Skip to main content Accessibility help
×
Home
Hostname: page-component-8bbf57454-hr8xl Total loading time: 0.52 Render date: 2022-01-24T20:58:07.956Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

7 - Buoyancy-driven currents in eddying ocean models

Published online by Cambridge University Press:  05 April 2012

Anne Marie Treguier
Affiliation:
Laboratoire de Physique des Océans, CNRS-IRD-Ifremer-UBO, Brest, France
Bruno Ferron
Affiliation:
Laboratoire de Physique des Océans, CNRS-IRD-Ifremer-UBO, Brest, France
Raphael Dussin
Affiliation:
Laboratoire de Physique des Océans, CNRS-IRD-Ifremer-UBO, Brest, France
Eric P. Chassignet
Affiliation:
Florida State University
Claudia Cenedese
Affiliation:
Woods Hole Oceanographic Institution, Massachusetts
Jacques Verron
Affiliation:
Centre National de la Recherche Scientifique (CNRS), Grenoble
Get access

Summary

Introduction

Dynamics of Water Mass Formation and Spreading

Small-scale buoyancy-driven flows, such as the overflows from marginal seas, are the main process by which the distinct water masses of the deep ocean are formed. For example, the flow of Antarctic Bottom Water (AABW) from the continental shelf down to the bottom of the Weddell Sea influences water mass properties all the way to the North Atlantic Ocean. The large range of spatial scales and mechanisms involved in the formation and spreading of these water masses poses a formidable challenge to numerical models. Legg (Chapter 5, this volume) reviews the main dense overflows of the world ocean. The width of an overflow is set either by the width of the strait or channel through which it flows (in the case of the Red Sea overflow, for example) or by the Rossby radius of deformation, which is the main dynamic scale for stratified rotating fluids. For an overflow of thickness h, with density anomaly δρ relative to the density ρ of the surrounding fluid, the reduced gravity g′ is defined as gδρ/ρ (g being the acceleration of gravity) and the Rossby radius Lr is defined as Lr = (gh)1/2 /f with f being the Coriolis parameter. Lr decreases with latitude and its magnitude is only a few kilometers in the Nordic Seas. The dynamics of the plumes of dense water and the amount of entrainment that takes place as they descend along topographic slopes set the properties of the newly formed water masses (e.g., Chapter 5 by Legg).

