Google Scholar
Masten, A.S. (2007). Resilience in developing systems: Progress and promise as the fourth wave rises. Development and Psychopathology, 19, 921930.CrossRefGoogle Scholar
Rutter, M. (2000). Resilience reconsidered: Conceptual considerations, empirical findings, and policy implications. In Shonkoff, J.P., & Meisels, S.J. (Eds.), Handbook of early childhood intervention (pp. 651683). New York, NY: Cambridge University Press.CrossRefGoogle Scholar
Rutter, M. (2012). Resilience is a dynamic concept. Developmental Psychopathology, 24, 335344.CrossRefGoogle ScholarPubMed
Barker, D.J. (2012). Sir Richard Doll Lecture. Developmental origins of chronic disease. Public Health, 126, 185189.CrossRefGoogle Scholar
Chen, X., Chen, H., Li, D., & Wang, L. (2009). Early childhood behavioral inhibition and social and school adjustment in Chinese children: A 5-year longitudinal study. Child Development, 80, 16921704.CrossRefGoogle Scholar
Cicchetti, D. (2013). Annual research review: Resilient functioning in maltreated children: Past, present, and future perspectives. Journal of Child Psychology and Psychiatry, 54, 402422.CrossRefGoogle ScholarPubMed
Cox, M.J., Mills-Koonce, R., Propper, C., & Gariépy, J.L. (2010). Systems theory and cascades in developmental psychopathology. Development and Psychopathology, 22, 497506.CrossRefGoogle ScholarPubMed
Dannlowski, U., Stuhrmann, A., Beutelmann, V., Zwanzger, P., Lenzen, T., Grotegerd, D., … & Kugel, H. (2012). Limbic scars: Long-term consequences of childhood maltreatment revealed by functional and structural magnetic resonance imaging. Biological Psychiatry, 71, 286293.CrossRefGoogle ScholarPubMed
Dawson, G., Ashman, S.B., & Carver, L.J. (2000). The role of early experience in shaping behavioral and brain development and its implications for social policy. Development and Psychopathology, 12, 695712.CrossRefGoogle ScholarPubMed
Duckworth, A.L., Steen, T.A., & Seligman, M.E. (2005). Positive psychology in clinical practice. Annual Review of Clinical Psychology, 1, 629651.CrossRefGoogle ScholarPubMed
Ellis, B.J., Boyce, W.T., Belsky, J., Bakermans-Kranenburg, M.J., & van Ijzendoorn, M.H. (2011). Differential susceptibility to the environment: An evolutionary–neurodevelopment theory. Development and Psychopathology, 23, 728.CrossRefGoogle ScholarPubMed
Garmezy, N., & Devine, V.T. (1984). Project Competence: The Minnesota studies of children vulnerable to psychopathology. In Watt, N., Rolf, J., & Anthony, E.J. (Eds.), Children at risk for schizophrenia (pp. 287303). Cambridge, UK: Cambridge University Press.Google Scholar
Gluckman, P.D., Hanson, M.A., Cooper, C., & Thornburg, K.L. (2008). Effect of in utero and early-life conditions on adult health and disease. New England Journal of Medicine, 359, 6173.CrossRefGoogle ScholarPubMed
Harris, M. (1976), History and significance of the emic/etic distinction. Annual Review of Anthropology, 5, 329350.CrossRefGoogle Scholar
Martin, J., Hamshere, M.L., Stergiakouli, E., O’Donovan, M.C., & Thapar, A. (2014). Genetic risk for attention-deficit/hyperactivity disorder contributes to neurodevelopmental traits in the general population. Biological Psychiatry, 76, 664671.CrossRefGoogle Scholar
Maslow, A.H. (1954). Motivation and personality. New York, NY: Harper & Row.Google Scholar
Masten, A.S. (2011). Resilience in children threatened by extreme adversity: Frameworks for research, practice, and translational synergy. Development and Psychopathology, 23, 493506.CrossRefGoogle ScholarPubMed
Monroe, S.M., & Simons, A.D. (1991). Diathesis–stress theories in the context of life stress research: Implications for the depressive disorders. Psychological Bulletin, 110, 406425.CrossRefGoogle ScholarPubMed
Pembrey, M., Saffery, R., Bygren, L.O., & Network in Epigenetic Epidemiology (2014). Human transgenerational responses to early-life experience: Potential impact on development, health and biomedical research. Journal of Medical Genetics, 51, 563572.CrossRefGoogle Scholar
Roseboom, T., van der Meulen, J.H., Ravelli, A.C., Osmond, C., Barker, D.J., & Bleker, O.P. (2001). Effects of prenatal exposure to the Dutch famine on adult disease in later life: An overview. Molecular and Cellular Endocrinology, 185, 9398.CrossRefGoogle Scholar
Rutter, M. (2013). Annual research review: Resilience – Clinical implications. Journal of Child Psychology and Psychiatry, 54, 474487.CrossRefGoogle ScholarPubMed
Sinclair, D., Purves-Tyson, T.D., Allen, K.M., & Weickert, C.S. (2014). Impacts of stress and sex hormones on dopamine neurotransmission in the adolescent brain. Psychopharmacology, 231, 15811599.CrossRefGoogle ScholarPubMed
Tafet, G.E., & Smolovich, J. (2004). Psychoneuroendocrinological studies on chronic stress and depression. Annals of the New York Academy of Sciences, 1032, 276278.CrossRefGoogle Scholar
Werner, E.E. (1993). Risk, resilience and recovery: Perspectives from the Kauai Longitudinal Study. Development and Psychopathology, 5, 503515.CrossRefGoogle Scholar
Werner, E.E., & Smith, R.S. (1979). An epidemiologic perspective on some antecedents and consequences of childhood mental health problems and learning disabilities: A report on the Kauai Longitudinal Study. Journal of the American Academy of Child Psychiatry, 18, 292306.CrossRefGoogle ScholarPubMed
First, M.B., Reed, G.M., Hyman, S.E., & Saxena, S. (2015). The development of the ICD-11 clinical descriptions and diagnostic guidelines for mental and behavioural disorders. World Psychiatry, 14, 8290.CrossRefGoogle ScholarPubMed
Frances, A. (2013). Saving normal: An insider’s revolt against out-of-control psychiatric diagnosis, DSM-5, big pharma, and the medicalization of ordinary life. New York, NY: Morrow.Google Scholar
Reed, G.M. (2010). Toward ICD-11: Improving the clinical utility of WHO’s International Classification of Mental Disorders. Professional Psychology: Research and Practice, 41, 457.CrossRefGoogle Scholar
Reed, G.M., Roberts, M.C., Keeley, J., Hooppell, C., Matsumoto, C., Sharan, P., … & Medina-Mora, M.E. (2013). Mental health professionals’ natural taxonomies of mental disorders: Implications for the clinical utility of the ICD-11 and the DSM-5. Journal of Clinical Psychology, 69, 11911212.CrossRefGoogle ScholarPubMed
Tyrer, P. (2014). A comparison of DSM and ICD classifications of mental disorder. Advances in Psychiatric Treatment, 20, 280285.CrossRefGoogle Scholar
World Health Organization. List of Official ICD-10 Updates:
Andreasen, N.C. (2007). DSM and the death of phenomenology in America: An example of unintended consequences. Schizophrenia Bulletin, 33, 108112.CrossRefGoogle ScholarPubMed
Aragona, M. (2014). Epistemological reflections about the crisis of the DSM-5 and the revolutionary potential of the RDoC project. Dialogues in Philosophy, Mental and Neuro Sciences, 7, 1120.Google Scholar
Bentall, R.P. (2007). Researching psychotic complaints. The Psychologist, 20, 293295.Google Scholar
Cosgrove, L., & Krimsky, S. (2012). A comparison of DSM-IV and DSM-5 panel members’ financial associations with industry: A pernicious problem persists. PLoS Medicine, 9, e1001190.CrossRefGoogle ScholarPubMed
Costello, E.J., Pine, D.S., Hammen, C., March, J.S., Plotsky, P.M., Weissman, M.M., … & Leckman, J.F. (2002). Development and natural history of mood disorders. Biological Psychiatry, 52, 529542.CrossRefGoogle ScholarPubMed
Cuthbert, B.N., & Insel, T.R. (2013). Toward the future of psychiatric diagnosis: The seven pillars of RDoC. BMC Medicine, 11, 126.CrossRefGoogle Scholar
First, M.B., & Tasman, A. (2004). DSM-IV-TR mental disorders: Diagnosis, etiology & treatment. Chichester, UK: Wiley.Google Scholar
First, M.B., & Westen, D. (2007). Classification for clinical practice: How to make ICD and DSM better able to serve clinicians. International Review of Psychiatry, 19, 473481.CrossRefGoogle ScholarPubMed
Gillberg, C. (1983). Perceptual, motor and attentional deficits in Swedish primary school children: Some child psychiatric aspects. Journal of Child Psychology and Psychiatry, 24, 377403.CrossRefGoogle Scholar
Gillberg, C. (2010). The ESSENCE in child psychiatry: Early symptomatic syndromes eliciting neurodevelopmental clinical examinations. Research in Developmental Disabilities, 31, 15431551.CrossRefGoogle Scholar
Gillberg, C., Ehlers, S., Schaumann, H., Jakobsson, G., Dahlgren, S.O., Lindblom, R, … & Blidner, E. (1990). Autism under age 3 years: A clinical study of 28 cases referred for autistic symptoms in infancy. Journal of Child Psychology and Psychiatry, 31, 921934.CrossRefGoogle ScholarPubMed
Good, B.J. (1996). Culture and DSM-IV: Diagnosis, knowledge and power. Culture, Medicine and Psychiatry, 20, 127132.CrossRefGoogle ScholarPubMed
Hyman, S.E. (2007). Can neuroscience be integrated into the DSM-V? Nature Reviews Neuroscience, 8, 725732.CrossRefGoogle ScholarPubMed
Kadesjö, B., & Gillberg, C. (2001). The comorbidity of ADHD in the general population of Swedish school-age children. Journal of Child Psychology and Psychiatry, 42, 487492.CrossRefGoogle Scholar
Kelly, B.D., & Feeney, L. (2007). Coping with stressors: Racism and migration. In Bhugra, D. & Bhui, K. (Eds.), Textbook of cultural psychiatry (pp. 550560). Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Kinderman, P., Read, J., Moncrieff, J., & Bentall, R.P. (2013). Drop the language of disorder. Evidence Based Mental Health, 16, 23.CrossRefGoogle Scholar
Kirmayer, L.J., & Ban, L. (2013). Cultural psychiatry: Research strategies and future directions. Advances in Psychosomatic Medicine, 33, 97114.CrossRefGoogle ScholarPubMed
Kupfer, D.J., First, M.B., & Regier, D.A. (2002). A research agenda for DSM-V. Washington, DC: American Psychiatric Publishing.Google Scholar
Lilienfeld, S.O., Smith, S.F., & Watts, A.L. (2013). Issues in diagnosis: Conceptual issues and controversies. In Craighead, W.E., Miklowitz, D.J., & Craighead, L.W. (Eds.), Psychopathology: History, diagnosis, and empirical foundations (2nd ed., pp. 135). Hoboken, NJ: Wiley.Google Scholar
Littlewood, R. (1992). DSM-IV and culture: Is the classification internationally valid? Psychiatric Bulletin, 16, 257261.CrossRefGoogle Scholar
Miniscalco, C., Nygren, G., Hagberg, B., Kadesjö, B., & Gillberg, C. (2006). Neuropsychiatric and neurodevelopmental outcome at school age 6 and 7 years of children who screened positive for language problems at 2.5 years: A community-based study. Developmental Medicine and Child Neurology, 48, 361366.CrossRefGoogle Scholar
Moffitt, T.E., Caspi, A., Harrington, H., & Milne, B.J. (2002). Males on the life-course-persistent and adolescence-limited antisocial pathways: Follow-up at age 26 years. Development and Psychopathology, 14, 179207.CrossRefGoogle ScholarPubMed
Reed, G.M. (2009). ICD vs DSM. APA Monitor on Psychology, 40, 63.Google Scholar
Regier, D.A., First, M., Marshall, T., & Narrow, W.E. (2002). The American Psychiatric Association classification of mental disorders: Strengths, implications and future perspectives. In Maj, M. (Ed.), Psychiatric diagnosis and classification (pp. 4778). Chichester, UK: Wiley.CrossRefGoogle Scholar
Regier, D.A., Narrow, W.E., Kuhl, E.A., & Kupfer, D.J. (2009). The conceptual development of DSM-V. American Journal of Psychiatry, 166, 645650.CrossRefGoogle ScholarPubMed
Sonuga-Barke, E. (2009). Gained in translation: How can we facilitate science-driven innovations in child mental health therapeutics? Journal of Child Psychology and Psychiatry, 50, 655656.CrossRefGoogle ScholarPubMed
Tsou, J.Y. (2015). DSM-5 and psychiatry’s second revolution: Descriptive vs. theoretical approaches to psychiatric classification. In Demazeux, S. & Singy, P. (Eds.), The DSM-5 in perspective: History, philosophy and theory of the life sciences (Vol. 10, pp. 4362). New York, NY: Springer.Google Scholar
Widiger, T.A. (2005). Classification and diagnosis: Historical development and contemporary issues. In Maddux, J.E. & Winstead, B.A. (Eds.), Psychopathology: Foundations for contemporary understanding (pp. 6991). Mahwah, NJ: Erlbaum.Google Scholar
Widiger, T.A., Frances, A.J., Pincus, H.A., Davis, W.W., & First, M.B. (1991). Toward an empirical classification for the DSM-IV. Journal of Abnormal Psychology, 100, 280.CrossRefGoogle Scholar
Zimmerman, M., & Spitzer, R.L. (2009). Psychiatric classification. In Sadock, B.J. & Sadock, V.A. (Eds.), Kaplan and Sadock’s comprehensive textbook of psychiatry. Philadelphia, PA: Lippincott Williams & Wilkins.Google Scholar
Zimmerman, M., Jampala, V.C., Sierles, F.S., & Taylor, M.A. (1991). DSM-IV: A nosology sold before its time. American Journal of Psychiatry, 148, 463467.Google ScholarPubMed
Ameringen, M., Patterson, B., & Simpson, W. (2014). DSM-5 obsessive–compulsive and related disorders: Clinical implications of new criteria. Depression and Anxiety, 31, 487493.CrossRefGoogle ScholarPubMed
Dietrich, A., Fernandez, T.V., King, R.A., Tischfield, J.A., Hoekstra, P.J., … & the TIC Genetics Collaborative Group (2015). The Tourette International Collaborative Genetics (TIC Genetics) study, finding the genes causing Tourette syndrome: Objectives and methods. European Child and Adolescent Psychiatry, 24, 141151.CrossRefGoogle Scholar
Mataix-Cols, D., Frost, R.O., Pertusa, A., Clark, L.A., Saxena, S., … & Wilhelm, S. (2010). Hoarding disorder: A new diagnosis for DSM-V? Depression and Anxiety, 27, 556572.CrossRefGoogle ScholarPubMed
Stein, D.J., Grant, J.E., Franklin, M.E., Keuthen, N., Lochner, C., … & Woods, D.W. (2010). Trichotillomania (hair pulling disorder), skin picking disorder, and stereotypic movement disorder: Toward DSM-V. Depression and Anxiety, 27, 611626.CrossRefGoogle ScholarPubMed
Abelson, J.F., Kwan, K.Y., O’Roak, B.J., Baek, D.Y., Stillman, , Morgan, T.M., … & State, M.W. (2005). Sequence variants in SLITRK1 are associated with Tourette’s syndrome. Science, 310, 317320.CrossRefGoogle Scholar
Axelson, D.A., Birmaher, B., Findling, R.L., Fristad, M.A., Kowatch, , … & Diler, R.S. (2011). Concerns regarding the inclusion of temper dysregulation disorder with dysphoria in the Diagnostic and Statistical Manual of Mental Disorders. Journal of Clinical Psychiatry, 72, 12571262.CrossRefGoogle ScholarPubMed
Axelson, D., Findling, R.L., Fristad, M.A., Kowatch, R.A., Youngstrom, E.A., … & Birmaher, B. (2012). Examining the proposed disruptive mood dysregulation disorder diagnosis in children in the Longitudinal Assessment of Manic Symptoms study. Journal of Clinical Psychiatry, 73, 13421350.CrossRefGoogle Scholar
Carlson, G.A., Potegal, M., Margulies, D., Gutkovich, Z., & Basile, J. (2009). Rages: What are they and who has them? Journal of Child and Adolescent Psychopharmacology, 19, 281288.CrossRefGoogle Scholar
Centers for Disease Control and Prevention (CDC). (2013). Traumatic brain injury. Retrieved from
Chao, T.K., Hu, J., & Pringsheim, T. (2014). Prenatal risk factors for Tourette Syndrome: A systematic review. BMC Pregnancy and Childbirth, 14, 53.CrossRefGoogle ScholarPubMed
Debes, N.M., Hjalgrim, H., & Skov, L. (2009). The presence of comorbidity in Tourette syndrome increases the need for pharmacological treatment. Journal of Child Neurology, 24, 15041512.CrossRefGoogle ScholarPubMed
DSM-5 Childhood and Adolescent Disorders Work Group (2010). Justification for temper dysregulation disorder with dysphoria. Washington, DC: American Psychiatric Association.
