Home
Hostname: page-component-6c8bd87754-dzvvk Total loading time: 0.24 Render date: 2022-01-20T09:17:57.767Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

# 13 - Pseudo-Boolean functions

## from Part III - Generalizations

Published online by Cambridge University Press:  01 June 2011

## Summary

Definitions and examples

In Chapter 1, we defined a pseudo-Boolean function to be a mapping from Bn = {0,1}n to ℝ. In other words, a pseudo-Boolean function is a real-valued function of a finite number of 0–1 variables. Identifying the Boolean symbols 0 and 1 (or T and F, Yes and No, etc.) with the corresponding integers, we see that pseudo-Boolean functions provide a proper generalization of Boolean functions. In fact, just as in the Boolean case, the deliberate ambiguity that results from this identification rarely causes any difficulties, but it is frequently the source of fruitful developments.

The systematic investigation of pseudo-Boolean functions, their theoretical properties, and their applications has been initiated by Hammer and Rudeanu in [460], building on previous ideas of Fortet [342, 343] and of Hammer, Rosenberg, and Rudeanu [458]. This field of research has given rise to countless subsequent publications over the last decades.

Since the element of {0,1}n are in one-to-one correspondence with the subsets of N = {1, 2, …, n}, every pseudo-Boolean function can also be viewed as a real-valued set function defined on P(N), the power set of N = {1, 2, …, n}. Set functions have been extensively studied because of their mathematical appeal and their presence in numerous fundamental models of mathematics and of applied sciences. By considering functions defined on {0,1}n rather than on P(N), however, the pseudo-Boolean approach provides an algebraic viewpoint, which sometimes carries clear advantages over the set-theoretic description.

Type
Chapter
Information
Boolean Functions
Theory, Algorithms, and Applications
, pp. 564 - 608
Publisher: Cambridge University Press
Print publication year: 2011

## Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

### Purchase

Buy print or eBook[Opens in a new window]

# Send book to Kindle

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

# Send book to Dropbox

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Dropbox.

Available formats
×

# Send book to Google Drive

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Google Drive.

Available formats
×