Skip to main content Accessibility help
×
Home
Hostname: page-component-8bbf57454-hr8xl Total loading time: 0.409 Render date: 2022-01-24T20:23:04.748Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

10 - Gravity flow on steep slope

Published online by Cambridge University Press:  05 April 2012

Christophe Ancey
Affiliation:
Ecole Polytechnique Fédérale de Lausanne, Switzerland
Eric P. Chassignet
Affiliation:
Florida State University
Claudia Cenedese
Affiliation:
Woods Hole Oceanographic Institution, Massachusetts
Jacques Verron
Affiliation:
Centre National de la Recherche Scientifique (CNRS), Grenoble
Get access

Summary

Introduction

Particle-laden, gravity-driven flows occur in a large variety of natural and industrial situations. Typical examples include turbidity currents, volcanic eruptions, and sand-storms (see Simpson 1997 for a review). On mountain slopes, debris flows and snow avalanches provide particular instances of vigorous dense flows, which have special features that make them different from usual gravity currents. Those special features include the following:

  • They belong to the class of non-Boussinesq flows since the density difference between the ambient fluid and the flow is usually very large, whereas most gravity currents are generated by a density difference of a few percent.

  • Whereas many gravity currents are driven by pressure gradient and buoyancy forces, the dynamics of flows on slope are controlled by the balance between the gravitational acceleration and dissipation forces. Understanding the rheological behavior of particle suspensions is often of paramount importance when studying gravity flows on steep slope.

This chapter reviews some of the essential features of snow avalanches and debris flows. Since these flows are a major threat to human activities in mountain areas, they have been studied since the late 19th century. In spite of the huge amount of work done in collecting field data and developing flow-dynamics models, there remain great challenges in understanding the dynamics of flows on steep slope and, ultimately, in predicting their occurrence and behavior. Indeed, these flows involve a number of complications such as abrupt surge fronts, varying free and basal surfaces, and flow structure that changes with position and time.