Gillberg, C. (2010). The ESSENCE in childpsychiatry: Early symptomatic syndromes eliciting neurodevelopmental clinical examinations. Research in Developmental Disabilities, 31, 15431551.CrossRefGoogle Scholar
Gioia, G., & Collins, M. (2006). Acute concussion evaluation tool. Centers for Disease Control and Prevention:
Hawes, D.J. (2014). Disruptive behaviour disorders and DSM-5. Asian Journal of Psychiatry, 11, 102105.CrossRefGoogle ScholarPubMed
Li, L., & Liu, J. (2013). The effect of pediatric traumatic brain injury on behavioral outcomes: A systematic review. Developmental Medicine and Child Neurology, 55, 3745.CrossRefGoogle ScholarPubMed
Marshall, S., Bayley, M., McCullagh, S., Velikonja, D., Berrigan, , … & mTBI Expert Consensus Group (2015). Updated clinical practice guidelines for concussion/mild traumatic brain injury and persistent symptoms. Brain Injury, 29, 688700.CrossRefGoogle ScholarPubMed
Mason, C.N. (2013). Mild traumatic brain injury in children. Pediatric Nursing, 39, 267272.Google Scholar
Norbury, C.F. (2014). Practitioner review: Social (pragmatic) communication disorder conceptualization, evidence and clinical implications. Journal of Child Psychology and Psychiatry, 55, 204216.CrossRefGoogle Scholar
Rapp, P.E., & Curley, K.C. (2012). Is the diagnosis of “mild traumatic brain injury” a category mistake? Journal of Trauma and Acute Care Surgery, 73, S13S23.CrossRefGoogle Scholar
Robertson, M.M., & Eapen, V. (2014). Tourette’s Syndrome, disorder or spectrum? Classificatory challenges and an appraisal of the DSM criteria. Asian Journal of Psychiatry, 11, 106113.CrossRefGoogle ScholarPubMed
Schmidt, A.T., Li, X., Zhang-Rutledge, K., Hanten, G.R., & Levin, H.S. (2014). A history of low birth weight alters recovery following a future head injury: A case series. Child Neuropsychology, 20, 495508.CrossRefGoogle ScholarPubMed
State, M.W. (2011). The genetics of Tourette disorder. Current Opinion in Genetics & Development, 21, 302309.CrossRefGoogle ScholarPubMed
Sundaram, S.K., Huq, A.M., Wilson, B.J., & Chugani, H.T. (2010). Tourette syndrome is associated with recurrent exonic copy number variants. Neurology, 74, 15831590.CrossRefGoogle ScholarPubMed
Durston, S., Van Belle, J., & De Zeeuw, P. (2011). Differentiating fronto-striatal and fronto-cerebellar circuits in ADHD. Biological Psychiatry, 69, 1178–1184.CrossRef
Mahone, E.M., & Schneider, H.E. (2012). Assessment of attention in preschoolers. Neuropsychology Review, 22, 361383.CrossRefGoogle ScholarPubMed
Polanczyk, G.V., Willcutt, E.G., Salum, G.A.Kieling, C. , & Rohde, L.A. (2014). ADHD prevalence estimates across three decades: An updated systematic review and meta-regression analysis. International Journal of Epidemiology, 43, 434–442.CrossRef
American Psychiatric Association (APA) ( 2000). Diagnostic and statistical manual of mental disorders (4th ed., text rev.). Washington, DC: American Psychiatric Association.
American Psychiatric Association (APA) (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Washington, DC: American Psychiatric Association.
Antshel, K.M., & Barkley, R. (2009). Developmental and behavioral disorders grown up: Attention deficit hyperactivity disorder. Journal of Developmental and Behavioral Pediatrics, 30, 8190.CrossRefGoogle ScholarPubMed
Cortese, S., Ferrin, M., Brandeis, D., Buitelaar, J., Daley, D., Dittmann, R.W., … & Sonuga-Barke, E.J., & European ADHD Guidelines Group (2015). Cognitive training for attention-deficit/hyperactivity disorder: Meta-analysis of clinical and neuropsychological outcomes from randomized controlled trials. Journal of the American Academy of Child and Adolescent Psychiatry, 54, 164174.CrossRefGoogle Scholar
Daley, D., Van der Oord, S., Ferrin, M., Danckaerts, M., Doepfner, M., Cortese, S., & Sonuga-Barke, E.J., & European ADHD Guidelines Group (2014). Behavioral interventions in attention-deficit/hyperactivity disorder. A meta-analysis of randomized controlled trials across multiple outcome domains. Journal of the American Academy of Child and Adolescent Psychiatry, 53, 835847.CrossRefGoogle ScholarPubMed
Faraone, S.V. (2009). Using meta-analysis to compare the efficacy of medications for attention deficit hyperactivity disorder in youth. Pharmacy and Therapeutics, 34, 678694.Google Scholar
Faraone, S.V., Biederman, J., & Mick, E. (2006). The age-dependent decline of attention deficit hyperactivity disorder: A meta-analysis of follow-up studies. Psychological Medicine, 36, 159165.CrossRefGoogle ScholarPubMed
Faraone, S.V., Asherson, P., Banaschewski, T., Biederman, J., Buitelaar, J.K., Ramos-Quiroga, J.A., … & Franke, B. (2015). Attention-deficit/hyperactivity disorder. Nature Reviews: Disease Primers, 1, 123.Google ScholarPubMed
Frodl, T., & Skokauskas, N. (2012). Meta-analysis of structural MRI studies in children and adults with attention deficit hyperactivity disorder indicates treatment effects. Acta Psychiatrica Scandinavica, 125, 114126.CrossRefGoogle Scholar
Gizer, I.R., Ficks, C., & Waldman, I.D. (2009). Candidate gene studies of ADHD: A meta-analytic review. Human Genetics, 126, 5190.CrossRefGoogle ScholarPubMed
Kessler, R.C., Berglund, P., Demler, O., Jin, R., Merikangas, K.R., & Walters, E.E. (2005). Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Archives of General Psychiatry, 62, 593602.CrossRefGoogle ScholarPubMed
Konrad, K., & Eickhoff, S.B. (2010). Is the ADHD brain wired differently? A review on structural and functional connectivity in attention deficit hyperactivity disorder. Human Brain Mapping, 31, 904916.CrossRefGoogle ScholarPubMed
Lange, K.W., Reichl, S., Lange, K.M., Tucha, L., & Tucha, O. (2010). The history of attention deficit hyperactivity disorder. Attention Deficit and Hyperactivity Disorders, 2, 241255.CrossRefGoogle ScholarPubMed
McCarthy, H., ,, ,, ,, ,, , & , (2013). Attention network hypoconnectivity with default and affective network hyperconnectivity in adults diagnosed with attention-deficit/hyperactivity disorder in childhood. JAMA Psychiatry, 70, 1329–1337.CrossRef
Nikolas, M.A., & Burt, S.A. (2010). Genetic and environmental influences on ADHD symptom dimensions of inattention and hyperactivity: A meta-analysis. Journal of Abnormal Child Psychology, 119, 117.CrossRefGoogle ScholarPubMed
Shaw, P., Malek, M., Watson, B., Greenstein, D., De Rossi, P., & Sharp, W. (2013). Trajectories of cerebral cortical development in childhood and adolescence and adult attention-deficit/hyperactivity disorder. Biological Psychiatry, 74, 599606.CrossRefGoogle ScholarPubMed
Smidts, D.P., & Oosterlaan, J. (2007). How common are symptoms of ADHD in typically developing preschoolers? A study on prevalence rates and prenatal/demographic risk factors. Cortex, 43, 710717.CrossRefGoogle ScholarPubMed
Sonuga-Barke, E.J., Koerting, J., Smith, E., McCann, D.C., & Thompson, M. (2011). Early detection and intervention for attention-deficit/hyperactivity disorder. Expert Review of Neurotherapeutics, 11, 557563.CrossRefGoogle ScholarPubMed
Sonuga-Barke, E.J., Brandeis, D., Cortese, S., Daley, D., Ferrin, M., Holtmann, M., … & European ADHD Guidelines Group (2013). Nonpharmacological interventions for ADHD: Systematic review and meta-analyses of randomized controlled trials of dietary and psychological treatments. American Journal of Psychiatry, 170, 275289.CrossRefGoogle ScholarPubMed
Spencer, T.J. (2006). ADHD and comorbidity in childhood. Journal of Clinical Psychiatry, 67, 2731.Google ScholarPubMed
Taylor, E., Dopfner, M., Sergeant, J., Asherson, P., Banaschewski, T., Buitelaar, J., … & Zuddas, A. (2004). European clinical guidelines for hyperkinetic disorder-first upgrade. European Child and Adolescent Psychiatry, 13 Suppl 1, I7–30.CrossRefGoogle ScholarPubMed
Thapar, A., Cooper, M., Eyre, O., & Langley, K. (2013). Practitioner review: What have we learnt about the causes of ADHD? Journal of Child Psychology and Psychiatry, 54, 316.CrossRefGoogle Scholar
Van der Oord, S., Prins, P.J., Oosterlaan, J., & Emmelkamp, P.M. (2008). Efficacy of methylphenidate, psychosocial treatments and their combination in school-aged children with ADHD: A meta-analysis. Clinical Psychology Review, 28, 783800.CrossRefGoogle ScholarPubMed
Weinstein, A., & Weizman, A. (2012). Emerging association between addictive gaming and attention-deficit/hyperactivity disorder. Current Psychiatry Reports, 14, 590597.CrossRefGoogle ScholarPubMed
Willcutt, E.G. (2010). Attention-deficit/hyperactivity disorder. In Yeates, K.O., Ris, M.D., Taylor, H.G., & Pennington, B.F. (Eds.), Pediatric neuropsychology (2nd ed., pp. 393417). New York, NY: Guilford Press.Google Scholar
Willcutt, E.G. (2012). The prevalence of DSM-IV attention-deficit/hyperactivity disorder: A meta-analytic review. Neurotherapeutics, 9, 490499.CrossRefGoogle Scholar
Willcutt, E.G., Nigg, J.T., Pennington, B.F., Solanto, M.V., Rohde, L.A., Tannock, R., … & Lahey, B.B. (2012). Validity of DSM-IV attention deficit/hyperactivity disorder symptom dimensions and subtypes. Journal of Abnormal Psychology, 121, 9911010.CrossRefGoogle Scholar
Wright, N., Moldavsky, M., Schneider, J., Chakrabarti, I., Coates, J., Daley, D., … & Sayal, K. (2015). Practitioner review: Pathways to care for ADHD – A systematic review of barriers and facilitators. Journal of Child Psychology and Psychiatry, 56, 598617.CrossRefGoogle Scholar
Dawson, G., & Bernier, R. (2013). A quarter century of progress on the early detection and treatment of autism spectrum disorder. Development and Psychopathology, 25, 14551472.CrossRefGoogle ScholarPubMed
Ecker, C., Spooren, W., & Murphy, D.G.M. (2012). Translational approaches to the biology of autism: False dawn or new era? Molecular Psychiatry 18, 435442.CrossRefGoogle ScholarPubMed