Type
Chapter
Information
Buoyancy-Driven Flows , pp. 281 - 311
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barnier, B., G., MadecT., PenduffJ. M., MolinesA. M., TreguierJ., Le SommerA., BeckmannA., BiastochC., BöningJ., DenggC., DervalE., DurandS., GulevE., RemyC., TalandierS., TheettenM., MaltrudJ., McClean, and B., De Cuevas, 2006: Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy permitting resolution. Ocean Dynamics, 56 (5–6), 543–567, doi: 10.1007/s10236-006-0082-1.Google Scholar
Beckmann, A. and R., Dorscher, 1997: A method for improved representation of dense water spreading over topography in geopotential-coordinate models. J. Phys. Oceanogr. 27, 581–591.Google Scholar
Beckmann, A., 1998: Represetnation of bottom boundary layer processes in numerical ocean circulation models. In: E. P., Chassignet and J., Verron (eds.), Ocean Modeling and Parameterization, Kluwer Academic Publishers. pp. 135–154.
Blanke, B., and P., Delecluse, 1993: Variability of the tropical Atlantic ocean simulated by a general circulation model with two different mixed-layer physics. J. Phys. Oceanogr. 23, 1363–1388.Google Scholar
Bower, A. S., L., Armi, and I., Ambar, 1997: Lagrangian observations of Meddy Formation during a Mediterranean undercurrent seeding experiment. J. Phys. Oceanogr. 27, 2545–2575.Google Scholar
Bozec, A., E. P., ChassignetM. S., Lozier, and G. R., Halliwell, 2011: On the variability of the Mediterranean outflow water in the Atlantic Ocean. Part I. Source of the Mediterranean outflow water variability. J. Geophys. Res., in press.
Bryan, F. O., W., Böning, Holland, W.R., 1995: On the mid-latitude circulation in a high resolution model of the North Atlantic. J. Phys. Ocean. 25, 289–305.Google Scholar
Campin, J. M., and H., Goosse, 1999: Parameterization of density-driven downsloping flow for a coarse-resolution ocean model in z-coordinate. Tellus 51, 412–430.Google Scholar
Carton, X., N., DaniaultJ., AlvesL., Cherubin, and I., Ambar, 2010: Meddy dynamics and interaction with neighboring eddies southwest of Portugal: Observations and modeling. J. Geophys. Res. 115, C06017, doi: 10.1029/2009JC005646.Google Scholar
Chang, Y. S., X., XuT. M., OzgokmenE. P., ChassignetH., Peters, and P. F., Fischer, 2005: Comparison of gravity current mixing parameterizations and calibration using a high resolution 3D nonhydrostatic spectral element model. Ocean Modelling 10, 342–368.Google Scholar
Chassignet, E. P., and J., Verron (eds.), 1998: Ocean Modeling and Parameterization. Kluwer Academic Publishers.
Chassignet, E. P., H. E., HurlburtO. M., SmedstadG. R., HalliwellA. J., WallcraftE. J., MetzgerB. O., BlantonC., LozanoD. B., RaoP. J., Hogan, and A., Srinivasan, 2006: Generalized vertical coordinates for eddy-resolving global and coastal ocean forecasts. Oceanography 19(1), 20–31.Google Scholar
Chassignet, E. P., H. E., HurlburtE. J., MetzgerO. M., SmedstadJ., CummingsG. R., HalliwellR., BleckR., BarailleA. J., WallcraftC., LozanoH. L., TolmanA., SrinivasanS., HankinP., CornillonR., WeisbergA., BarthR., HeF., Werner, and J., Wilkin, 2009: U.S. GODAE: Global Ocean Prediction with the HYbrid Coordinate Ocean Model (HYCOM). Oceanography 22(2), 64–75.Google Scholar
Chassignet, E. P., 2011: Isopycnic and hybrid ocean modeling in the context of GODAE. In: A., Schiller and G., Brassington (eds.), Operational Oceanography in the 21st Century,Springer.
Curry, R. G., 1996: HydroBase: A database of hydrographic station and tools for climatologic analysis. WHOI Technical Report 96-01.
Dengg, J., C., BöningU., ErnstR., Redler, and A., Beckmann, 1999: Effects of an improved model representation of overflow water on the subpolar North Atlantic. Int. WOCE Newsletter 37, 10–15.Google Scholar