Type
Chapter
Information
Buoyancy-Driven Flows , pp. 372 - 432
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ancey, C., 2004: Powder-snow avalanches: Approximation as non-Boussinesq clouds with a Richardson-number-dependent entrainment function. J. Geophys. Res. 109, F01005.Google Scholar
Ancey, C., 2005: Monte Carlo calibration of avalanches described as Coulomb fluid flows. Phil. Trans. Roy. Soc. London A 363, 1529–1550.Google Scholar
Ancey, C., 2007: Plasticity and geophysical flows: A review. J. Non-Newtonian Fluid Mech. 142, 4–35.Google Scholar
Ancey, C., and S., Cochard, 2009: The dam-break problem for Herschel-Bulkley fluids down steep flumes. J. Non-Newtonian Fluid Mech. 158, 18–35.Google Scholar
Ancey, C., S., Cochard, and N., Andreini, 2009: The dam-break problem for viscous fluids in the high-capillary-number limit. J. Fluid Mech. 624, 1–22.Google Scholar
Ancey, C., S., Cochard, S., Wiederseiner, and M., Rentschler, 2006: Front dynamics of supercritical non-Boussinesq gravity currents. Water Resour. Res. 42, W08424.Google Scholar
Ancey, C., S., Cochard, S., Wiederseiner, and M., Rentschler, 2007: Existence and features of similarity solutions for supercritical non-Boussinesq gravity currents. Physica D 226, 32–54.Google Scholar
Ancey, C., and P., Evesque, 2000: Frictional-collisional regime for granular suspension flows down an inclined channel. Phys. Rev. E 62, 8349–8360.Google Scholar
Ancey, C., C., Gervasoni, and M., Meunier, 2004: Computing extreme avalanches. Cold Reg. Sci. Technol. 39, 161–180.Google Scholar
Ancey, C., R. M., Iverson, M., Rentschler, and R. P., Denlinger, 2008: An exact solution for ideal dam-break floods on steep slopes. Water Resour. Res. 44, W01430.Google Scholar
Ancey, C., and M., Meunier, 2004: Estimating bulk rheological properties of flowing snow avalanches from field data. J. Geophys. Res. 109, F01004.Google Scholar
Balmforth, N. J., and R. V., Craster, 1999: A consistent thin-layer theory for Bingham plastics. J. Non-Newtonian Fluid Mech. 84, 65–81.Google Scholar
Balmforth, N. J., R. V., Craster, and R., Sassi, 2002: Shallow viscoplastic flow on an inclined plane. J. Fluid Mech. 470, 1–29.Google Scholar
Balmforth, N. J., and R. R., Kerswell, 2005: Granular collapse in two dimensions. J. Fluid Mech. 538, 399–428.Google Scholar
Barbolini, M., and C. J., Keylock, 2002: A new method for avalanche hazard mapping using a combination of statistical and deterministic models. Nat. Hazard Earth. Sys. Sci. 2, 239–245.Google Scholar
Bartelt, P., and B. W., McArdell, 2009: Granulometric investigations of snow avalanches. J. Glac. 55, 829–833.Google Scholar
Beghin, P., and G., Brugnot, 1983: Contribution of theoretical and experimental results to powder-snow avalanche dynamics. Cold Regions Sci. Technol. 8, 63–73.Google Scholar
Beghin, P., E. J., Hopfinger, and R. E., Britter, 1981: Gravitational convection from instantaneous sources on inclined boundaries. J. Fluid Mech. 107, 407–422.Google Scholar
Beghin, P., and X., Olagne, 1991: Experimental and theoretical study of the dynamics of powder snow avalanches. Cold Reg. Sci. Technol. 19, 317–326.Google Scholar
Benjamin, T. B., 1968: Gravity currents and related phenomena. J. Fluid Mech. 31, 209–248.Google Scholar
Bouchut, F., A., Mangeney-Castelnau, B., Perthame, and J.-P., Vilotte, 2003: A new model of Saint Venant and Savage-Hutter type for gravity driven shallow flows. C. R. Acad. Sci. Paris Sér. I 336, 531–536.Google Scholar
Bozhinskiy, N., and K. S., Losev, 1998: The fundamentals of avalanche science. Tech. Rep. 55. EISFL.Google Scholar
Brugnot, G., and R., Pochat, 1981: Numerical simulation study of avalanches. J. Glaciol. 27, 77–88.Google Scholar
Bursik, M., A., Patra, E. B., Pitman, C. C., Nichita, J. L., Macias, R., Saucedo, and O., Girina, 2005: Advances in studies of dense volcanic granular flows. Rep. Prog. Phy. 68, 271–301.Google Scholar
Buser, O., and H., Frutiger, 1980: Observed maximum runout distance of snow avalanches and determination of the friction coefficients μ and ξ. J. Glaciol. 26, 121–130.Google Scholar