Johnson, M.J., Jones, E.J.H., & Gliga, T. (2015). Brain adaptation and alternative developmental trajectories. Development and Psychopathology, 27, 425442.CrossRefGoogle ScholarPubMed
Wass, S.V. (2011). Distortions and disconnections: Disrupted brain connectivity in ASD. Brain and Cognition, 75, 1828.CrossRefGoogle Scholar
Webb, S.J., Jones, E.J.H., Kelly, J., & Dawson, G. (2014). The motivation for very early intervention in infants at high risk for autism spectrum disorders. International Journal of Speech–Language Pathology, 16, 3642.CrossRefGoogle ScholarPubMed
Dawson, G., Jones, E.J., Merkle, K., Venema, K., Lowy, R., Faja, S., … & Webb, S.J. (2012). Early behavioral intervention is associated with normalized brain activity in young children with autism. Journal of the American Academy of Child & Adolescent Psychiatry, 5, 11501159.CrossRefGoogle Scholar
Elsabbagh, M., Mercure, E., Hudry, K., Chandler, S., Pasco, G., Charman, T., … & Johnson, M.H. (2012). Infant neural sensitivity to dynamic eye gaze is associated with later emerging autism. Current Biology, 22, 338342.CrossRefGoogle Scholar
Flanagan, J.E., Landa, R., Bhat, A., & Bauman, M. (2012). Head lag in infants at risk for autism: A preliminary study. American Journal of Occupational Therapy, 66, 577585.CrossRefGoogle ScholarPubMed
Gaugler, T., Klei, L., Sanders, S.J., Bodea, C.A., Goldberg, A.P., Lee, A.B., … & Buxbaum, J.D. (2014). Most genetic risk for autism resides with common variation. Nature Genetics, 46, 881885.CrossRefGoogle Scholar
Johnson, M.H. (2012). Executive function and developmental disorders: The flip side of the coin. Trends in Cognitive Sciences, 16, 454457.CrossRefGoogle ScholarPubMed
Jones, E.J., Gliga, T., Bedford, R., Charman, T., & Johnson, M.H. (2014). Developmental pathways to autism: A review of prospective studies of infants at risk. Neuroscience & Biobehavioral Reviews, 39, 133.CrossRefGoogle ScholarPubMed
Jones, W., & Klin, A. (2013). Attention to eyes is present but in decline in 2–6-month-old infants later diagnosed with autism. Nature, 504, 427431.CrossRefGoogle Scholar
Lloyd-Fox, S., Blasi, A., Elwell, C.E., Charman, T., Murphy, D., & Johnson, M.H. (2013). Reduced neural sensitivity to social stimuli in infants at risk for autism. Proceedings of the Royal Society B: Biological Sciences, 280, 20123026.CrossRefGoogle Scholar
Ozonoff, S., Iosif, A.M., Baguio, F., Cook, I.C., Hill, M.M., Hutman, T., … & Young, G.S. (2010). A prospective study of the emergence of early behavioral signs of autism. Journal of the American Academy of Child & Adolescent Psychiatry, 49, 256266.Google ScholarPubMed
Parikshak, N.N., Luo, R., Zhang, A., Won, H., Lowe, J.K., Chandran, V., … & Geschwind, D.H. (2013). Integrative functional genomic analyses implicate specific molecular pathways and circuits in autism. Cell, 155, 10081021.CrossRefGoogle ScholarPubMed
Persico, A.M., & Merelli, S. (2014). Environmental factors in the onset of autism spectrum disorder. Current Developmental Disorders Reports, 1, 819.CrossRefGoogle Scholar
Rubenstein, J.L.R., & Merzenich, M.M. (2003). Model of autism: Increased ratio of excitation/inhibition in key neural systems. Genes, Brain and Behavior, 2, 255267.CrossRefGoogle ScholarPubMed
Sandin, S., Lichtenstein, P., Kuja-Halkola, R., Larsson, H., Hultman, C.M., & Reichenberg, A. (2014). The familial risk of autism. Journal of the American Medical Association, 311, 17701777.CrossRefGoogle ScholarPubMed
Senju, A., Southgate, V., Miura, Y., Matsui, T., Hasgawa, T., Tojo, Y., … & Csibra, G. (2010). Absence of spontaneous action anticipation by false belief attribution in children with autism spectrum disorder. Development and Psychopathology, 22, 353360.CrossRefGoogle ScholarPubMed
Tyzio, R., Nardou, R., Ferrari, D.C., Tsintsadze, T., Shahrokhi, A., Eftekhari, S., … & Ben-Ari, Y. (2014). Oxytocin-mediated GABA inhibition during delivery attenuates autism pathogenesis in rodent offspring. Science, 7, 675679.CrossRefGoogle Scholar
Webb, S.J., Jones, E.J.H., Merkle, K., Venema, K., Greenson, J., Murias, M., & Dawson, G. (2011). Developmental change in the ERP responses to familiar faces in toddlers with autism spectrum disorders versus typical development. Child Development, 82, 18681886.CrossRefGoogle ScholarPubMed
ACPR Group ( 2013). Report of the Australian Cerebral Palsy Register, Birth Years 1993–2006. September 2016, CPA, Sydney.
Morgan, C., Novak, I., & Badawi, N. (2013). Enriched environments and motor outcomes in cerebral palsy: Systematic review and meta-analysis. Pediatrics, 132, e735e746.CrossRefGoogle ScholarPubMed
Smithers-Sheedy, H., Raynes-Greenow, C., Badawi, N., McIntyre, S., & Jones, C.A., on behalf of the Australian Cerebral Palsy Register Group (2014). Congenital cytomegalovirus is associated with severe forms of cerebral palsy and female sex in a retrospective population-based study. Developmental Medicine & Child Neurology, 56, 846852.CrossRefGoogle Scholar
Smithers-Sheedy, H., Badawi, N., Blair, E., Cans, C., Himmelmann, K., Krägeloh-Mann, I., … & Wilson, M. (2013). What constitutes cerebral palsy in the twenty-first century? Developmental Medicine & Child Neurology, 56, 323328.CrossRefGoogle ScholarPubMed
Ahlin, K., Himmelmann, K., Hagberg, G., Kacerovsky, M., Cobo, T., Wennerholm, U.B., & Jacobsson, B. (2013). Cerebral palsy and perinatal infection in children born at term. Obstetrics & Gynecology, 122, 4149.CrossRefGoogle ScholarPubMed
Badawi, N., & Keogh, J.M. (2013). Causal pathways in cerebral palsy. Journal of Paediatrics and Child Health, 49, 58.CrossRefGoogle ScholarPubMed
Bosanquet, M., Copeland, L., Ware, R., & Boyd, R. (2013). A systematic review of tests to predict cerebral palsy in young children. Developmental Medicine & Child Neurology, 55, 418426.CrossRefGoogle ScholarPubMed
Cox, B., Martens, E., Nemery, B., Vangronsveld, J., & Nawrot, T.S. (2013). Impact of a stepwise introduction of smoke-free legislation on the rate of preterm births: Analysis of routinely collected birth data. British Medical Journal, 346, f441.CrossRefGoogle Scholar
Crowther, C.A., Hiller, J.E., & Doyle, L.W. (2002). Magnesium sulphate for preventing preterm birth in threatened preterm labour. Cochrane Database Systematic Reviews, 4, CD001060.Google Scholar
de Vries, L.S., & Groenendaal, F. (2010). Patterns of neonatal hypoxic–ischaemic brain injury. Journal of Neuroradiology, 52, 555566.CrossRefGoogle ScholarPubMed
Eliasson, A. C., Krumlinde-Sundholm, L., Rösblad, B., Beckung, E., Arner, M., Öhrvall, A. M., & Rosenbaum, P. (2006). The Manual Ability Classification System (MACS) for children with cerebral palsy: scale development and evidence of validity and reliability. Developmental Medicine & Child Neurology, 48, 549–554.CrossRef
Hägglund, G., Alriksson-Schmidt, A., Lauge-Pedersen, H., Rodby-Bousquet, E., Wagner, P., & Westbom, L. (2014). Prevention of dislocation of the hip in children with cerebral palsy: 20-year results of a population-based prevention programme. Bone Joint Journal, 96-B, 15461552.CrossRefGoogle Scholar
Hidecker, M. J. C., Paneth, N., Rosenbaum, P. L., Kent, R. D., Lillie, J., Eulenberg, J. B., ... & Taylor, K. (2011). Developing and validating the Communication Function Classification System for individuals with cerebral palsy. Developmental Medicine & Child Neurology, 53(8), 704–710.CrossRef
Holmefur, M., & Eliasson, A.C. (2013). The influence of early CIMT training on longitudinal development of hand function in children with unilateral cerebral palsy. Paper presented at the European Academy of Childhood Disability Annual Meeting, Newcastle, UK.
Karlsson, P., Smithers-Sheedy, H., Novak, I., Hines, M., Golland, P., Berry, J., … & Korkalainen, J. (2014). Active surveillance programs and cerebral palsy: Parent and staff experiences within a community rehabilitation setting. Paper presented at the Australasian Academy of Cerebral Palsy and Developmental Medicine, Hunter Valley, NSW, Australia.
McIntyre, S., Blair, E., Badawi, N., Keogh, J., & Nelson, K.B. (2013). Antecedents of cerebral palsy and perinatal death in term and late preterm singletons. Obstetrics & Gynecology, 122, 869877.CrossRefGoogle Scholar
McMichael, G., Bainbridge, M.N., Haan, E., Corbett, M., Gardner, A., Thompson, S., … & MacLennan, A.H. (2015). Whole-exome sequencing points to considerable genetic heterogeneity of cerebral palsy. Molecular Psychiatry, 20, 176182.CrossRefGoogle ScholarPubMed
Morgan, C.J., Novak, I., Dale, R.C., & Badawi, N. (2015). Optimising motor learning in infants at high risk of cerebral palsy: A pilot study. BMC Pediatrics, 15, 30.CrossRefGoogle Scholar
Novak, I., Hines, M., Goldsmith, S., & Barclay, R. (2012). Clinical prognostic messages from a systematic review on cerebral palsy. Pediatrics, 130, e1284e1313.CrossRefGoogle ScholarPubMed
O’Callaghan, M.E., MacLennan, A.H., Gibson, C., McMichael, G.L., Haan, E.A., Broadbent, J.L., … & the Australian Collaborative Cerebral Palsy Research Group (2011). Epidemiologic associations with cerebral palsy. Obstetrics & Gynecology, 118, 576582.CrossRefGoogle ScholarPubMed
Oskoui, M., Coutinho, F., Dykeman, J., Jetté, N., & Pringsheim, T. (2013). An update on the prevalence of cerebral palsy: A systematic review and meta-analysis. Developmental Medicine & Child Neurology, 55, 509519.CrossRefGoogle ScholarPubMed
Palisano, R., Rosenbaum, P., Bartlett, D., & Livingston, M. (2007). GMFCS-E&R. Gross Motor Function Classification System Expanded and Revised. CanChild Centre for Childhood Disability Research, McMaster University. Institute for Applied Health Sciences McMaster University, Hamilton, Ontario.