Dengler, M., F. A., SchottC., EdenP., BrandtJ., Fischer and R. J., Zantopp, 2004: Break-up of the Atlantic deep western boundary current into eddies at 8°S. Nature, 432, 1018–1020, doi:10.1038/nature03134.Google Scholar
Drillet, Y., R., Bourdallé-BadieL., Siefridt, and C., Le Provost, 2005: Meddies in the Mercator North Atlantic and Mediterranean Sea eddy-resolving model. J. Geophys. Res. 110, C03016, doi:10.1029/2003JC002170.Google Scholar
Dussin, R., and A. M., Treguier, 2010: Evaluation of the NATL12-BRD81 simulation. LPO report 10-03.
Ferron, B., H., MercierK. G., SpeerA. E., Gargett and K. L., Polzin, 1998: Mixing in the Romanche Fracture Zone. J. Phys. Oceanogr. 28, 1929–1945.Google Scholar
Ferron, B., H., Mercier, and A. M., Treguier, 2000: Modelisation of the flow of bottom water through the Romanche Fracture Zone with a primitive Equation model. Part 1: Dynamics. J. Mar Res. 58, 837–862.Google Scholar
Ferron, B., H., Mercier, and A. M., Treguier, 2004: Modelisation of the bottom water flow through the Romanche Fracture Zone with a primitive Equation model. Part 2: Comparison of vertical mixing parameterizations with observations. Ocean Modelling 6, 177–190.Google Scholar
Fischer, J., and F. A., Schott (2002), Labrador SeaWater tracked by profiling floats—From the boundary current into the open North Atlantic, J. Phys. Oceanogr. 32, 573–584.
,The FRAM group, 1991: Initial results from a fine resolution model of the Southern Ocean. Eos Trans. AGU 72, 174–175.Google Scholar
Getzlaff, K., C. W., Böning, and J., Dengg, 2006: Lagrangian perspectives of deep water export from the subpolar North Atlantic. Geophys. Res. Lett. 33, L21S08, doi:10.1029/2006GL026470.Google Scholar
Griffies, S. M., C., BöningF. O., BryanE. P., ChassignetR., GerdesH., HasumiA., HirstA.-M., Treguier, and D., Webb (2000): Developments in ocean climate modelling, Ocean Modelling. 2, 123–192.Google Scholar
Griffies, S. M. (2004): Fundamentals of Ocean Climate Models. Princeton University Press, Princeton, NJ.
Haidvogel, D. B., and A., Beckmann, 1999: Numerical Ocean Circulation Modeling. Imperial College Press, London.
Hallberg, R. W., 2000: Time integration of diapycnal diffusion and Richardson number-dependent mixing in isypycnal coordinate ocean models. Mon. Weather Rev. 128, 1402–1419.Google Scholar
Ham, D. A., C. C., Pain, E., Hanert, J., Pietrzak, and J., Schroter, 2009: Special Issue: The sixth international workshop on unstructured mesh numerical modelling of coastal, shelf and ocean flows. Imperial CollegeLondon, September 19–21, 2007, Ocean Modelling 28, (1–3) The Sixth International Workshop on Unstructured Mesh Numerical Modelling of Coastal, Shelf and Ocean Flows, doi: 10.1016/j.ocemod.2009.02.005.
Hecht, M., and H., Hasumi (eds.), 2008: Ocean Modelling in the Eddying regime, Geophysical Monograph Series, vol. 177. American Geophysical Union, Washington, DC.
Jia, Y., 2000: Formation of an Azores Current due to Mediterranean overflow in a modeling study of the North Atlantic. J. Phys. Oceanogr. 30, 2342–2358.Google Scholar
Jia, Y., A. C., CowardB.A., de Cuevas, D., Webb, and S. S., Drijfhout, 2007: A model analysis of the behavior of the Mediterranean water in the North Atlantic. J. Phys. Oceanogr. 37, 764–786.Google Scholar
Johnson, G. C., T. B., Sanford, and M., O'Neil Baringer, 1994: Stress on the Mediterranean Outflow plume: Part I. Veolcity and water property measurements. J. Phys. Oceanogr. 24, 2072–2083.Google Scholar
Johnson, J., I., Ambar, N., Serra, and I., Stevens, 2002: Comparative studies of spreading of Mediterranean water through the Gulf of Cadiz. Deep-Sea Res. 49, 4179–4193.Google Scholar