Chambon, G., A., Ghemmour, and D., Laigle, 2009: Gravity-driven surges of a viscoplastic fluid: an experimental study. J. Non-Newtonian Fluid Mech. 158, 54–62.Google Scholar
Chang, C., and R. L., Powell, 1994: Effect of particle size distributions on the rheology of concentrated bimodal suspensions. J. Rheol. 38, 85–98.Google Scholar
Chow, V. T. (ed.), 1959: Open-Channel Hydraulics. Mc Graw Hill, New York.
Christen, M., P., Bartelt, U., and Gruber, , 2002: AVAL1D: Numerische Berechnung von Fliessund Staublawinen. Eidgenössisches Institut für Schnee- und Lawinenforschung, Davos.
Chugunov, V., J. M. N. T., Gray, and K., Hutter, 2003: Group theoretic methods and similarity solutions of the Savage-Hutter equations. In: K., Hutter and N., Kirchener (eds.), Dynamics Response of Granular and Porous Materials under Large and Catastrophic Deformations, pp. 251–261. Springer, Berlin.
Clague, J. J., and S. G., Evans, 2000: A review of catastrophic drainage of moraine-dammed lakes in British Columbia. Quaternary Sci. Rev. 19, 1763–1783.Google Scholar
Coaz, J. W., 1881: Die Lawinen der Schweizer Alpen. Schmid-Franke, Bern.
Cochard, S., and C., Ancey, 2008: Tracking the free surface of time-dependent flows: Image processing for the dam-break problem. Exper. Fluids 44, 59–71.Google Scholar
Cochard, S., and C., Ancey, 2009: Experimental investigation into the spreading of viscoplastic fluids on inclined planes. J. Non-Newtonian Fluid Mech. 158, 73–84.Google Scholar
Contreras, S. M., and T. R. H., Davies, 2000: Coarse-grained debris-flows: Hysteresis and time-dependent rheology. J. Hydraul. Eng. 126, 938–941.Google Scholar
Coussot, P., 1997: Mudflow Rheology and Dynamics. Balkema, Rotterdam.
Coussot, P., S., Proust, and C., Ancey, 1996: Rheological interpretation of deposits of yield stress fluids. J. Non-Newtonian Fluid Mech. 66, 55–70.Google Scholar
Cui, X., J. M. N. T., Gray, and T. Jóhannesson, 2007: Deflecting dams and the formation of oblique shocks in snow avalanches at Flateyri, Iceland. J. Geophys. Res. 122, F04012.Google Scholar
Dalbey, K., A., Patra, E. B., Pitman, M. I., Bursik, and M., Sheridan, 2008: Input uncertainty propagation methods and hazard mapping of geophysical mass flows. J. Geophys. Res. 113, B05203.Google Scholar
Davies, T. R. H., 1986: Large debris flow: a macro-viscous phenomenon. Acta Mech. 63, 161–178.Google Scholar
Deboeuf, S., E., Lajeunesse, O., Dauchot, and B., Andreotti, 2006: Flow rule, self-channelization, and levees in unconfined granular flows. Phys. Rev. Lett. 97, 158303.Google Scholar
Delannay, R., M., Louge, P., Richard, N., Taberlet, and A., Valance, 2007: Towards a theoretical picture of dense granular flows down inclines. Nature Mater. 6, 99–108.Google Scholar
Dent, J. D., and T. E., Lang, 1980: Modelling of snow flow. J. Glaciol. 26, 131–140.Google Scholar
Dent, J. D., and T. E., Lang, 1982: Experiments on the mechanics of flowing snow. Cold Reg. Sci. Technol. 5, 243–248.Google Scholar
Eckert, N., E., Parent, M., Naaim, and D., Richard, 2008: Bayesian stochastic modelling for avalanche predetermination: From a general system framework to return period computations. Stoch. Env. Res. Risk Ass. 22, 185–206.Google Scholar
Eglit, E. M., 1983: Some mathematical models of snow avalanches. In: M., Shahinpoor (ed.) Advances in the Mechanics and the Flow of Granular Materials, pp. 577–588. Trans Tech Publications, Clausthal-Zellerfeld.
Ellison, T. H., and J. S., Turner, 1959: Turbulent entrainment in stratified flows. J. Fluid Mech. 6, 423–448.Google Scholar
Elverhøi, A., D., Issler, F. V., De Blasio, T., Ilstad, C. B., Harbitz, and P., Gauer, 2005: Emerging insights into the dynamics of submarine debris flows. Nat. Hazard Earth. Sys. Sci. 5, 633–648.Google Scholar
Fannin, R. J., and T. P., Rollerson, 1993: Debris flows: Some physical characteristics and behaviour. Can. Geotech. J. 30, 71–81.Google Scholar
Félix, G., and N., Thomas, 2004: Relation between dry granular flow regimes and morphology of deposits: Formation of levées in pyroclastic deposits. Earth Planet. Sci. Lett. 221, 197–213.Google Scholar