Redline, R.W. (2005). Severe fetal placental vascular lesions in term infants with neurologic impairment. American Journal of Obstetrics & Gynecology, 192, 452457.CrossRefGoogle ScholarPubMed
Reid, S.M., Carlin, J.B., & Reddihough, D.S. (2011). Rates of cerebral palsy in Victoria, Australia, 1970 to 2004: Has there been a change? Developmental Medicine & Child Neurology, 53, 907912.CrossRefGoogle ScholarPubMed
Romeo, D.M., Cioni, M., Palermo, F., Cilauro, S., & Romeo, M.G. (2013). Neurological assessment in infants discharged from a neonatal intensive care unit. European Journal of Paediatric Neurology, 17, 192198.CrossRefGoogle ScholarPubMed
Rosenbaum, P., Paneth, N., Leviton, A., Goldstein, M., Bax, M., Damiano, D., … & Jacobsson, B. (2007). A report: The definition and classification of cerebral palsy April 2006. Developmental Medicine & Child Neurology, 49, 814.Google Scholar
Schmidt, B., Roberts, R.S., Davis, P., Doyle, L.W., Barrington, K.J., Ohlsson, A., … The Caffeine for Apnea of Prematurity Trial Group (2007). Long-term effects of caffeine therapy for apnea of prematurity. New England Journal of Medicine, 357, 18931902.CrossRefGoogle ScholarPubMed
Spittle, A., Brown, N., Doyle, L.W., Boyd, R.N., Hunt, R.W., Bear, M., & Inder, T.E. (2008). Quality of general movements is related to white matter pathology in very preterm infants. Pediatrics, 121, e1184e1189.CrossRefGoogle ScholarPubMed
Forbes, E.E., & Goodman, S.H. (2014). Reward function: A promising but (still) underexamined dimension in developmental psychopathology. Journal of Abnormal Psychology, 123, 310313.CrossRefGoogle ScholarPubMed
Gotlib, I.H., & Joormann, J. (2010). Cognition and depression: Current status and future directions. Annual Review of Clinical Psychology, 6, 285312.CrossRefGoogle ScholarPubMed
Ingram, R.E., Atchley, R.A., & Segal, Z.V. (2011). Vulnerability to depression: From cognitive neuroscience to prevention and treatment. New York, NY: Guilford Press.Google Scholar
Mellick, W., Sharp, C., & Ernst, M. (2015). Neuroeconomics for the study of social cognition in adolescent depression. Clinical Psychology: Science and Practice, 22, 255276.Google Scholar
Sharp, C., Kim, S., Herman, L., Pane, H., Reuter, T., & Strathearn, L. (2014). Major depression in mothers predicts reduced ventral striatum activation in adolescent female offspring with and without depression. Journal of Abnormal Psychology, 123, 298309.CrossRefGoogle Scholar
Abela, J.R.Z., & Hankin, B.L. (2008). Cognitive vulnerability to depression in children and adolescents: A developmental psychopathology perspective. In Abela, J.R.Z. & Hankin, B.L. (Eds.), Handbook of depression in children and adolescents (pp. 3578). New York, NY: Guilford Press.Google Scholar
Avenevoli, S., Knight, E., Kessler, R.C., & Merikangas, K.R. (2008). Epidemiology of depression in children and adolescents. In Abela, J.R.Z. & Hankin, B.L. (Eds.), Handbook of depression in children and adolescents (pp. 6–34). New York, NY: Guilford Press.Google Scholar
Casement, M.D., Guyer, A.E., Hipwell, A.E., McAloon, R.L., Hoffmann, A.M., Keenan, K.E., & Forbes, E.E. (2014). Girls’ challenging social experiences in early adolescence predict neural response to rewards and depressive symptoms. Developmental Cognitive Neuroscience, 8, 1827.CrossRefGoogle ScholarPubMed
Douglas, J., & Scott, J. (2014). A systematic review of gender‐specific rates of unipolar and bipolar disorders in community studies of pre‐pubertal children. Bipolar Disorders, 16, 515.CrossRefGoogle Scholar
Forbes, E.E., & Dahl, R.E. (2012). Research Review: Altered reward function in adolescent depression: What, when and how? Journal of Child Psychology and Psychiatry, 53, 315.CrossRefGoogle Scholar
Jacobs, R.H., Reinecke, M.A., Gollan, J.K., & Kane, P. (2008). Empirical evidence of cognitive vulnerability for depression among children and adolescents: A cognitive science and developmental perspective. Clinical Psychology Review, 28, 759782.CrossRefGoogle ScholarPubMed
Gonzalez-Tejera, G., Canino, G., Ramirez, R., Chavez, L., Shrout, P., Bird, H., … & Bauermeister, J. (2005). Examining minor and major depression in adolescents. Journal of Child Psychology and Psychiatry, 46, 888899.CrossRefGoogle ScholarPubMed
Goodyer, I.M. (2008). Emanuel Miller Lecture: Early onset depressions – Meanings, mechanisms and processes. Journal of Child Psychology and Psychiatry, 49, 12391256.CrossRefGoogle Scholar
Gregory, A.M., Rijsdijk, F.V., Lau, J.F., Napolitano, M., McGuffin, P., & Eley, T.C. (2007). Genetic and environmental influences on interpersonal cognitions and associations with depressive symptoms in 8-year-old twins. Journal of Abnormal Psychology, 116, 762775.CrossRefGoogle ScholarPubMed
Mezulis, A.H., Hyde, J.S., & Abramson, L.Y. (2006). The developmental origins of cognitive vulnerability to depression: Temperament, parenting, and negative life events in childhood as contributors to negative cognitive style. Developmental Psychology, 42, 10121025.CrossRefGoogle ScholarPubMed
Morgan, J.K., Shaw, D.S., & Forbes, E.E. (2014). Maternal depression and warmth during childhood predict age 20 neural response to reward. Journal of the American Academy of Child & Adolescent Psychiatry, 53, 108117.CrossRefGoogle Scholar
Motta, R.W., McWilliams, M.E., Schwartz, J.T., & Cavera, R.S. (2012). The role of exercise in reducing childhood and adolescent PTSD, anxiety, and depression. Journal of Applied School Psychology, 28, 224238.CrossRefGoogle Scholar
Singh, N., & Reece, J. (2014). Psychotherapy, pharmacotherapy, and their combination for adolescents with major depressive disorder: A meta-analysis. Australian Educational and Developmental Psychologist, 31, 4765.CrossRefGoogle Scholar
Twenge, J.M., & Nolen-Hoeksema, S. (2002). Age, gender, race, socioeconomic status, and birth cohort differences on the children’s depression inventory: A meta-analysis. Journal of Abnormal Psychology, 111, 578588.CrossRefGoogle ScholarPubMed
Alarcon, G., Nashef, L., Cross, H., Nightingale, J., & Richardson, S. (2009). Epilepsy. Oxford, UK: Oxford University Press.CrossRefGoogle Scholar
Alarcon, G., & Valentin, A. (Eds.) (2012). Introduction to epilepsy. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Duchowny, M., Cross, J.H., & Arzimanoglou, A. (Eds.) (2013). Pediatric epilepsy. New York, NY: McGraw-Hill.Google Scholar
Helmstaedter, C., Hermann, B., Lassonde, M., Kahane, P., & Arzimanoglou, A. (Eds.) (2011). Neuropsychology in the care of people with epilepsy. New Barnet, UK: John Libbey.Google Scholar
Holmes, G., Kasteleijn-Nolst Trenité, D., & Schachter, S.C. (Eds.) (2008). Behavioral aspects of epilepsy from bench to bedside. New York, NY: Demos Medical Publishing.Google Scholar
Aarts, J.H., Binnie, C.D., Smit, A.M., & Wilkins, A.J. (1984). Selective cognitive impairment during focal and generalised epileptiform EEG activity. Brain, 107, 293308.CrossRefGoogle Scholar
Berg, A.T., Berkovic, S.F., & Brodie, M.J., Buchhalter, J., Cross, J.H., van Emde Boas, W., … & Scheffer, I.E. (2010). Revised terminology and concepts for organization of seizures and epilepsies: Report of the ILAE Commission on Classification and Terminology, 2005–2009. Epilepsia, 51, 676685.CrossRefGoogle ScholarPubMed
Browne, T.R., Penry, J.K., Proter, R.J., & Dreifuss, F.E. (1974). Responsiveness before, during, and after spike-wave paroxysms. Neurology, 24, 659665.CrossRefGoogle Scholar
Camfield, C., Camfield, P., Gordon, K., Smith, B., & Dooley, J. (1993). Outcome of childhood epilepsy: A population-based study with a simple predictive scoring system for those treated with medication. Journal of Pediatrics, 122, 861868.CrossRefGoogle ScholarPubMed
Cross, J.H. (2002). Epilepsy surgery in childhood. Epilepsia, 43, 6570.CrossRefGoogle ScholarPubMed
Cross, J.H. (2009). Pitfalls in the diagnosis and differential diagnosis of epilepsy. Paediatrics and Child Health, 19, 199202.CrossRefGoogle Scholar
Cross, J.H., Jayakar, P., & Nordli, D., Delalande, O., Duchowny, M., Wieser, H.G., … & Mathern, G.W. (2006). Proposed criteria for referral and evaluation of children with epilepsy for surgery. Epilepsia, 47, 952959.CrossRefGoogle ScholarPubMed
Davies, S., Heyman, I., & Goodman, R. (2003). A population survey of mental health problems in children with epilepsy. Developmental Medicine & Child Neurology, 45, 292295.CrossRefGoogle ScholarPubMed
Eltze, C.M., Chong, W.K., Cox, T., Whitney, A., Cortina-Borja, M., Chin, R.F.M., … & Cross, J.H. (2013). A population based study of newly diagnosed epilepsy in children in the first two years of life. Epilepsia, 54, 437445.CrossRefGoogle Scholar
Engel, J., Jr. (2001). A proposed diagnostic scheme for people with epileptic seizures and with epilepsy: Report of the ILAE Task Force on Classification and Terminology. Epilepsia, 42, 796803.CrossRefGoogle ScholarPubMed
Fisher, R.S., Acevedo, C., & Arzimanoglou, A., Bogacz, A., Cross, J.H., Elger, C.E., … & Wiebe, S. (2014). ILAE official report: A practical clinical definition of epilepsy. Epilepsia, 55, 475482.CrossRefGoogle ScholarPubMed
Fisher, et al. (2017). ILEA Epilepsia in press.
National Institute of Health and Clinical Excellence (2012). Diagnosis and management of the epilepsies in adults and children in primary and secondary care. Clinical guideline [CG137]
Neal, E.G., Chaffe, H.M., Schwartz, R.H., Lawson, M.S., Edwards, N., Fitzsimmons, G., … & Cross, J.H. (2008). The ketogenic diet for the treatment of childhood epilepsy: A randomised controlled trial. Lancet Neurology, 7, 500506.CrossRefGoogle ScholarPubMed
Orosz, I., McCormick, D., Zamponi, N., Varadkar, S., Feucht, M., Parain, D., … & Lagae, L. (2014). Vagus nerve stimulation for drug-resistant epilepsy: A European long-term study up to 24 months in 347 children. Epilepsia, 55, 15761584.CrossRefGoogle Scholar
Pressler, R.M., Binnie, C.D., Coleshill, S.G., Chorley, G.A., & Robinson, R.O. (2006). Effect of lamotrigine on cognition in children with epilepsy. Neurology, 66, 14951499.CrossRefGoogle ScholarPubMed
Reilly, C., Atkinson, P., Das, K.B., Chin, R.F., Aylett, S.E., Burch, V., … & Neville, B.G. (2014). Neurobehavioral comorbidities in children with active epilepsy: A population-based study. Pediatrics, 133, e1586e1593.CrossRefGoogle Scholar
Barnett, A.L., Hill, E.L., Kirby, A., & Sugden, D.A. (2015). Adaptation and extension of the European Recommendations (EACD) on developmental coordination disorder (DCD) for the UK context. Physical & Occupational Therapy in Pediatrics, 35, 103115.CrossRefGoogle ScholarPubMed
Kirby, A., Williams, N., Thomas, M., & Hill, E. (2013). Self-reported mood, general health, wellbeing and employment status in adults with suspected DCD. Research in Developmental Disabilities, 34, 13571364.CrossRefGoogle ScholarPubMed
Sugden, D. (Ed.) (2006). Leeds Consensus statement. Developmental coordination disorder as a specific learning difficulty. Leeds, UK: Pearson.Google Scholar
Wilmut, K. (2010). Selection and assessment of children with developmental coordination disorder. Developmental Medicine and Child Neurology, 52, 229.CrossRefGoogle ScholarPubMed
Blank, R., Smits-Engelsman, B., Polatajko, H., & Wilson, P.H. (2012). European Academy for Childhood Disability (EACD): Recommendations on the definition, diagnosis and intervention of developmental coordination disorder (long version). Developmental Medicine & Child Neurology, 54, 5493.CrossRefGoogle Scholar
Deconinck, F.J.A., De Clercq, D., Savelsbergh, G.J.P., Van Coster, R., Oostra, A., Dewitte, G., & Lenoir, M. (2006). Differences in gait between children with and without developmental coordination disorder. Motor Control, 10, 125142.CrossRefGoogle Scholar
Du, W., Wilmut, K., & Barnett, A.L. (2015). Level walking in adults with and without developmental coordination disorder: An analysis of movement variability. Human Movement Science, 43, 914.CrossRefGoogle ScholarPubMed
Geuze, R.H. (2003). Static balance and developmental coordination disorder. Human Movement Science, 22, 527548.CrossRefGoogle Scholar
Geuze, R. (2005). Cognitive explanations of the planning and organisation of movement. In Sugden, D.A. & Chambers, M. (Eds.), Children with developmental coordination disorder (pp. 1946). London, UK: Whurr.Google ScholarPubMed
Gillberg, C. (2010). The ESSENCE in child psychiatry: Early symptomatic syndromes eliciting neurodevelopmental clinical examinations. Research in Developmental Disabilities, 31, 15431551.CrossRefGoogle ScholarPubMed
Hulme, C., Smart, A., Moran, G., & McKinlay, I. (1984). Visual, kinaesthetic and cross-modal judgements of length by clumsy children: A comparison with young normal-children. Child: Care, Health and Development, 10, 117125.Google Scholar
Johnson, D.C., & Wade, M. (2007). Judgment of action capabilities in children at risk for developmental coordination disorder. Disability and Rehabilitation, 29, 3345.CrossRefGoogle ScholarPubMed
Lingam, R., Hunt, L., Golding, J., Jongmans, M., & Emond, A. (2009). Prevalence of developmental coordination disorder using the DSM-IV at 7 years of age: A UK population-based study. Pediatrics, 123, e693e700.CrossRefGoogle Scholar
Losse, A., Henderson, S., Elliman, D., Hall, D., Knight, E., & Jongmans, M. (1991). Clumsiness in children – Do they grow out of it? A 10 year follow-up study. Developmental Medicine and Child Neurology, 33, 5568.CrossRefGoogle Scholar
Mackenzie, S., Getchell, N., Deutsch, K., Wilms-Floet, A., Clark, J.E., & Whitall, J. (2008). Multi-limb coordination and rhythmic variability under varying sensory availability conditions in children with DCD. Human Movement Science, 27, 256269.CrossRefGoogle Scholar
Mon-Williams, M.A., Tresilian, J.R., Bell, V.E., Coppard, V.L., Nixdorf, M., & Carson, R.G. (2005). The preparation of reach-to-grasp movements in adults, children, and children with movement problems. Quarterly Journal of Experimental Psychology, 58A, 12491263.CrossRefGoogle Scholar
Pratt, H.L., Leonard, H.C., Adeyinka, H., & Hill, E.L. (2014). The effect of motor load on planning and inhibition in developmental coordination disorder. Research in Developmental Disabilities, 35, 15791587.CrossRefGoogle ScholarPubMed
Prunty, M., Barnett, A., Wilmut, K., & Plumb, M. (2013). Handwriting speed in children with developmental coordination disorder: Are they really slower? Research in Developmental Disabilities, 34, 29272936.CrossRefGoogle Scholar
Purcell, C., Wann, J.P., Wilmut, K., & Poulter, D. (2011). Roadside judgments in children with developmental coordination disorder. Research in Developmental Disabilities, 32, 12831292.CrossRefGoogle Scholar
Wilmut, K., Brown, J.H., & Wann, J.P. (2007). Attention disengagement in children with developmental coordination disorder. Disability and Rehabilitation, 29, 4755.CrossRefGoogle ScholarPubMed
Wilmut, K., Byrne, M., & Barnett, A. (2013). Reaching to throw compared to reaching to place: A comparison across individuals with and without developmental coordination disorder. Research in Developmental Disabilities, 34, 174182.CrossRefGoogle Scholar
Wilmut, K., Du, W., & Barnett, A.L. (2016). Navigating through apertures: perceptual judgement and actions of children with Developmental Coordination Disorder. Developmental Science, doi:10.1111/desc.12462.CrossRef
Wilson, P.H., Ruddock, S., Smits-Engelsman, B., Polatajko, H., & Blank, R. (2013). Understanding performance deficits in developmental coordination disorder: A meta-analysis of recent research. Developmental Medicine and Child Neurology, 55, 217228.CrossRefGoogle Scholar
Zwicker, J.G., Missiuna, C., Harris, S.R., & Boyd, L.A. (2011). Brain activation associated with motor skill practice in children with developmental coordination disorder: An fMRI study. International Journal of Developmental Neuroscience, 29, 145152.CrossRefGoogle Scholar
Buckley, S.J. (2000). Living with Down syndrome. Southsea, UK: Down Syndrome Educational Trust.Google Scholar
Froehlke, M., & Zaborek, R. (2013). When Down syndrome and autism intersect: A guide for parents and professionals. Bethesda, MD: Woodbine House.Google Scholar
Kumin, L. (2008). Helping children with Down syndrome communicate better: Speech and language skills for ages 6–14. Bethesda, MD: Woodbine House.Google Scholar
McGuire, D., & Chicoine, B. (2006). Mental wellness in adults with Down syndrome: A guide to emotional and behavioral strengths and challenges. Bethesda, MD: Woodbine House.Google Scholar
American Psychiatric Association ( 2013). Diagnostic and statistical manual of mental disorders (5th ed.). Arlington, VA: American Psychiatric Association.