Jungclaus, J. H., and G., Mellor, 2000: A three-dimensional model study of the Mediterranean outflow. J. Mar. Sys. 24, 41–66.Google Scholar
Killworth, P., and N., Edwards, 1999: A turbulent bottom boundary layer code for use a numerical ocean models, J. Phys. Oceanogr. 29, 1221–1238.Google Scholar
Large, W. G., J. C., McWilliams, and S. C., Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys. 32, 363–403.Google Scholar
Legg, S., R. W., Hallberg, and J. B., Girton, 2006: Comparison of entrainment in overflows simulated by z-coordinate, isopycnal and non-hydrostatic models. Ocean Modelling 11(1–2), doi:10.1016/j.ocemod.2004.11.006.Google Scholar
Legg, S., et al. 2009: Improving oceanic overflow representation in climate models: The Gravity Current Entrainment Climate Process Team. BAMS 90, 657–670, doi: 10.1175/2008BAMS2667.1.Google Scholar
Madec, G., 2008: NEMO ocean engine, Note du Pole de modélisation, Institut Pierre-Simon Laplace (IPSL), France, No 27, ISSN 1288–1619.
Maltrud, M. E., R. D., Smith., A. J., Semtner, and R. C., Malone, 1998: Global eddy-resolving ocean simulations driven by 1985–1995 atmospheric winds. J. Geophys. Res. 103, C13, 30825–30853.Google Scholar
Maltrud, M. E., and McClean, J. L., 2005: An eddy resolving global 1/10° ocean simulation. Ocean Modelling 8, 31–54.Google Scholar
Marchesiello, P., L., Debreu, and X., Couvelard, 2009: Spurious diapycnal mixing in terrain-following coordinate models: The problem and a solution. Ocean Modelling 26, 156–169.Google Scholar
McClean, J. L., A. J., Semtner, and V., Zlotnicki, 1997: Comparisons of mesoscale variability in the Semtner-Chervin quarter-degree model, the Los Alamos sixth-degree model, and TOPEX/POSEIDON Data. J. Geophy. Res. 102(C11), 25203–25226.Google Scholar
McWilliams, J. C., 1998: Oceanic general circulation models. In: E., Chassignet and J., Verron (eds.), Ocean Modelling and Parameterizations. NATO Science Series, Kluwer.
Mercier, H., and K. G., Speer. 1998. Transport of bottom water in the Romanche Fracture Zone and the Chain Fracture Zone. J. Phys. Oceanogr. 28, 779–790.Google Scholar
Özgökmen, T. M., E. P., Chassignet, and C. G. H., Rooth, 2001: On the connection between the Mediterranean outflow and the Azores Current. J. Phys. Oceanogr. 31, 461–480.Google Scholar
Paillet, J., B., Le Cann, X, Carton, Y., Morel, and A., Serpette, 2002: Dynamics and evolution of a northern meddy. J. Phys. Oceanogr. 32, 55–79.Google Scholar
Paiva, A. M., J. T., Hargrove, E. P., Chassignet, and R., Bleck, 1999: Turbulent behavior of a fine mesh (1/12 degree) numerical simulation of the North Atlantic. J. Mar. Sys. 21, 307–320.Google Scholar
Papadakis, M. P, E. P., Chassignet, and R. W., Hallberg, 2003: Numerical simulations of the Mediterranean outflow: Impact of the entrainment parameterization in an isopycnic coordinate ocean model. Ocean Modelling 5, 325–356.Google Scholar
Penduff, T., J., Le Sommer, B., Barnier, A. M., Treguier, J., Molines, and G., Madec, 2007: Influence of numerical schemes on current-topography interactions in 1/4° global ocean simulations. Ocean Science 3, 509–524.Google Scholar
Peters, H., W. E., Johns, A. S., Bower, and D. M., Fratantoni, 2005: Mixing and entrainment in the Red Sea outflow plume. Part 1: plume structure. J. Phys. Oeanogr. 35, 569–583.Google Scholar
Polzin, K. L., K. G., Speer, J. M., Toole, and R. W., Schmitt, 1996: Intense mixing of Antarctic Bottom Water in the equatorial Atlantic Ocean. Nature 380, 54–57.Google Scholar
Price, J. F., M., O'Neil Baringer, R. G., Lueck, G. C., Johnson, I., Ambar, G., Parilla, A., Cantos, M. A., Kennelly, and T. B., Sanford, 1993: Mediterranean outflow mixing and dynamics. Science 259, 1277–1282.Google Scholar