Fernández-Nieto, E. D., P., Noble, and J.-P., Vila, 2010: Shallow water equation for non-Newtonian fluids. J. Non-Newtonian Fluid Mech. 165, 712–732.Google Scholar
Fernando, H. J. S., 1991: Turbulent mixing in stratified fluids. Annu. Rev. Fluid Mech. 23, 455–493.Google Scholar
Forterre, Y., and O., Pouliquen, 2008: Flows of dense granular media. Annu. Rev. Fluid Mech. 40, 1–24.Google Scholar
Fukushima, Y., T., Hagihara, and M., Sakamoto, 2000: Dynamics of inclined suspension thermals. Fluid Dyn. Res. 26, 337–354.Google Scholar
Fukushima, Y., and G., Parker, 1990: Numerical simulation of powder-snow avalanches. J. Glaciol. 36, 229–237.Google Scholar
Gauer, P., and D., Issler, 2003: Possible erosion mechanisms in snow avalanches. Ann. Glaciol. 38, 384–392.Google Scholar
Gauer, P., Z., Medina-Cetina, K., Lied, and K., Kristensen, 2009: Optimization and probabilistic calibration of avalanche-block models. Cold Reg. Sci. Technol. 59, 251–258.Google Scholar
Gratton, J., and C., Vigo, 1994: Self-similar gravity currents with variable inflow revisited: plane currents. J. Fluid Mech. 258, 77–104.Google Scholar
Gray, J. M. N.|T., 2010: Particle size segregation in granular avalanches: A brief review of recent progress. In: J. D., Goddard, J. T., Jenkins and P., Giovine (eds.), IUTAM-ISIMM Symposium on Mathematical Modeling and Physical Instances of Granular Flows, vol. 1227, pp. 343–362. AIP, Melville, NY.Google Scholar
Gray, J. M. N. T., and C., Ancey, 2009: Particle size-segregation, recirculation, and deposition at coarse particle rich flow fronts. J. Fluid Mech. 629, 387–423.Google Scholar
Gray, J. M. N. T., and B. P., Kokelaar, 2010: Large particle segregation, transport and accumulation in granular free-surface flows. J. Fluid Mech. 652, 105–137.Google Scholar
Gray, J. M. N. T., M., Wieland, and K., Hutter, 1998: Gravity-driven free surface flow of granular avalanches over complex basal topography. Proc. R. Soc. London Ser. A 455, 1841–1874.Google Scholar
Gubler, H., M., Hiller, G.,, Klausegger, and U., Suter, 1986: Messungen an Fliesslawinen. Tech. Rep. 41. SLF.Google Scholar
Hallworth, M. A., A., Hogg, and H. E., Huppert, 1998b: Effects of external flow on compositional and particle gravity currents. J. Fluid Mech. 359, 109–142.Google Scholar
Hampton, M. A., H. J., Lee, and J., Locat, 1996: Submarine landslides. Rev. Geophys. 34, 33–59.Google Scholar
Harbitz, C., A., Harbitz, and F., Nadim, 2001: On probability analysis in snow avalanche hazard zoning. Ann. Glaciol. 32, 290–298.Google Scholar
Hogg, A. J., 2006: Lock-release gravity currents and dam-break flows. J. Fluid Mech. 569, 61–87.Google Scholar
Hogg, A. J., and G. P., Matson, 2009: Slumps of viscoplastic fluids on slopes. J. Non-Newtonian Fluid Mech. 158, 101–112.Google Scholar
Hogg, A. J., and D., Pritchard, 2004: The effects of hydraulic resistance on dam-break and other shallow inertial flows. J. Fluid Mech. 501, 179–212.Google Scholar
Hogg, A. J., M., Ungarish, and H. E., Huppert, 2000: Particle-driven gravity currents: asymptotic and box model solutions. Eur. J. Mech. B. Fluids 19, 139–165.Google Scholar
Hogg, A. H., and A.W.Woods, 2001: The transition from inertia- to bottom-drag-dominated motion of turbulent gravity current. J. Fluid Mech. 449, 201–224.Google Scholar
Holmes, M. H., 1995: Introduction to Perturbation Methods. Springer Verlag, New York.
Hopfinger, E. J., and J.-C., Tochon-Danguy, 1977: A model study of powder-snow avalanches. J. Glaciol. 81, 343–356.Google Scholar
Huang, X., and M. H., Garcìa, 1997: A perturbation solution for Bingham-plastic mudflows. J. Hydraul. Eng. 123, 986–994.Google Scholar
Huang, X., and M. H., Garcìa, 1998: A Herschel-Bulkley model for mud flow down a slope. J. Fluid Mech. 374, 305–333.Google Scholar
Hunt, B., 1994: Newtonian fluid mechanics treatment of debris flows and avalanches. J. Hydraul. Eng. 120, 1350–1363.Google Scholar
Huppert, H. E., W., B., and Dade, , 1998: Natural disasters: explosive volcanic eruptions and gigantic landslides. Theor. Comput. Fluid Dyn. 10, 202–212.Google Scholar