Brickell, C., & Munir, K. (2008). Grief and its complications in individuals with intellectual disability. Harvard Review of Psychiatry, 16, 112.CrossRefGoogle ScholarPubMed
Buckley, S., & Bird, G. (2002). Cognitive development and education: Perspectives on Down syndrome from a twenty-year research programme. In Cuskelly, M., Jobling, A., & Buckley (Eds.), S., Down syndrome across the lifespan (pp. 6680). London, UK: Whurr.Google Scholar
Bull, M. (2011). Committee on Genetics: Health supervision of children with Down syndrome. Pediatrics, 128, 393.CrossRefGoogle ScholarPubMed
Capone, G. (1999). Down syndrome and autism spectrum disorder: A look at what we know. Retrieved from
Capone, G., Grados, M., Kaufmann, W., Bernad-Ripoli, S., & Jewell, A. (2005). Down syndrome and comorbid autism-spectrum disorder: Characterization using the aberrant behavior checklist. American Journal of Medical Genetics Part A, 134, 373380.CrossRefGoogle ScholarPubMed
Centers for Disease Control and Prevention ( 2010). Current depression among adults – United States, 2006 and 2008. Retrieved from
Centers for Disease Control and Prevention (2014). Down syndrome. Retrieved from
Chen, C.-C., Spano, G., & Edgin, J. (2013). The impact of sleep disruption on executive function in Down syndrome. Research in Developmental Disabilities, 34, 20332039.CrossRefGoogle Scholar
Cuskelly, M., & Dadds, M. (1992). Behavioural problems in children with Down’s syndrome and their siblings. Journal of Child Psychology and Psychiatry, 33, 749761.CrossRefGoogle ScholarPubMed
Dykens, E. (2007). Psychiatric and behavioral disorders in persons with Down syndrome. Mental Retardation and Developmental Disabilities Research Reviews, 13, 272278.CrossRefGoogle Scholar
Feeley, K., & Jones, E. (2006). Addressing challenging behaviour in children with Down syndrome: The use of applied behaviour analysis for assessment and intervention. Down Syndrome Research and Practice, 11, 6477.CrossRefGoogle ScholarPubMed
Fidler, D. (2006). The emergence of a syndrome-specific personality–motivation profile in young children with Down syndrome. In Rondal, J.-A. & Perera, J. (Eds.), Down syndrome: Neurobehavioral specificity (pp. 139152). Hoboken, NJ: Wiley.Google Scholar
Fidler, D., & Nadel, L. (2007). Education and children with Down syndrome: Neuroscience, development, and intervention. Mental Retardation and Developmental Disabilities Research Reviews, 13, 262271.CrossRefGoogle Scholar
Gunn, P., & Cuskelly, M. (1991). Down syndrome temperament: The stereotype at middle childhood and adolescence. International Journal of Disability, Development, and Education, 38, 5970.CrossRefGoogle Scholar
Howlin, P., Wing, L., & Gould, J. (2008). The recognition of autism in children with Down syndrome: Implications for intervention and some speculations about pathology. Developmental Medicine and Child Neurology, 37, 406414.CrossRefGoogle Scholar
Jarrold, C.B., Baddeley, A.D., & Phillips, C. (1999). Down syndrome and the phonological loop: The evidence for, and importance of, a specific verbal short-term memory deficit. Down Syndrome Research and Practice, 6, 6175.CrossRefGoogle ScholarPubMed
Kumin, L. (1996). Speech and language skills in children with Down syndrome. Mental Retardation and Developmental Disabilities Research Reviews, 2, 109115.3.0.CO;2-O>CrossRefGoogle Scholar
Kumin, L. (2006). Speech intelligibility and childhood verbal apraxia in children with Down syndrome. Down Syndrome Research and Practice, 10, 1022.CrossRefGoogle ScholarPubMed
Loft, I. (2012). Neurological phenotypes for Down syndrome across the lifespan. Progress in Brain Research, 197, 101121.Google Scholar
Lott, I., & Dierssen, M. (2010). Cognitive deficits and associated neurological complications in individuals with Down’s syndrome. Lancet, 9, 623633.CrossRefGoogle Scholar
Roizen, N. (2003). Down’s syndrome. Lancet, 361, 12811289.CrossRefGoogle ScholarPubMed
Su, C., Wu, Y., & Chen, C. (2008). The role of cognition and adaptive behavior in employment of people with mental retardation. Research in Developmental Disabilities, 29, 8395.CrossRefGoogle ScholarPubMed
Winders, P.C. (1997). Gross motor milestone statistics. In Gross motor skills in children with Down syndrome: A guide for parents and professionals (pp. 223228). Baltimore, MD: Woodbine House.Google Scholar
Cohen Kadosh, R., Dowker, A., Heine, A., Kaufmann, L., & Kucian, K. (2013). Interventions for improving numerical abilities: Present and future. Trends in Neuroscience and Education, 2, 8593.CrossRefGoogle Scholar
Kaufmann, L., & von Aster, M. (2012). The diagnosis and management of dyscalculia. Deutsches Ärzteblatt International, 109, 767778.Google ScholarPubMed
Kaufmann, L., Kucian, K., & Von Aster, M. (2015). Brain correlates of numerical disabilities. In Cohen Kadosh, R. & Dowker, A.. (Eds.), The Oxford handbook of numerical cognition (pp. 485501). Oxford, UK: Oxford University Press.Google Scholar
Menon, V. (2015). Arithmetic in the child and adult brain. In Cohen Kadosh, R & Dowker, A. (Eds.), The Oxford handbook of numerical cognition (pp. 502530). Oxford, UK: Oxford University Press.Google Scholar
Rubinsten, O. (2009). Co-occurrence of developmental disorders: The case of developmental dyscalculia. Cognitive Development, 24, 362370.CrossRefGoogle Scholar
Ardila, A., & Rosselli, M. (2003). Acalculia and dyscalculia. Neuropsychology Review, 12, 179231.CrossRefGoogle Scholar
Barahmand, U. (2008). Arithmetic disabilities: Training in attention and memory enhances arithmetic ability. Research Journal of Biological Sciences, 3, 13051312.Google Scholar
Beddington, J., Cooper, C.L., Field, J., Goswami, U., Huppert, F.A., Jenkins, R., … & Thomas, S.M. (2008). The mental wealth of nations. Nature, 455, 10571060.CrossRefGoogle Scholar
Butterworth, B. (2003). Dyscalculia screener. London, UK: nferNelson.Google Scholar
Butterworth, B. (2010). Foundational numerical capacities and the origins of dyscalculia. Trends in Cognitive Sciences, 14, 534541.CrossRefGoogle ScholarPubMed
Butterworth, B., Varma, S., & Laurillard, D. (2011). Dyscalculia: From brain to education. Science, 332, 10491053.CrossRefGoogle Scholar
Cohen Kadosh, R., Soskic, S., Iuculano, T., Kanai, R., & Walsh, V. (2010). Modulating neuronal activity produces specific and long lasting changes in numerical competence. Current Biology, 20, 20162020.CrossRefGoogle Scholar
De Smedt, B., & Gilmore, C.K. (2011). Defective number module or impaired access? Numerical magnitude processing in first graders with mathematical difficulties. Journal of Experimental Child Psychology, 108, 278292.CrossRefGoogle ScholarPubMed
Dehaene, S. (2001). Précis of the number sense. Mind & Language, 16, 1636.CrossRefGoogle Scholar
Devine, A., Soltész, F., Nobes, A., Goswami, U., & Szűcs, D. (2013). Gender differences in developmental dyscalculia depend on diagnostic criteria. Learning and Instruction, 27, 3139.CrossRefGoogle Scholar
Dowker, A. (2009). What works for children with mathematical difficulties: The effectiveness of intervention schemes. Oxford, UK: Department for Children, Schools and Families. Available at
Geary, D.C., Bailey, D.H., Littlefield, A., Wood, P., Hoard, M.K., & Nugent, L. (2009). First-grade predictors of mathematical learning disability: A latent class trajectory analysis. Cognitive Development, 24, 411429.CrossRefGoogle ScholarPubMed
Jordan, N.C., Blanteno, L., & Uberti, H.Z. (2003). Mathematical thinking and learning difficulties. In Baroody, A. & Dowker, A. (Eds.), The development of arithmetical concepts and skills (pp. 359383). Mahwah, NJ: Erlbaum.Google Scholar
Kaufmann, L., Wood, G., Rubinsten, O., & Henik, A. (2011). Meta-analyses of developmental fMRI studies investigating typical and atypical trajectories of number processing and calculation. Developmental Neuropsychology, 36, 763787.CrossRefGoogle Scholar
Kroeger, L.A., Brown, R.D., & O’Brien, B.A. (2012). Connecting neuroscience, cognitive, and educational theories and research to practice: A review of mathematics intervention programs. Early Education & Development, 23, 3758.CrossRefGoogle Scholar
Kucian, K., & von Aster, M. (2015). Developmental dyscalculia. European Journal of Pediatrics, 174, 113.CrossRefGoogle ScholarPubMed
Looi, C.Y., Duta, M., Brem, A.- K., Huber, S., Nuerk, H.-C., & Cohen Kadosh, R. (2016). Combining brain stimulation and video game to promote long-term transfer of learning and cognitive enhancement. Scientific Reports, 6, 22003.CrossRefGoogle ScholarPubMed
Mazzocco, M.M., & Myers, G.F. (2003). Complexities in identifying and defining mathematics learning disability in the primary school-age years. Annals of Dyslexia, 53, 218253.CrossRefGoogle ScholarPubMed
Murphy, M.M., Mazzocco, M.M.M., Hanich, L.B., & Early, M.C. (2007). Cognitive characteristics of children with mathematics learning disability (MLD) vary as a function of the cutoff criterion used to define MLD. Journal of Learning Disabilities, 40, 458478.CrossRefGoogle Scholar
Rousselle, L., & Noel, M.P. (2007). Basic numerical skills in children with mathematics learning disabilities: A comparison of symbolic vs non-symbolic number magnitude processing. Cognition, 102, 361395.CrossRefGoogle ScholarPubMed
Rubinsten, O, & Henik, A. (2009). Developmental dyscalculia: Heterogeneity may not mean different mechanisms. Trends in Cognitive Sciences, 13, 9299.CrossRefGoogle Scholar
Rykhlevskaia, E., Uddin, L.Q., Kondos, L., & Menon, V. (2009). Neuroanatomical correlates of developmental dyscalculia: Combined evidence from morphometry and tractography. Frontiers in Human Neuroscience, 3, 51.CrossRefGoogle ScholarPubMed
Sarkar, A., Dowker, A., & Cohen Kadosh, R. (2014). Cognitive enhancement or cognitive cost: Trait-specific outcomes of brain stimulation in the case of mathematics anxiety. Journal of Neuroscience, 34, 1660516610.CrossRefGoogle ScholarPubMed
Shalev, R.S., & von Aster, M. (2008). Identification, classification, and prevalence of developmental dyscalculia. In Encyclopedia of language and literacy development (pp. 19). London, ON: University of Western Ontario.Google Scholar
Shalev, R.S., Manor, O., Auerbach, J., & Gross-Tsur, V. (1998). Persistence of developmental dyscalculia: What counts? Results from a 3-year prospective follow-up study. The Journal of Pediatrics, 133, 358362.CrossRefGoogle ScholarPubMed
Shalev, R.S., Manor, O., & Gross-Tsur, V. (2005). Developmental dyscalculia: A prospective six-year follow-up. Developmental Medicine & Child Neurology, 47, 121125.CrossRefGoogle Scholar
Shalev, R.S., Manor, O., Kerem, B., Ayali, M., Badichi, N., Friedlander, Y., & Gross-Tsur, V. (2001). Developmental dyscalculia is a familial learning disability. Journal of Learning Disabilities, 34, 5965.CrossRefGoogle ScholarPubMed