Reynaud, T., P., Legrand, H., Mercier, and B., Barnier (1998): A new analysis of hydrographic data in the Atlantic and its application to an inverse modelling study. International WOCE Newsletter, Number 32, 29–31.
Riemenschneider, U., and S., Legg, 2007: Regional simulations of the Faroe Bank Channel overflow in a level model. Ocean Modelling 17, 93–122.Google Scholar
Sannino, G., M., Hermann, A., Carillo, V., Rupolo, V., Rugiero, V., Artale, and P., Heimbach, 2009: An eddy-permitting model of the Mediterranean Sea with a two-way grid refinement at the Strait of Gibraltar. Ocean Modelling 30, 56–72.Google Scholar
Semtner, A. J., and R. M., Chervin, 1992: Ocean general circulation from a global eddy-resolving model. J. Geophys. Res. 97, 5493–5550.Google Scholar
Smith, R. D., M. E., Maltrud, F. O., Bryan, and M. W., Hecht, 2000: Numerical simulation of the North Atlantic Ocean at 1/10°. J. Phys. Oceanogr. 30, 1532–1561.Google Scholar
Stommel, H., and A., Arons, 1960: On the abyssal circulation of the World Ocean. Part I: Stationary planetary flow patterns on a sphere. Deep-Sea Res. 8, 140–154.Google Scholar
Stratford, K., and K, Haines, 2000: Frictional sinking of the dense water overflow in a z-coordinate OGCM of the Mediterranean Sea, Geophys. Res. Lett. 27, 3973–3976.Google Scholar
Treguier, A. M., C., Talandier, and S., Theetten, 2002: Modelling Mediterranean water in the North East Atlantic. LPO internal report LPO-02-14, 16pp.
Treguier, A. M., N. G., Hogg, M., Maltrud, K., Speer, and V., Thierry, 2003: Origin of deep zonal flows in the Brazil Basin. J. Phys. Oceanogr. 33, 580–599.Google Scholar
Treguier, A. M., S., Theetten, E. P., Chassignet, T., Penduff, R., Smith, L., Talley, J. O., Beisman, and C., Boening, 2005: Salinity distribution and circulation of the North Atlantic subpolar gyre in high resolution models. J. Phys. Oceanogr. 35, 757–774.Google Scholar
Treguier, A. M., 2006: Models of ocean: which ocean? In: E. P., Chassignet and Verron, (eds.), Ocean Weather Forecasting: An Integrated View of Oceanography. Dortrecht, Springer.
Willebrand, J., B., Barnier, C., Boening, C., Dieterich, P., Hermann, P. D., Killworth, C., Le Provost, Y., Jia, J.M., Molines, and A. L., New, 2001: Circulation characteristics in three eddy-permitting models of the North Atlantic, Prog. Oceanogr. 48, 123–161.Google Scholar
Winton, M., R., Hallberg, and A., Gnanadesikan, 1998: Simulation of density-driven frictional downslope flow in z-coordinate ocean models. J. Phys. Oceanogr. 28, 2163–2174.Google Scholar
Xu, X., Y. S., Chang, H., Peters, T. M., Ozgokmen, and E. P., Chassignet, 2006: Parameterization of gravity current entrainment for ocean circulation models using a high order 3D nonhydrostatic spectral element model. Ocean Modelling 14, 19–44.Google Scholar
Xu, X., E. P., Chassignet, J. F., Price, T. M., Ozgokmen, and H., Peters, 2007: A regional modeling study of the entraining Mediterranean outflow. J. Geophys. Res. 1112, C12005.Google Scholar
Xu, X., W. J., Schmitz Jr., H. E., Hurlburt, P. J., Hogan, and E. P., Chassignet, 2010: Transport of Nordic Seas overflow water into and within the Irminger Sea: An eddy-resolving simulation and observations, J. Geophys. Res. 115, C12048, doi:10.1029/2010JC006351.Google Scholar
3
Cited by

Send book to Kindle

To send this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Send book to Dropbox

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Dropbox.

Available formats
×

Send book to Google Drive

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Google Drive.

Available formats
×