Hürlimann, M., D., Rickenmann, and C., Graf, 2003: Field and monitoring data of debris-flow events in the Swiss Alps. Can. Geotech. J. 40, 161–175.Google Scholar
Hutter, K., 1996: Avalanche dynamics. In: V. P., Singh (ed.), Hydrology of Disasters, pp. 317–392. Kluwer Academic Publications, Dordrecht.
Issler, D., 1998: Modelling of snow entrainment and deposition in powder-snow avalanches. Ann. Glaciol. 26, 253–258.Google Scholar
Issler, D., 2003: Experimental information on the dynamics of dry-snow avalanches. In: K., Hutter and N., Kirchner (eds.), Dynamic Response of Granular and Porous Materials Under Large and Catastrophic Deformation pp. 109–160. Springer, Berlin.
Iverson, R. M., 1997: The physics of debris flows. Rev. Geophys. 35, 245–296.Google Scholar
Iverson, R. M., 2003a: The debris-flow rheology myth. In: C. L., Chen and D., Rickenmann (eds.), Debris Flow Mechanics and Mitigation Conference, pp. 303–314. Davos: Mills Press.
Iverson, R. M., 2003b: How should mathematical models of geomorphic processus be judged? In: P. R., Wilcock and R. M., Iverson (ed.), Prediction in Geomorphology, pp. 83–94. American Geophysical Union, Washington, DC.
Iverson, R. M., 2005: Debris-flow mechanics. In: M., Jakob and O., Hungr (eds.), Debris-Flow Hazards and Related Phenomena, pp. 105–134. Springer, Berlin.
Iverson, R. M., and R. P., Denlinger, 2001: Flow of variably fluidized granular masses across three-dimensional terrain. 1. Coulomb mixture theory. J. Geophys. Res. 106, 537–552.Google Scholar
Iverson, R. M., M., Logan, and R. G., LaHusen, 2010: The perfect debris flow? Aggregated results from 28 large-scale experiments. J. Geophys. Res. 115, F03005.Google Scholar
Iverson, R. M., M. E., Reid, and R. G., LaHusen, 1997: Debris-flow mobilization from landslides. Annu. Rev. Earth. Planet. Sci. 25, 85–138.Google Scholar
Iverson, R. M., and J., Vallance, 2001: New views of granular mass flows. Geology 29, 115–118.Google Scholar
Johnson, A. M., and J. R., Rodine, 1984: Debris flow. In: D., Brunsden and D. B., Prior (eds.), Slope Instability, pp. 257–362. John Wiley and Sons, Chichester.
Jomelli, V., and P., Bertran, 2001: Wet snow avalanche deposits in the French Alps: Structure and sedimentology. Geografiska Annaler Series A—Physical Geography 83, 15–28.Google Scholar
Jop, P., Y., Forterre, and O., Pouliquen, 2005: Crucial role of side walls for granular surface flows: Consequences for the rheology. J. Fluid Mech. 541, 167–192.Google Scholar
Josserand, C., P.-Y., Lagrée, and D., Lhuillier, 2004: Stationary shear flows of dense granular materials: A tentative continuum modelling. Eur. Phys. J. E 14, 127–135.Google Scholar
Karelsky, K. V., V. V., Papkov, A. S., Petrosyan, and D. V., Tsygankov, 2000: Particular solutions of shallow-water equations over a non-flat surface. Phys. Lett. A 271, 341–348.Google Scholar
Keller, J. B., 2003: Shallow-water theory for arbitrary slopes of the bottom. J. Fluid Mech. 489, 345–348.Google Scholar
Kern, M. A., P., Bartelt, B., Sovilla, and O., Buser, 2009: Measured shear rates in large dry and wet snow avalanches. J. Glaciol. 55, 327–338.Google Scholar
Kern, M. A., F., Tiefenbacher, and J. N., McElwaine, 2004: The rheology of snow in large chute flows. Cold Reg. Sci. Technol. 39, 181–192.Google Scholar
Kerswell, R. R., 2005: Dam break with Coulomb friction: a model for granular slumping? Phys. Fluids 17, 057101.Google Scholar
Keylock, C. J., 2005: An alternative form for the statistical distribution of extreme avalanche runout distances. Cold Reg. Sci. Technol. 42, 185–193.Google Scholar
Kulikovskiy, A. G., and E. I., Svehnikova, 1977: Model dlja rascheta dvizhija pilevoi snezhnoi lavini (a model for computing powdered snow avalanche motion) [in Russian]. Materiali Glatsiologicheskih Issledovanii [Data of Glaciological Studies] 31, 74–80.Google Scholar
Legros, F., 2002: The mobility of long-runout landslides. Eng. Geol. 63, 301–331.Google Scholar
Leighton, D., and A., Acrivos, 1987: The shear-induced migration of particles in a concentrated suspensions. J. Fluid Mech. 181, 415–439.Google Scholar
LeVeque, R. J., 2002: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge.
Lighthill, M. J., and G. B., Whitham, 1955: On kinematic waves. I. Flood movement in long rivers. Proc. R. Soc. London Ser. A 229, 281–316.Google Scholar
Linares-Guerrero, E., C., Goujon, and R., Zenit, 2007: Increased mobility of bidisperse granular avalanches. J. Fluid Mech. 593, 475–504.Google Scholar
Liu, K. F. and C. C., Mei, 1990a: Approximate equations for the slow spreading of a thin sheet of Bingham plastic fluid. Phys. Fluids A 2, 30–36.Google Scholar
Liu, K. F., and C. C., Mei, 1990b: Slow spreading of a sheet of Bingham fluid on an inclined plane. J. Fluid Mech. 207, 505–529.Google Scholar
Lootens, D., H., Van Damme, and P., Hébraud, 2003: Giant stress fluctuations at the jamming transition. Phys. Rev. Lett. 90, 178301.Google Scholar
Maeno, O., 1993: Rheological characteristics of snow flows. In: International Workshop on Gravitational Mass Movements (ed. L., Buisson and G., Brugnot), pp. 209–220. Cemagref, Grenoble.
Major, J. J., and T. C., Pierson, 1992: Debris flow rheology: Experimental analysis of fine-grained slurries. Water Resour. Res. 28, 841–857.Google Scholar
Mangeney, A., P., Heinrich, and R., Roche, 2000: Analytical solution for testing debris avalanche numerical models. Pure Appl. Geophys. 157, 1081–1096.Google Scholar
Mangeney, A., O., Roche, O., Hungr, N., Mangold, G., Faccanoni, and A., Lucas, 2010: Erosion and mobility in granular collapse over sloping beds. J. Geophys. Res. 115, F03040.Google Scholar
Mangeney, A., L. S., Tsimring, I. S., Volfson, and F., Bouchut, 2007: Avalanche mobility induced by the presence of an erodible bed and associated entrainment. Geophys. Res. Lett. 34, L22401.Google Scholar
Marquez, M., A., Robben, B. P., Grady, and I., Robb, 2006: Viscosity and yield stress reduction in non-colloidal concentrated suspensions by surface modification with polymers and surfactants and/or nanoparticle addition. J. Colloid. Interface Sci. 295, 374–387.Google Scholar
Matson, G. P., and A. J., Hogg, 2007: Two-dimensional dam break flows of Herschel-Bulkley fluids: The approach to the arrested state. J. Non-Newtonian Fluid Mech. 142, 79–94.Google Scholar
McArdell, B. W., P., Bartelt, and J., Kowalski, 2006: Field observations of basal forces and fluid pore pressure in a debris flow. Geophys. Res. Lett. 34, L07406.Google Scholar
McClung, D. M., and K., Lied, 1987: Statistical and geometrical definition of snow avalanche runout. Cold Reg. Sci. Technol. 13, 107–119.Google Scholar
McElwaine, J. N., 2005: Rotational flow in gravity current heads. Phil. Trans. Roy. Soc. London A 363, 1603–1623.Google Scholar
Mei, C. C., K. F., Liu, and M., Yuhi, 2001: Mud flows—Slow and fast. In: N. J., Balmforth and A., Provenzale (eds.), Geomorphological Fluid Mechanics: Selected topics in geological and geomorphological fluid mechanics, pp. 548–577. Springer, Berlin.
Mei, C. C., and M., Yuhi, 2001: Slow flow of a Bingham fluid in a shallow channel of finite width. J. Fluid Mech. 431, 135–159.Google Scholar
Meunier, M., and C., Ancey, 2004: Towards a conceptual approach to predetermining long-return-period avalanche run-out distances. J. Glaciol. 50, 268–278.Google Scholar
Meunier, M., C., Ancey, and J.-M., Taillandier, 2004: Fitting avalanche-dynamics models with documented events from the Col du Lautaret site (France) using the conceptual approach. Cold Regions Sci. Technol. 39, 55–66.Google Scholar
Morris, J. F., 2009: A review of microstructure in concentrated suspensions and its implications for rheology and bulk flow. Rheol. Acta 48, 909–923.Google Scholar
Morris, J. F., and F., Boulay, 1999: Curvilinear flows of noncolloidal suspensions: The role of normal stresses. J. Rheol. 43, 1213–1238.Google Scholar
Mougin, P., 1922: Les avalanches en Savoie, vol. IV. Ministère de l'Agriculture, Direction Générale des Eaux et Forêts, Service des Grandes Forces Hydrauliques, Paris.