Snowball, A., Tachtsidis, I., Popescu, T., Thompson, J., Delazer, M., Zamarian, L., … & Cohen Kadosh, R. (2013). Long-term enhancement of brain function and cognition using cognitive training and brain stimulation. Current Biology, 23, 987992.CrossRefGoogle ScholarPubMed
von Aster, M.G., & Shalev, R.S. (2007). Number development and developmental dyscalculia. Developmental Medicine & Child Neurology, 49, 868873.CrossRefGoogle Scholar
Elliott, J.G., & Grigorenko, E.L. (2014). The dyslexia debate. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Hulme, C., & Snowling, M.J. (2014). The interface between spoken and written language: Developmental disorders. Philosophical Transactions of the Royal Society: Biological Sciences, 369, 18.Google ScholarPubMed
Kere, J. (2014). The molecular genetics and neurobiology of developmental dyslexia as a model of a complex phenotype. Biochemical & Biophysical Research Communications, 452, 236243.CrossRefGoogle ScholarPubMed
Snowling, M.J. & Melby-Lervåg, M. (2016). Oral language deficits in familial dyslexia: A meta-analysis and review. Psychological Bulletin, 142, 498–545.CrossRef
Sprenger-Charolles, L., Colé, P., & Serniclaes, W. (2013). Reading acquisition and developmental dyslexia. New York, NY: Psychology Press.Google Scholar
Bosse, M.L., Tainturier, M.J., & Valdois, S. (2007). Developmental dyslexia: The visual attention span deficit hypothesis. Cognition, 104, 198230.CrossRefGoogle ScholarPubMed
Castles, A., & Friedmann, N. (2014). Developmental dyslexia and the phonological deficit hypothesis. Mind & Language, 29, 270285.CrossRefGoogle Scholar
Compton, D.L., Miller, A.C., Elleman, A.M., & Steacy, L.M. (2014). Have we forsaken reading theory in the name of “quick fix” interventions for children with reading disability? Scientific Studies of Reading, 18, 5573.CrossRefGoogle Scholar
Fletcher, J.M. (2009). Dyslexia: The evolution of a scientific concept. Journal of the International Psychological Society, 15, 501508.Google ScholarPubMed
Friend, A., DeFries, J.C., & Olson, R.K. (2008). Parental education moderates genetic influences on reading disability. Psychological Science, 19, 11241130.CrossRefGoogle Scholar
Hamilton, L.G., Hayiou-Thomas, M.E., Hulme, C., & Snowling, M.J. (2016). The home literacy environment as a predictor of the early literacy development of children at family-risk of dyslexia. Scientific Studies of Reading, 20(5), 401–416.CrossRef
Plaut, D.C., McClelland, J.L., Seidenberg, M.S., & Patterson, K. (1996). Understanding normal and impaired word reading: Computational principles and quasi-regular domains. Psychological Review, 10(1), 56–115.CrossRef
Landerl, K., & Wimmer, H. (2008). Development of word reading fluency and spelling in a consistent orthography: An 8-year follow-up. Journal of Educational Psychology, 100, 150161.CrossRefGoogle Scholar
Lyon, G.R., Shaywitz, S.E., & Shaywitz, B.A. (2003). A definition of dyslexia. Annals of Dyslexia, 53, 114.CrossRefGoogle Scholar
Nicolson, R.I., Fawcett, A.J., & Dean, P. (2001). Developmental dyslexia: The cerebellar deficit hypothesis. Trends in Neurosciences, 24, 508511.CrossRefGoogle ScholarPubMed
Pennington, B.F. (2006). From single to multiple deficit models of developmental disorders. Cognition, 101, 385413.CrossRefGoogle ScholarPubMed
Peterson, R.L., & Pennington, B.F. (2012). Developmental dyslexia. Lancet, 379, 19972007.CrossRefGoogle ScholarPubMed
Petrill, S.A., Deater-Deckard, K., Thompson, L.A., DeThorne, L.S., & Schatschneider, C. (2006). Genetic and environmental effects of serial naming and phonological awareness on early reading outcomes. Journal of Educational Psychology, 98, 112121.CrossRefGoogle ScholarPubMed
Plomin, R., & Kovas, Y. (2005). Generalist genes and learning disabilities. Psychological Bulletin, 131, 592617.CrossRefGoogle Scholar
Ramus, F., & Szenkovits, G. (2008). What phonological deficit? Quarterly Journal of Experimental Psychology, 61, 129141.CrossRefGoogle Scholar
Rochelle, K.S.H., Witton, C., & Talcott, J.B. (2009). Symptoms of hyperactivity and inattention can mediate deficits of postural stability in developmental dyslexia. Experimental Brain Research, 192, 627633.CrossRefGoogle Scholar
Shaywitz, S.E., & Shaywitz, B.A. (2008). Paying attention to reading: The neurobiology of reading and dyslexia. Development and Psychopathology, 20, 13291349.CrossRefGoogle ScholarPubMed
Snowling, M.J., & Hulme, C. (2011). Evidence-based interventions for reading and language difficulties: Creating a virtuous circle. British Journal of Educational Psychology, 81, 123.CrossRefGoogle ScholarPubMed
Stein, J. (2001). The magnocellular theory of developmental dyslexia. Dyslexia, 7, 1236.CrossRefGoogle Scholar
Van Bergen, E., de Jong, P.F., Plakas, A., Maassen, B., & van der Leij, A. (2012). Child and parental literacy levels within families with a history of dyslexia. Journal of Child Psychology & Psychiatry, 53, 2836.CrossRefGoogle ScholarPubMed
Wolf, M., & Bowers, P.G. (1999). The double-deficit hypothesis for the developmental dyslexias. Journal of Educational Psychology, 91, 415438.CrossRefGoogle Scholar
Henderson, J., Kesmodel, U., & Gray, R. (2007). Systematic review of the fetal effects of prenatal binge drinking. Journal of Epidemiology and Community Health, 61, 10691073.CrossRefGoogle Scholar
Mattson, S.N., & Riley, E.P. (1998). A review of the neurobehavioural deficits in children with fetal alcohol syndrome or prenatal exposure to alcohol. Alcoholism: Clinical and Experimental Research, 22, 279294.CrossRefGoogle Scholar
National Institute of Alcohol Abuse and Alcoholism (NIAAA) ( 2000). 10th special report to the US congress on alcohol and health. Highlights from current research. Report no. 00-1583. Bethesda, MD: Department of Health and Human Service.
Nelson, M., & Trussler, M. (2016). Fetal alcohol spectrum disorders in adults: Ethical and legal perspectives. An overview on FASD for professionals (International Library of Ethics, Law, and the New Medicine, Vol. 63). Switzerland: Springer.CrossRefGoogle Scholar
Warner, R.H., & Rosett, H.L. (1975). The effects of drinking on offspring: An historical survey of the American and British literature. Journal of Studies on Alcohol, 36, 13951420.CrossRefGoogle ScholarPubMed
Abel, E.L. (1998). Fetal alcohol abuse syndrome. New York, NY: Plenum Press.CrossRefGoogle Scholar
American Psychiatric Association ( 2013). Diagnostic and statistical manual of mental disorders, DSM-5. Washington, DC: American Psychiatric Association.
Astley, S.J. (2004). Diagnostic guidelines for fetal alcohol spectrum disorders: The 4-digit diagnostic code (3rd ed.). Seattle, WA: University Publication Service.Google Scholar
Calhoun, F., & Warren, K. (2007). Fetal alcohol syndrome: A historical perspective. Neuroscience & Biobehavioural Review, 31, 168171.CrossRefGoogle Scholar
Gray, R., & Henderson, J. (2006). Review of the fetal effects of prenatal alcohol exposure. Report to the Department of Health. Oxford, UK: National Perinatal Epidemiology Unit.Google Scholar
Irner, T.B. (2011). Substance use in utero and adolescence development. Child Neuropsychology, 18, 521529.CrossRefGoogle Scholar
Jones, K.L., & Smith, D.W. (1973). Recognition of the fetal alcohol syndrome in early infancy. Lancet, 302, 9991001.CrossRefGoogle ScholarPubMed
Kable, J.A., O’Connor, M.J., Olson, H.C., Paley, B., Mattson, S.M., Anderson, S. M., & Riley, E.P. (2016). Neurobehavioral disorder associated with prenatal alcohol exposure (ND-PAE): Proposed DSM-5 diagnosis. Child Psychiatry & Human Development, 47, 335–346.CrossRef
Lemoine, P., Harousseau, H., Borteyru, J.P., & Menuet, J.C. (1968). Les enfants des parents alcoholiques: Anomalies observées a propos de 127 cas [The children of alcoholic parents: Anomalies observed in 127 cases]. Quest Medical, 25, 476482.Google Scholar
Lupton, C., Burd, L., & Harwood, R. (2004). Cost of fetal alcohol spectrum disorders. American Journal of Medical Genetics, 127C, 4250.CrossRefGoogle Scholar
May, P.A., Gossage, J.P., Kalberg, W.O., Robinson, L.K., Buckley, D., Manning, M., & Hoyme, H.E. (2009). Prevalence and epidemiologic characteristics of FASD from various research methods with an emphasis on recent in-school studies. Developmental Disabilities Research Review, 15, 176192.CrossRefGoogle Scholar
Niclasen, J. (2015). Prenatal exposure to alcohol and the developing fetus: Methodological issues. British Journal of Obstetrics and Gynecology, 122, 770772.CrossRefGoogle ScholarPubMed
Niclasen, J., Andersen, A.M.N., Teasdale, T.W., & Strandberg-Larsen, K. (2014). Prenatal exposure to alcohol, and gender differences on child mental health at age seven years. Journal of Epidemiology and Community Health, 68, 224232.CrossRefGoogle Scholar
Popova, S., Yaltonskaya, A., Yaltonsky, V., Kolpakov, Y., Abrosimov, I., Pervakov, K., … & Rehm, J. (2014). What research is being done on prenatal alcohol exposure and fetal alcohol spectrum disorders in the Russian research community? Alcohol and Alcoholism, 49, 8495.CrossRefGoogle ScholarPubMed
Riley, E.P., Infante, M.A., & Warren, K.R. (2011). Fetal alcohol spectrum disorders: An overview. Neuropsychological Review, 21, 7380.CrossRefGoogle Scholar
Schneider, M.L., Moore, C.F., & Becker, E.F. (2001). Timing of moderate alcohol exposure during pregnancy and neonatal outcome in rhesus monkeys (Macaca mulatta). Alcoholism: Clinical and Experimental Research, 25, 12381245.CrossRefGoogle Scholar
Stratton, K., Howe, C., & Battaglia, F. (1996). Fetal alcohol syndrome: Diagnosis, epidemiology, prevention and treatment. Washington, DC: National Academy Press.Google Scholar
Streissguth, A.P., Barr, H.M., Kogan, J., & Bookstein, F.L. (1996). Understanding the occurrence of secondary disabilities in clients with fetal alcohol syndrome (FAS) and fetal alcohol effects (FAE). Final report. Seattle, WA: University of Washington School of Medicine, Dept. Psychiatry and Behavioral Sciences.
Sulik, K.K. (2014). Fetal alcohol spectrum disorder: Pathogenesis and mechanisms. In Sullivan, E.V. & Pfefferbaum, A. (Eds.), Alcohol and the nervous system (Handbook of clinical neurology, Vol. 125, pp. 463476). Amsterdam, NL: Elsevier.CrossRefGoogle Scholar
Viljoen, D.L., Gossage, J.P., Brooke, L., Adnams, C.M., Jones, K.L., Robinson, L.K., Hoyme, H.E., … & May, P.A. (2005). Fetal alcohol syndrome epidemiology in a South African community: A second study on a very high prevalence area. Journal of Studies on Alcohol and Drugs, 66, 593604.CrossRefGoogle Scholar
World Health Organization (1992). The ICD-10 classification of mental and behavioural disorders: Clinical descriptions and diagnostic guidelines. Geneva: World Health Organization.
Abbeduto, L., McDuffie, A., & Thurman, A. (2014). The fragile X syndrome–autism comorbidity: What do we really know? Frontiers in Genetics, 5, 110.CrossRefGoogle ScholarPubMed
Bajaj, K., & Gross, S. (2014). Carrier screening: Past, present, and future. Journal of Clinical Medicine, 3, 10331042.CrossRefGoogle Scholar
Hall, S.S., Jiang, H., Reis, A., & Greicius, M. (2013). Identifying large-scale brain networks in fragile X syndrome. JAMA Psychiatry, 70, 12151223.CrossRefGoogle Scholar
Levitas, A. (1996). Neuropsychiatric aspects of fragile X syndrome. Seminars in Clinical Neuropsychiatry, 1, 154167.Google ScholarPubMed
Lightbody, A.A., & Reiss, A.L. (2009). Gene, brain, and behavior relationships in fragile X syndrome: Evidence from neuroimaging studies. Developmental Disabilities Research Reviews, 15, 343352.CrossRefGoogle ScholarPubMed
Berry-Kravis, E., Raspa, M., Loggin-Hester, L., Bishop, E., Holiday, D., & Bailey, D.B. (2010). Seizures in fragile X syndrome: Characteristics and comorbid diagnoses. American Journal of Intellectual and Developmental Disabilities, 115, 461472.CrossRefGoogle ScholarPubMed
Cordeiro, L., Ballinger, E., Hagerman, R., & Hessl, D. (2011). Clinical assessment of DSM- IV anxiety disorders in fragile X syndrome: Prevalence and characterization. Journal of Neurodevelopmental Disorders, 3, 111.CrossRefGoogle ScholarPubMed
Gallagher, A., & Hallahan, B. (2012). Fragile X-associated disorders: A clinical overview. Journal of Neurology, 259, 401413.CrossRefGoogle Scholar
Hagerman, R.J., & Hagerman, P. (Eds.) (2002). Fragile X syndrome: Diagnosis, treatment and research (3rd ed., pp. 319). Baltimore, MD: Johns Hopkins University Press.Google Scholar
Hagerman, R.J., Jackson, C., Amiri, K., Cronister-Silverman, A.C., O’Connor, R., & Sobesky, W. (1992). Girls with fragile X syndrome: Physical and neurocognitive status and outcome. Pediatrics, 89, 395400.Google ScholarPubMed
Hallahan, B., Craig, M., Toal, F., Daly, E.M., Moore, C.J., Ambikapathy, A., … & Murphy, D.G. (2011). In vivo brain anatomy of adult males with Fragile X syndrome: An MRI study. NeuroImage, 54, 1624.CrossRefGoogle ScholarPubMed
Hatton, D., Sideris, J., Skinner, M., Mankowski, J., Bailey, D.B., Roberts, J., & Mirrett, P. (2006). Autistic behavior in children with fragile X syndrome: Prevalence, stability, and the impact of FMRP. American Journal of Medical Genetics, 140, 18041813.CrossRefGoogle Scholar
Jacquemont, S., Hagerman, R.J., Leehey, M., Grigsby, J., Zhang, L., Brunberg, J.A., … & Hagerman, P.J. (2003). Fragile X premutation tremor/ataxia syndrome: Molecular, clinical, and neuroimaging correlates. American Journal of Human Genetics, 72, 869878.CrossRefGoogle ScholarPubMed
Jacquemont, S., Hagerman, R.J., Hagerman, P., & Leehey, M. (2007). Fragile-X syndrome and fragile X-associated tremor/ataxia syndrome: Two faces of FMR1. Lancet Neurology, 6, 4555.CrossRefGoogle Scholar
Loomis, E.W., Eid, J.S., Peluso, P., Yin, J., Hickey, L., Rank, D., … & Hagerman, P.J. (2012). Sequencing the unsequenceable: Expanded CGG-repeat alleles of the fragile X gene. Genome Research, 23, 121128.CrossRefGoogle ScholarPubMed
Lubs, H. A. (1969). A marker X chromosome. American Journal of Human Genetics, 21, 231–244.
McLennan, Y., Polussa, J., Tassone, F., & Hagerman, R. (2011). Fragile X syndrome. Current Genomics, 12, 216224.CrossRefGoogle ScholarPubMed
Polussa, J., Schneider, A., & Hagerman, R. (2014). Molecular advances leading to treatment implications for fragile X premutation carriers. Brain Disorders & Therapy, 3, 119.Google ScholarPubMed
Santoro, M.R., Bray, S.M., & Warren, S.T. (2012). Molecular mechanisms of fragile X syndrome: A twenty-year perspective. Annual Review of Pathology, 7, 219245.CrossRefGoogle ScholarPubMed
Tassone, F., Hagerman, P., & Hagerman, R. (2014). Fragile X premutation. Journal of Neurodevelopmental Disorders, 6, 22.CrossRefGoogle ScholarPubMed
Van der Molen, M.J., Huizinga, M., Huizenga, H.M., Ridderinkhof, K.R., Van der Molen, M.W., Hamel, B.J., … & Ramakers, G.J. (2010). Profiling fragile X syndrome in males: Strengths and weaknesses in cognitive abilities. Research in Developmental Disabilities, 31, 426439.CrossRefGoogle Scholar
Gelfand, S.A. (2004). Hearing: An introduction to psychological and physiological acoustics. Abingdon, UK: Taylor & Francis.CrossRefGoogle Scholar
McCormick, B. (2004). Paediatric audiology 0–5 years. London, UK: Whurr.Google Scholar
Moore, C.J.B. (1977). An introduction to the psychology of hearing. Baltimore, MD: University Park Press.Google Scholar
Plack, C. (Ed.) (2010). The Oxford handbook of auditory science: Hearing. Oxford, UK: Oxford University Press.CrossRefGoogle Scholar
Antia, S.D., & Kreimeyer, K.H. (1997). The generalization and maintenance of the peer social behaviors of young children who are deaf or hard of hearing. Language, Speech, and Hearing Services in Schools, 28, 5969.CrossRefGoogle Scholar
British Society of Audiology (2011). Practice Guidance: An overview of current management of auditory processing disorder (APD). British Society of Audiology. Available from
Ching, T.Y., & Dillon, H. (2013). Major findings of the LOCHI study on children at 3 years of age and implications for audiological management. International Journal of Audiology, 52, S65S68.CrossRefGoogle Scholar
Engel, J., Anteunis, L., Volovics, A., Hendriks, J., & Marres, E. (1999). Risk factors of otitis media with effusion during infancy. International Journal of Pediatric Otorhinolaryngology, 48, 239249.CrossRefGoogle ScholarPubMed
Ferguson, M.A., Hall, R.L., Riley, A., & Moore, D.R. (2011). Communication, listening, cognitive and speech perception skills in children with auditory processing disorder (APD) or specific language impairment (SLI). Journal of Speech, Language, and Hearing Research, 54, 211227.CrossRefGoogle Scholar
Fortnum, H.M., Summerfield, A.Q., Marshall, D.H., Davis, A.C., & Bamford, J.M. (2001). Prevalence of permanent childhood hearing impairment in the United Kingdom and implications for universal neonatal hearing screening: Questionnaire based ascertainment study. British Medical Journal, 323, 536540.CrossRefGoogle Scholar
Hartley, D.E., & Moore, D.R. (2005). Effects of otitis media with effusion on auditory temporal resolution. International Journal of Pediatric Otorhinolaryngology, 69, 757769.CrossRefGoogle ScholarPubMed
Moeller, M.P., Tomblin, J.B., Yoshinaga-Itano, C., Connor, C.M., & Jerger, S. (2007). Current state of knowledge: Language and literacy of children with hearing impairment. Ear and Hearing, 28, 740753.CrossRefGoogle ScholarPubMed
Moore, D.R. (2007). Auditory processing disorders: Acquisition and treatment. Journal of Communication Disorders, 40, 295304.CrossRefGoogle ScholarPubMed
Netten, A.P., Rieffe, C., Theunissen, S.C., Soede, W., Dirks, E., Briaire, J.J., & Frijns, J.H. (2015). Low empathy in deaf and hard of hearing (pre)adolescents compared to normal hearing controls. PLoS ONE, 10, e0124102.CrossRefGoogle ScholarPubMed
NICE (2008). Surgical management of otitis media with effusion in children (NICE guideline). Clinical guideline 60. National Institute for Health and Care Excellence. Available from
Nittrouer, S., & Burton, L.T. (2005). The role of early language experience in the development of speech perception and phonological processing abilities: Evidence from 5-year-olds with histories of otitis media with effusion and low socioeconomic status. Journal of Communication Disorders, 38, 2963.CrossRefGoogle ScholarPubMed
Roberts, J., Hunger, L., Gravel, J., Rosenfeld, R., Berman, S., Haggard, M., … & Wallace, I. (2004). Otitis media, hearing loss, and language learning: Controversies and current research. Journal of Developmental and Behavioral Pediatrics, 25, 110122.CrossRefGoogle ScholarPubMed
Sininger, Y.S. (2002). Identification of auditory neuropathy in infants and children. Seminars in Hearing, 23, 193200.CrossRefGoogle Scholar
Stevens, G., Flaxman, S., Brunskill, E., Mascarenhas, M., Mathers, C.D., & Finucane, M. (2013). Global and regional hearing impairment prevalence: An analysis of 42 studies in 29 countries. European Journal of Public Health, 23, 146152.CrossRefGoogle Scholar
Stevenson, J., Kreppner, J., Pimperton, H., Worsfold, S., & Kennedy, C. (2015). Emotional and behavioural difficulties in children and adolescents with hearing impairment: A systematic review and meta-analysis. European Child and Adolescent Psychiatry, 24, 477496.CrossRefGoogle ScholarPubMed
Walch, C., Anderhuber, W., Kole, W., & Berghold, A. (2000). Bilateral sensorineural hearing disorders in children: Etiology of deafness and evaluation of hearing tests. International Journal of Pediatric Otorhinolaryngology, 53, 3138.CrossRefGoogle Scholar
Goldstone, A.P., Holland, A.J., Hauffa, B.P., Hokken-Koelega, A.C., & Tauber, M. (2008). Recommendations for the diagnosis and management of Prader–Willi syndrome. Journal of Clinical Endocrinology and Metabolism, 93, 41834197.CrossRefGoogle ScholarPubMed
Greenswag, L.R., & Alexander, R.C. (Eds.) (1995). Management of Prader–Willi syndrome. London, UK: Springer.CrossRefGoogle Scholar
Hoybye, C. (Ed.) (2013). Prader–Willi syndrome. Hauppague, NY: Nova Science Publishers.Google Scholar
Whittington, J.E., & Holland, A.J. (2004). Prader–Willi syndrome: Development and manifestations. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Akefeldt, A., Törnhage, C.J., & Gillberg, C. (1999). A woman with Prader–Willi syndrome gives birth to a healthy baby girl. Developmental Medicine & Child Neurology, 41, 789790.CrossRefGoogle Scholar
Davies, J.R., Dent, C.L., McNamara, G.I., & Isles, A.R. (2015). Behavioural effects of imprinted genes. Current Opinion in Behavioral Sciences, 2, 2832.CrossRefGoogle Scholar
Holm, V.A., Cassidy, S.B., Butler, M.G., Hanchett, J.M., Greenswag, L.R., Whitman, B.Y., & Greenberg, F. (1993). Prader–Willi syndrome: Consensus diagnostic criteria. Pediatrics, 91, 398402.Google ScholarPubMed
Manning, K.E., McAllister, C.J., Ring, H.A., Finer, N., Kelly, C.L., Sylvester, K.P., … & Holland, A.J. (2015). Novel insights into maladaptive behaviours in Prader–Willi syndrome: Serendipitous findings from an open trial of vagus nerve stimulation. Journal of Intellectual Disability Research, 60, 149155.CrossRefGoogle ScholarPubMed
McAllister, C.J., Whittington, J.E., & Holland, A.J. (2011). Development of the eating behaviour in Prader–Willi Syndrome: Advances in our understanding. International Journal of Obesity, 35, 188197.CrossRefGoogle ScholarPubMed
Prader, A., Labhart, A., & Willi, H. (1956). Ein Syndrom von Adipositas, Kleinwuchs, Kryptorchismus und Oligophrenie nach myatonieartigem Zustandim Neugeborenenalter. Schweizerische Medizinische Wochenschrift, 86, 12601261.Google Scholar
Schulze, A., Mogensen, H., Hamborg-Petersen, B., Graem, N., Ostergaard, J.R., & Brøndum-Nielsen, K. (2001). Fertility in Prader–Willi syndrome: A case report with Angelman syndrome in the offspring. Acta Paediatrica, 90, 455459.CrossRefGoogle Scholar
Soni, S., Whittington, J., Holland, A.J., Webb, T., Maina, E.N., Boer, H., & Clarke, D. (2008). The phenomenology and diagnosis of psychiatric illness in people with Prader–Willi syndrome. Psychological Medicine, 38, 15051514.CrossRefGoogle ScholarPubMed
Stauder, J.E., Boer, H., Gerits, R.H., Tummers, A., Whittington, J., & Curfs, L.M. (2005). Differences in behavioural phenotype between parental deletion and maternal uniparental disomy in Prader–Willi syndrome: An ERP study. Clinical Neurophysiology, 116, 14641470.CrossRefGoogle ScholarPubMed
Whittington, J.E., Holland, A.J., Webb, T., Butler, J.V., Clarke, D.J., & Boer, H. (2004). Cognitive abilities and genotype in a population-based sample of people with Prader–Willi syndrome. Journal of Intellectual Disability Research, 48, 172187.CrossRefGoogle Scholar
Whittington, J.E., Butler, J.V., & Holland, A.J. (2007). Changing rates of genetic subtypes of Prader–Willi syndrome in the UK. European Journal of Human Genetics, 15, 127130.CrossRefGoogle ScholarPubMed
Whittington, J.E., Holland, A.J., & Webb, T. (2009). Relationship between the IQ of people with Prader–Willi syndrome and that of their siblings: Evidence for imprinted gene effects. Journal of Intellectual Disability Research, 53, 411418.CrossRefGoogle ScholarPubMed
Whittington, J.E., Holland, A.J., & Webb, T. (2014). Ageing in people with Prader–Willi syndrome: Mortality in the UK population cohort and morbidity in an older sample of adults. Psychological Medicine, 45, 615621.CrossRefGoogle Scholar
Woodcock, K.A., Oliver, C., & Humphreys, G.W. (2009). Task-switching deficits and repetitive behaviour in genetic neurodevelopmental disorders: Data from children with Prader–Willi syndrome chromosome 15 q11-q13 deletion and boys with Fragile X syndrome. Cognitive Neuropsychology, 26, 172–94.CrossRefGoogle Scholar
Johnson, S., Wolke, D., & Marlow, N. (2008). Outcome monitoring in preterm populations: Measures and methods. Zeitschrift für Psychologie/Journal of Psychology, 216, 135146.Google Scholar
Marlow, N., & Johnson, S. (2012). Outcome following preterm birth. In Rennie, J. (Ed.), Rennie & Roberton’s textbook of neonatology (5th ed., pp. 7188). London, UK: Elsevier.CrossRefGoogle Scholar
Saigal, S., & Doyle, L. (2008). An overview of mortality and sequelae of preterm birth from infancy to adulthood. Lancet, 371, 261269.CrossRefGoogle Scholar
Wolke, D. (2011). Preterm and low birth weight babies. In Howlin, P., Charman, T., & Ghaziuddin, M. (Eds.), SAGE handbook of developmental disorders (pp. 497527). London, UK: Sage.CrossRefGoogle Scholar
World Health Organization ( 2012). Born too soon: The global action report on preterm birth. Geneva: World Health Organization.