Nazarov, A. N., 1991: Mathematical modelling of a snow-powder avalanche in the framework of the equations of two-layer shallow water. Fluid Dyn. 12, 70–75.Google Scholar
Norem, H. F., F., Irgens, and B., Schieldrop, 1986: A continuum model for calculating snow avalanche velocities. In: H., Gubler and B., Salm (eds.), Avalanche Formation, Movement and Effects, pp. 363–379. IAHS, Wallingford, Oxfordshire, UK, Davos.
Osmond, D. I., and R. W., Griffiths, 2001: The static shape of yield strength fluids slowly emplaced on slopes. J. Geophys. Res. B 106, 16241–16250.Google Scholar
Ottino, J. M., and D. V., Khakhar, 2000: Mixing and segregation of granular materials. Annu. Rev. Fluid Mech. 32, 55–91.Google Scholar
Ovarlez, G., F., Bertrand, and S., Rodts, 2006: Local determination of the constitutive law of a dense suspension of noncolloidal particles through magnetic resonance imaging. J. Rheol. 50, 259–292.Google Scholar
Parker, G., 1982: Conditions for the ignition of catastrophically erosive turbidity currents. Mar. Geol. 46, 307–327.Google Scholar
Parker, G., Y., Fukushima, and H. M., Pantin, 1986: Self-accelerating turbidity currents. J. Fluid Mech. 171, 145–181.Google Scholar
Parsons, J. D., K. X., Whipple, and A., Simoni, 2001: Experimental study of the grain-flow, fluid-mud transition in debris flows. J. Geol. 109, 427–447.Google Scholar
Phillips, J. C., A. J., Hogg, R. R., Kerswell, and N., Thomas, 2006: Enhanced mobility of granular mixtures of fine and coarse paricles. Earth Planet. Sci. Lett. 246, 466–480.Google Scholar
Piau, J.-M., 1996: Flow of a yield stress fluid in a long domain. Application to flow on an inclined plane. J. Rheol. 40, 711–723.Google Scholar
Platzer, K., P., Bartelt, and M. A., Kern, 2007: Measurements of dense snow avalanche basal shear to normal stress ratios (S/N). Geophys. Res. Lett. 34, L07501.Google Scholar
Pouliquen, O., and Y., Forterre, 2002: Friction law for dense granular flow: Application to the motion of a mass down a rough inclined plane. J. Fluid Mech. 453, 133–151.Google Scholar
Princevac, M., H. J. S., Fernando, and C. D., Whiteman, 2005: Turbulent entrainment into natural gravity-driven flows. J. Fluid Mech. 533, 259–268.Google Scholar
Pudasaini, S. P., and K., Hutter, 2003: Rapid shear flows of dry granular masses down curved and twisted channels. J. Fluid Mech. 495, 193–208.Google Scholar
Pudasaini, S. P., and K., Hutter, 2006: Avalanche Dynamics. Berlin, Springer.
de Quervain, R., 1981: Avalanche Atlas. Unesco, Paris.
Rammer, L., M. A., Kern, U., Gruber, and F., Tiefenbacher, 2007: Comparison of avalanche-velocity measurements by means of pulsed Doppler radar, continuous wave radar and optical methods. Cold Reg. Sci. Technol. 54, 35–54.Google Scholar
Rentschler, M., 2010: Simulating viscoplastic avalanches. PhD thesis, École Polytechnique Fédérale de Lausanne.
Rickenmann, D., 1999: Empirical relationships for debris flows. Nat. Hazard 19, 47–77.Google Scholar
Salm, B., 1966: Contribution to avalanche dynamics. In: Scientific Aspects of Snow and Ice Avalanche, pp. 199–214. IAHS Press, Wallingford, Oxfordshire, UK, Davos.
Salm, B., 2004: A short and personal history of snow avalanche dynamics. Cold Reg. Sci. Technol. 39, 83–92.Google Scholar
Salm, B., A., Burkard, and H., Gubler, 1990: Berechnung von Fliesslawinen, eine Anleitung für Praktiker mit Beispielen. Tech. Rep. No 47. Eidgenössisches Institut für Schnee- und Lawinenforschung (Davos).
Savage, S. B., 1982: Granular flows down rough inclined—Review and extension. In: J. T., Jenkins and M., Satake (eds.), U.S./ Japan Seminar on New Models and Constitutive Relations in the Mechanics of Granular Materials, pp. 261–282. Elseviers Science Publishers, Amsterdam, Ithaca.
Savage, S. B., 1989: Flow of granular materials. In: P., Germain, J.-M., Piau, and D., Caillerie (eds.), Theoretical and Applied Mechanics, pp. 241–266. Elsevier, Amsterdam.
Savage, S. B., and K., Hutter, 1989: The motion of a finite mass of granular material down a rough incline. J. Fluid Mech. 199, 177–215.Google Scholar
Savage, S. B., and K., Hutter, 1991: The dynamics of avalanches of granular materials from initiation to runout. Part I: Analysis. Acta Mech. 86, 201–223.Google Scholar
Savage, S. B., and Y., Nohguchi, 1988: Similarity solutions for avalanches of granular materials down curved bed. Acta Mech. 75, 153–174.Google Scholar
Sengun, M. Z., and R. F., Probstein, 1989: Bimodal model of slurry viscosity with applications to coal slurries. Part 1. Theory and experiment. Rheol. Acta 28, 382–393.Google Scholar
Siavoshi, S., and A., Kudrolli, 2005: Failure of a granular step. Phys. Rev. E 71, 051302.Google Scholar
Simpson, J. E., 1972: Effects of a lower boundary on the head of a gravity current. J. Fluid Mech. 53, 759–768.Google Scholar
Simpson, J. E., 1997: Gravity Currents in the Environment and the Laboratory. Cambridge University Press, Cambridge.
Singh, A., A., Nir, and R., Semiat, 2006: Free-surface flow of concentrated suspensions. Int. J. Multiphase Flow 32, 775–790.Google Scholar
Siviglia, A., and A., Cantelli, 2005: Effect of bottom curvature on mudflow dynamics: Theory and experiments. Water Resour. Res. 41, W11423.Google Scholar
Sovilla, B., and P., Bartelt, 2006: Field experiments and numerical modeling of mass entrainment in snow avalanches. J. Geophys. Res. 111, F03007.Google Scholar
Stickel, J. J., and R. L., Powell, 2005: Fluid mechanics and rheology of dense suspensions. Annu. Rev. Fluid Mech. 37, 129–149.Google Scholar
Tai, Y.-C., K., Hutter, and J. M. N. T., Gray, 2001: Dense granular avalanches: mathematical description and experimental validation. In: N. J., Balmforth and A., Provenzale (eds.), Geomorphological Fluid Mechanics, pp. 339–366. Springer, Berlin.
Timberlake, B. D., and J. F., Morrison, 2005: Particle migration and free-surface topography in inclined plane flow of a suspension. J. Fluid Mech. 538, 309–341.Google Scholar
Tognacca, C., 1997: Debris-flow initiation by channel-bed failure. In: C. L., Chen (ed.), First International Conference on Debris Flow Hazards Mitigation, pp. 44–53. ASCE, New-York.
Tsai, J.-C., W., Losert, and G. A., Voth, 2001: Two-dimensional granular Poiseuille flow on an incline: Multiple dynamical regimes. Phys. Rev. E 65, 011306.Google Scholar
Turnbull, B., J., McElwaine, and C., Ancey, 2007: The Kulikovskiy–Sveshnikova–Beghin model of powder snow avalanches: Development and application. J. Geophys. Res. 112, F01004.Google Scholar
Turner, J. S., 1973: Buoyancy Effects in Fluids. Cambridge University Press, Cambridge.
Ungarisch, M., 2009: An Introduction to Gravity Currents and Intrusions. CRC Publishers, Boca Raton.
VanDine, D. F., 1985: Debris flows and debris torrents in the Southern Canadian Cordillera. Can. Geotech. J. 22, 44–68.Google Scholar
Vila, J. P., 1986: Sur la théorie et l'approximation numé rique des problèmes hyperboliques non-linéaires, application aux équations de Saint-Venant et à la modélisation des avalanches denses. Ph. D. thesis, Paris VI.
Voellmy, A., 1955: Über die Zerstörungskraft von Lawinen. Schweizerische Bauzeitung 73, 159–162, 212–217, 246–249, 280–285.Google Scholar
Voight, B., 1990: The 1985 Nevado del Ruiz volcano catastrophe: Anatomy and restropection. J. Volcan. Geoth. Res. 44, 349–386.Google Scholar
Wilcock, P. R., and R. M., Iverson, eds., 2003: Prediction in Geomorphology. American Geophysical Union, Washington, DC.
Zanuttigh, B., and A., Lamberti, 2007: Instability and surge development in debris flows. Rev. Geophys. 45, RG3006.Google Scholar
Zarraga, I. E., D. A., Hill, and D. T., Leighton, 2000: The characterization of the total stress of concentrated suspensions of noncolloidal spheres in Newtonian fluids. J. Rheol. 44, 185–221.Google Scholar
Zimmermann, M., P., Mani, P., Gamma, P., Gsteiger, O., Heiniger, and G., Hunizker, 1997: Murganggefahr und Klimaänderung – ein GIS-basierter Ansatz. VDF, Zürich.
4
Cited by

Send book to Kindle

To send this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Send book to Dropbox

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Dropbox.

Available formats
×

Send book to Google Drive

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Google Drive.

Available formats
×