Aarnoudse-Moens, C.S., Weisglas-Kuperus, N., van Goudoever, J.B., & Oosterlaan, J. (2009). Meta-analysis of neurobehavioral outcomes in very preterm and/or very low birth weight children. Pediatrics, 124, 717728.CrossRefGoogle ScholarPubMed
Bäuml, J.G., Daamen, M., Meng, C., Neitzel, J., Scheef, L., Jaekel, J., … & Sorg, C. (2015). Correspondence between aberrant intrinsic network connectivity and gray-matter volume in the ventral brain of preterm born adults. Cerebral Cortex, 25, 41354145.CrossRefGoogle ScholarPubMed
Blencowe, H., Cousens, S., Oestergaard, M.Z., Chou, D., Moller, A.B., Narwal, R., … & Lawn, J.E. (2012). National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: A systematic analysis and implications. Lancet, 379, 21622172.CrossRefGoogle ScholarPubMed
Collins, J.W., & David, R.J. (2009). Racial disparity in low birth weight and infant mortality. Clinics in Perinatology, 36, 6373.CrossRefGoogle ScholarPubMed
Doyle, L.W., & Anderson, P.J. (2010). Adult outcome of extremely preterm infants. Pediatrics, 126, 342351.CrossRefGoogle ScholarPubMed
Eryigit Madzwamuse, S., Baumann, N., Jaekel, J., Bartmann, P., & Wolke, D. (2015). Neuro-cognitive performance of very preterm or very low birth weight adults at 26 years. Journal of Child Psychology & Psychiatry, 56, 857884.CrossRefGoogle ScholarPubMed
Guy, A., Seaton, S.E., Boyle, E.M., Draper, E.S., Field, D.J., Manktelow, B.N., … & Johnson, S. (2014). Infants born late/moderately preterm are at increased risk for a positive autism screen at 2 years of age. Journal of Pediatrics, 166, 269275 e3.CrossRefGoogle Scholar
Johnson, S. (2007). Cognitive and behavioural outcomes following very preterm birth. Seminars in Fetal and Neonatal Medicine, 12, 363373.CrossRefGoogle Scholar
Johnson, S., & Marlow, N. (2011). Preterm birth and childhood psychiatric disorders. Pediatric Research, 69, 11r18r.CrossRefGoogle ScholarPubMed
Johnson, S., & Wolke, D. (2013). Behavioural outcomes and psychopathology during adolescence. Early Human Development, 89, 199207.CrossRefGoogle ScholarPubMed
Krapohl, E., & Plomin, R. (2015). Genetic link between family socioeconomic status and children’s educational achievement estimated from genome-wide SNPs. Molecular Psychiatry, 21, 437443.CrossRefGoogle ScholarPubMed
MacKay, D.F., Smith, G.C., Dobbie, R., & Pell, J.P. (2010). Gestational age at delivery and special educational need: Retrospective cohort study of 407,503 schoolchildren. PLoS Medicine, 7, e1000289.CrossRefGoogle Scholar
Mulder, H., Pitchford, N.J., Hagger, M.S., & Marlow, N. (2009). Development of executive function and attention in preterm children: A systematic review. Developmental Neuropsychology, 34, 393421.CrossRefGoogle ScholarPubMed
Nosarti, C., Giouroukou, E., Micali, N., Rifkin, L., Morris, R.G., & Murray, R.M. (2007). Impaired executive functioning in young adults born very preterm. Journal of the International Neuropsychological Society, 13, 571581.CrossRefGoogle ScholarPubMed
Quigley, M.A., Poulsen, G., Boyle, E., Wolke, D., Field, D., Alfirevic, Z., & Kurinczuk, J.J. (2012). Early term and late preterm birth are associated with poorer school performance at age 5 years: A cohort study. Archives of Disease in Childhood Fetal and Neonatal Edition, 97, F167–173.CrossRefGoogle ScholarPubMed
Raikkonen, K., & Pesonen, A.-K. (2009). Early life origins of psychological development and mental health. Scandinavian Journal of Psychology, 50, 583591.CrossRefGoogle Scholar
Simms, V., Gilmore, C., Cragg, L., Clayton, S., Marlow, N., & Johnson, S. (2015). Nature and origins of mathematics difficulties in very preterm children: A different etiology than developmental dyscalculia. Pediatric Research, 77, 389–95.CrossRefGoogle ScholarPubMed
Volpe, J.J. (2009). Brain injury in premature infants: A complex amalgam of destructive and developmental disturbances. Lancet Neurology, 8, 110124.CrossRefGoogle ScholarPubMed
Wolke, D., Samara, M., Bracewell, M., & Marlow, N. (2008). Specific language difficulties and school achievement in children born at 25 weeks of gestation or less. Journal of Pediatrics, 152, 256262.CrossRefGoogle ScholarPubMed
Douglas, P., & Hill, P. (2011). Managing infants who cry excessively in the first few months of life. British Medical Journal, 343, 12651269.CrossRefGoogle ScholarPubMed
St James-Roberts, I., & Di Lorenzo, C. (Eds.) (2013). Infant crying, colic, and gastrointestinal discomfort in early childhood: A review of the evidence and most plausible mechanisms. Journal of Pediatric Gastroenterology and Nutrition, 57, S1.Google Scholar
Altman, R.L., Canter, J., Patrick, P.A., Daley, N., Butt, N.K., & Brand, D.A. (2011). Parent education by maternity nurses and prevention of abusive head trauma. Pediatrics, 128, e1164e1172.CrossRefGoogle ScholarPubMed
Barr, R.G., Konner, M., Bakeman, R., & Adamson, L. (1991). Crying in !Kung San infants: A test of the cultural specificity hypothesis. Developmental Medicine & Child Neurology, 33, 601610.CrossRefGoogle ScholarPubMed
Barr, R.G., St James-Roberts, I., & Keefe, M. (Eds.) (2001). New evidence on unexplained early infant crying: Its origins, nature and management. Skillman, NJ: Johnson & Johnson Pediatric Institute.Google Scholar
de Weerth, C., Fuentes, S., Puylaert, P., & de Vos, W.M. (2013). Intestinal microbiota of infants with colic: Development and specific signatures. Pediatrics, 131, e550e558.CrossRefGoogle ScholarPubMed
Drossman, D.A., Chang, L., Chey, W.D., Kellow, J., Tack, J., & Tack, W.E. (2016). The functional gastrointestinal disorders, Edition IV. Raleigh, NC: The Rome Foundation.CrossRefGoogle Scholar
Fujiwara, T., Barr, R.G., Brant, R., & Barr, M. (2011). Infant distress at five weeks of age and caregiver frustration. Journal of Pediatrics, 159, 425450.CrossRefGoogle Scholar
Gormally, S. (2001). Clinical clues to organic etiologies in infants with colic. In Barr, R.G., St. James-Roberts, I., & Keefe, M. (Eds.), New evidence on unexplained early infant crying: Its origins, nature and management (pp. 133148). Skillman, NJ: Johnson & Johnson Pediatric Institute.Google Scholar
Gustafson, G., Wood, R., & Green, J. (2000). Can we hear the causes of infants’ crying? In Barr, R.G., Hopkins, B., & Green, J.A. (Eds.), Crying as a sign, a symptom, & a signal (pp. 822). London, UK: MacKeith Press/Cambridge University Press.Google Scholar
Hemmi, M.H., Wolke, D., & Schneider, S. (2011). Associations between problems with crying, sleeping and/or feeding in infancy and long-term behavioural outcomes in childhood: A meta-analysis. Archives of Disease in Childhood, 96, 622629.CrossRefGoogle ScholarPubMed
Hewlett, B.S., Lamb, M.E., Shannon, D., Leyendecker, B., & Scholmerich, A. (1998). Culture and early infancy among central African foragers and farmers. Developmental Psychology, 34, 653661.CrossRefGoogle ScholarPubMed
Illingworth, R.S. (1954). Three months’ colic. Archives of Disease in Childhood, 29, 165174.CrossRefGoogle ScholarPubMed
Milidou, I., Henriksen, T.B., Jensen, M.S., Olsen, J., & Søndergaard, C. (2012). Nicotine replacement therapy during pregnancy and infantile colic in the offspring. Pediatrics, 129, e652e658.CrossRefGoogle ScholarPubMed
Newman, J.D. (2007). Circuits underlying crying and cry responding in mammals. Behavioral Brain Research, 182, 155165.CrossRefGoogle ScholarPubMed
Rao, M., Blass, E.M., Brignol, E.M., Marino, L., & Glass, L. (1997). Reduced heat loss following sucrose ingestion in premature and normal human newborns. Early Human Development, 25, 109116.CrossRefGoogle Scholar
Soltis, J. (2004). The signal functions of early infant crying. Behavioral and Brain Sciences, 27, 443458.Google ScholarPubMed
St James-Roberts, I., Alvarez, M., Csipke, E., Abramsky, T., Goodwin, J., & Sorgenfrei, E. (2006). Infant crying and sleeping in London, Copenhagen and when parents adopt a “proximal” form of care. Pediatrics, 117, e1146–55.CrossRefGoogle ScholarPubMed
St James-Roberts, I., Conroy, S., & Wilsher, K. (1995). Clinical, developmental and social aspects of infant crying and colic. Early Development & Parenting, 4, 177189.CrossRefGoogle Scholar
St James-Roberts, I., Conroy, S., & Wilsher K. (1998). Links between maternal care and persistent infant crying in the early months. Child: Care, Health & Development, 24, 353–376.CrossRef
Sung, V., Collett, S., de Gooyer, T., Hiscock, H., Tang, M., & Wake, M. (2013). Probiotics to prevent or treat excessive infant crying: Systematic review and meta-analysis. JAMA Pediatrics, 167, 11501157.CrossRefGoogle ScholarPubMed
Treem, W.R. (2001). Assessing crying complaints: The interaction with gastroesophageal reflux and cow’s milk protein intolerance. In Barr, R.G., St James-Roberts, I., & Keefe, M. (Eds.), New evidence on unexplained early infant crying: Its origins, nature and management (pp. 165176). Skillman, NJ: Johnson & Johnson Pediatric Institute.Google Scholar
Wasz-Höckert, O., Lind, J., Vuorenkoski, K., Patranen, T., & Valallané, E. (1968). The infant cry: A spectrographic and auditory analysis. Clinics in Developmental Medicine (Vol. 29). Philadelphia, PA: Lippincott.Google Scholar
Wessel, M.A., Cobb, J.C., Jackson, E.B., Harris, G.S., & Detwiler, A.C. (1954). Paroxysmal fussing in infancy, sometimes called “colic.” Pediatrics, 14, 421433.Google Scholar
White, B.P., Gunnar, M.R., Larson, M.C., Donzella, B., & Barr, R.G. (2000). Behavioral and physiological responsivity, sleep, and patterns of daily cortisol production in infants with and without colic. Child Development, 71, 862877.CrossRefGoogle ScholarPubMed
Hrdy, S. (1999). Mother nature: Maternal instincts and how they shape the human species. New York, NY: