Skip to main content Accessibility help
×
Home
Hostname: page-component-5c569c448b-4wdfl Total loading time: 1.611 Render date: 2022-07-03T06:59:32.796Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true
Bipolar Disorders Bipolar Disorders
Basic Mechanisms and Therapeutic Implications
Buy print or eBook[Opens in a new window]

5 - Involvement of the GABA and glutamate neurotransmitter systems in bipolar disorder

Published online by Cambridge University Press:  05 May 2016

Jair C. Soares
Affiliation:
University of Texas Health Science Center, Houston
Allan H. Young
Affiliation:
King's College London
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Bipolar Disorders
Basic Mechanisms and Therapeutic Implications
, pp. 49 - 60
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

aan het Rot, M., Collins, K.A., Murrough, J.W., et al. Safety and efficacy of repeated-dose intravenous ketamine for treatment-resistant depression. Biol Psychiatry. 2010;67(2):139–45.CrossRefGoogle ScholarPubMed
Ahmad, S., Fowler, L.J., Whitton, P.S. Effects of combined lamotrigine and valproate on basal and stimulated extracellular amino acids and monoamines in the hippocampus of freely moving rats. Naunyn Schmiedebergs Arch Pharmacol. 2005;371(1):18.CrossRefGoogle ScholarPubMed
Ahn, K., Gil, R., Seibyl, J., et al. Probing GABA receptor function in schizophrenia with iomazenil. Neuropsychopharmacol. 2011;36(3):677–83.CrossRefGoogle ScholarPubMed
Antonelli, T., Ferioli, V., Lo Gallo, G., et al. Differential effects of acute and short-term lithium administration on dialysate glutamate and GABA levels in the frontal cortex of the conscious rat. Synapse. 2000;38(3):355–62.3.0.CO;2-E>CrossRefGoogle ScholarPubMed
Arrue, A., Davila, R., Zumarraga, M.,et al. GABA and homovanillic acid in the plasma of schizophrenic and bipolar I patients. Neurochem Res. 2010;35(2):247–53.CrossRefGoogle ScholarPubMed
Benarroch, E.E. GABAB receptors: structure, functions, and clinical implications. Neurology. 2012;78(8):578–84.CrossRefGoogle ScholarPubMed
Benedetti, F., Calabrese, G., Bernasconi, A., et al. Spectroscopic correlates of antidepressant response to sleep deprivation and light therapy: a 3.0 Tesla study of bipolar depression. Psychiatry Res. 2009;173(3):238–42.CrossRefGoogle ScholarPubMed
Benes, F.M., Berretta, S. GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacol. 2001;25(1):127.CrossRefGoogle ScholarPubMed
Benes, F.M., Todtenkopf, M.S., Kostoulakos, P. GluR5,6,7 subunit immunoreactivity on apical pyramidal cell dendrites in hippocampus of schizophrenics and manic depressives. Hippocampus. 2001;11(5):482–91.CrossRefGoogle ScholarPubMed
Beneyto, M., Meador-Woodruff, J.H. Lamina-specific abnormalities of NMDA receptor-associated postsynaptic protein transcripts in the prefrontal cortex in schizophrenia and bipolar disorder, Neuropsychopharmacol. 2008;33(9):2175–86.CrossRefGoogle ScholarPubMed
Beneyto, M., Kristiansen, L.V., Oni-Orisan, A., et al. Abnormal glutamate receptor expression in the medial temporal lobe in schizophrenia and mood disorders. Neuropsychopharmacol. 2007;32(9):1888–902.CrossRefGoogle ScholarPubMed
Berrettini, W.H., Nurnberger, J.I., Jr., Hare, T., et al. Plasma and CSF GABA in affective illness. Br J Psychiatry. 1982;141:483–7.CrossRefGoogle ScholarPubMed
Berrettini, W.H., Nurnberger, J.I., Jr., Hare, T.A., et al. Reduced plasma and CSF gamma-aminobutyric acid in affective illness: effect of lithium carbonate. Biol Psychiatry. 1983;18(2):185–94.Google ScholarPubMed
Berrettini, W.H., Nurnberger, J.I., Jr., Hare, T.A., et al. CSF GABA in euthymic manic-depressive patients and controls. Biol Psychiatry. 1986;21(89):844–6.CrossRefGoogle ScholarPubMed
Bhagwagar, Z., Wylezinska, M., Jezzard, P., et al. Reduction in occipital cortex gamma-aminobutyric acid concentrations in medication-free recovered unipolar depressed and bipolar subjects. Biol Psychiatry. 2007;61(6):806–12.CrossRefGoogle ScholarPubMed
Bielau, H., Steiner, J., Mawrin, C., et al. Dysregulation of GABAergic neurotransmission in mood disorders: a postmortem study. Ann N Y Acad Sci. 2007;1096:157–69.CrossRefGoogle ScholarPubMed
Biggs, C.S., Pearce, B.R., Fowler, L.J., et al. The effect of sodium valproate on extracellular GABA and other amino acids in the rat ventral hippocampus: An in vivo microdialysis study. Brain Res. 1992;594(1):138–42.CrossRefGoogle Scholar
Brady, R.O., Jr., McCarthy, J.M., Prescot, A.P,, et al. Brain gamma-aminobutyric acid (GABA) abnormalities in bipolar disorder. Bipolar Disord. 2013;15(4):434–9.CrossRefGoogle ScholarPubMed
Brennan, B.P., Hudson, J.I., Jensen, J.E., et al. Rapid enhancement of glutamatergic neurotransmission in bipolar depression following treatment with riluzole. Neuropsychopharmacol. 2010;35(3):834–46.CrossRefGoogle Scholar
Breuer, R., Hamshere, M.L., Strohmaier, J., et al. Independent evidence for the selective influence of GABA(A) receptors on one component of the bipolar disorder phenotype. Mol Psychiatry. 2011;16(6):587–9.CrossRefGoogle ScholarPubMed
Burton, P.R., Clayton, D.G., Cardon, L.R., et al. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447(7145):661–78.CrossRefGoogle Scholar
Buttner, N., Bhattacharyya, S., Walsh, J., et al. DNA fragmentation is increased in non-GABAergic neurons in bipolar disorder but not in schizophrenia. Schizophrenia Res. 2007;93(13):3341.Google Scholar
Cherlyn, S.Y., Woon, P.S., Liu, J.J., et al. Genetic association studies of glutamate, GABA and related genes in schizophrenia and bipolar disorder: a decade of advance. Neurosci Biobehav Rev. 2010;34(6):958–77.CrossRefGoogle Scholar
Chin, T.Y., Chueh, S.H., Tao, P.L. S-Nitrosoglutathione and glutathione act as NMDA receptor agonists in cultured hippocampal neurons. Acta Pharmacol Sinica. 2006;27(7):853–60.CrossRefGoogle ScholarPubMed
Chitty, K.M., Lagopoulos, J., Lee, R.S., et al. A systematic review and meta-analysis of proton magnetic resonance spectroscopy and mismatch negativity in bipolar disorder. Eur Neuropsychopharmacol. 2013;23(11):1348–63.CrossRefGoogle ScholarPubMed
Chuang, D.M. The antiapoptotic actions of mood stabilizers: Molecular mechanisms and therapeutic potentials. Ann N Y Acad Sci. 2005;1053:195204.CrossRefGoogle ScholarPubMed
Cotter, D., Landau, S., Beasley, C., et al. The density and spatial distribution of GABAergic neurons, labelled using calcium binding proteins, in the anterior cingulate cortex in major depressive disorder, bipolar disorder, and schizophrenia. Biol Psychiatry. 2002;51(5):377–86.CrossRefGoogle Scholar
Craddock, N, Jones, L, Jones, I.R., et al. Strong genetic evidence for a selective influence of GABAA receptors on a component of the bipolar disorder phenotype. Mol Psychiatry. 2010;15(2):146–53.CrossRefGoogle ScholarPubMed
Cui, J., Shao, L., Young, L.T., et al. Role of glutathione in neuroprotective effects of mood stabilizing drugs lithium and valproate. Neuroscience. 2007;144(4): 1447–53.CrossRefGoogle ScholarPubMed
Dalvie, S., Horn, N., Nossek, C., et al. Psychosis and relapse in bipolar disorder are related to GRM3, DAOA, and GRIN2B genotype. Afr J Psychiatry. 2010;13(4):297301.Google ScholarPubMed
Daniele, S., Da Pozzo, E., Abelli, M., et al. Platelet uptake of GABA and glutamate in patients with bipolar disorder. Bipolar Disord. 2012;14(3):301–8.CrossRefGoogle ScholarPubMed
Dean, B., Pavey, G., McLeod, M., et al. A change in the density of [(3)H]flumazenil, but not [(3)H]muscimol binding, in Brodmann’s area 9 from subjects with bipolar disorder. J Affect Disord. 2001;66(2–3):147–58.CrossRefGoogle Scholar
Dean, B., Scarr, E., McLeod, M. Changes in hippocampal GABAA receptor subunit composition in bipolar 1 disorder. Brain Res Mol Brain Res. 2005;138(2):145–55.CrossRefGoogle ScholarPubMed
Dean, O.M., van den Buuse, M., Berk, M., et al. N-acetyl cysteine restores brain glutathione loss in combined 2-cyclohexene-1-one and d-amphetamine-treated rats: relevance to schizophrenia and bipolar disorder. Neurosci Lett. 2011;499(3):149–53.CrossRefGoogle ScholarPubMed
Dean, O.M., Bush, A.I., Copolov, D.L., et al. Effects of N-acetyl cysteine on cognitive function in bipolar disorder. Psychiatry Clin Neurosci. 2012;66(6):514–17.CrossRefGoogle ScholarPubMed
Debono, M.W., Le Guern, J., Canton, T., et al. Inhibition by riluzole of electrophysiological responses mediated by rat kainate and NMDA receptors expressed in Xenopus oocytes. Eur J Pharmacol. 1993;235(2–3):283–89.CrossRefGoogle ScholarPubMed
Dickerson, F., Stallings, C., Vaughan, C., et al. Antibodies to the glutamate receptor in mania. Bipolar Disord. 2012;14(5):547–53.CrossRefGoogle ScholarPubMed
Dingledine, R., Borges, K., Bowie, D., et al. The glutamate receptor ion channels. Pharmacol Rev. 1999;51(1):761.Google ScholarPubMed
Du, J., Quiroz, J., Yuan, P., et al. Bipolar disorder: Involvement of signaling cascades and AMPA receptor trafficking at synapses. Neuron Glia Biol. 2004;1(3):231–43.CrossRefGoogle ScholarPubMed
Eastwood, S.L., Harrison, P.J. Markers of glutamate synaptic transmission and plasticity are increased in the anterior cingulate cortex in bipolar disorder. Biol Psychiatry. 2010;67(11):1010–16.CrossRefGoogle ScholarPubMed
Egerton, A., Mehta, M.A., Montgomery, A.J., et al. The dopaminergic basis of human behaviors: A review of molecular imaging studies. Neurosci Biobehav Rev. 2009;33(7):1109–32.CrossRefGoogle ScholarPubMed
Fatemi, S.H., Stary, J.M., Earle, J.A., et al. GABAergic dysfunction in schizophrenia and mood disorders as reflected by decreased levels of glutamic acid decarboxylase 65 and 67 kDa and Reelin proteins in cerebellum. Schizophr Res. 2005;72(23):109–22.Google ScholarPubMed
Frankle, W.G., Cho, R.Y., Narendran, R., et al. Tiagabine increases [11C]flumazenil binding in cortical brain regions in healthy control subjects. Neuropsychopharmacol. 2009;34(3):624–33.CrossRefGoogle ScholarPubMed
Frankle, W.G., Cho, R.Y., Mason, N.S., et al. [C]flumazenil binding is increased in a dose-dependent manner with tiagabine-induced elevations in GABA levels. PLoS.One. 2012;7(2):e32443.CrossRefGoogle Scholar
Friedman, S.D., Dager, S.R., Parow, A., et al. Lithium and valproic acid treatment effects on brain chemistry in bipolar disorder. Biol Psychiatry. 2004;56(5): 340–8.CrossRefGoogle ScholarPubMed
Gergerlioglu, H.S., Savas, H.A., Bulbul, F., et al. Changes in nitric oxide level and superoxide dismutase activity during antimanic treatment. Prog Neuro- Psychopharmacol Biol Psychiatry. 2007;31(3): 697702.CrossRefGoogle ScholarPubMed
Gerner, R.H., Hare, T.A. CSF GABA in normal subjects and patients with depression, schizophrenia, mania, and anorexia nervosa. Am J Psychiatry. 1981;138(8): 1098–101.Google ScholarPubMed
Gigante, A.D., Bond, D.J., Lafer, B., et al. Brain glutamate levels measured by magnetic resonance spectroscopy in patients with bipolar disorder: A meta-analysis. Bipolar Disord. 2012;14(5):478–87.CrossRefGoogle ScholarPubMed
Gigante, A.D., Lafer, B., Yatham, L.N. (1)H-MRS of hippocampus in patients after first manic episode. World J Biol Psychiatry. 2014;15(2):145–54.CrossRefGoogle ScholarPubMed
Gold, B.I., Bowers, M.B., Jr., Roth, R.H., et al. GABA levels in CSF of patients with psychiatric disorders. Am J Psychiatry. 1980;137(3):362–4.Google ScholarPubMed
Green, E.K., Grozeva, D., Moskvina, V., et al. Variation at the GABAA receptor gene, Rho 1 (GABRR1) associated with susceptibility to bipolar schizoaffective disorder. Am J Med Genet B Neuropsychiatr Genet. 2010;153B(7):1347–9.CrossRefGoogle ScholarPubMed
Hasler, G., Nugent, A.C., Carlson, P.J., et al. Altered cerebral gamma-aminobutyric acid type A-benzodiazepine receptor binding in panic disorder determined by [11C]flumazenil positron emission tomography. Arch Gen Psychiatry. 2008;65(10):1166–75.CrossRefGoogle ScholarPubMed
Hoekstra, R., Fekkes, D., Loonen, A.J., et al. Bipolar mania and plasma amino acids: Increased levels of glycine. Eur Neuropsychopharmacol. 2006;16(1):71–7.CrossRefGoogle ScholarPubMed
Hoftman, G.D., Volk, D.W., Bazmi, H.H., et al. Altered cortical expression of GABA-related genes in schizophrenia: Illness progression vs developmental disturbance. Schizophr Bull. 2013;Google ScholarPubMed
Howes, O.D., Egerton, A., Allan, V., et al. Mechanisms underlying psychosis and antipsychotic treatment response in schizophrenia: Insights from PET and SPECT imaging. Curr Pharm Des. 2009;15(22): 2550–9.CrossRefGoogle ScholarPubMed
Kandaswamy, R., McQuillin, A., Curtis, D., et al. Allelic association, DNA resequencing and copy number variation at the metabotropic glutamate receptor GRM7 gene locus in bipolar disorder. Am J Med Genet. Part B, Neuropsychiatric Genet.2014;165B(4):365–72.Google ScholarPubMed
Kaufman, R.E., Ostacher, M.J., Marks, E.H., et al. Brain GABA levels in patients with bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33(3):427–34.CrossRefGoogle ScholarPubMed
Kerner, B., Jasinska, A.J., DeYoung, J., et al. Polymorphisms in the GRIA1 gene region in psychotic bipolar disorder. Am J Med Genet. Part B, Neuropsychiatric Genet. 2009;150B(1):2432.CrossRefGoogle ScholarPubMed
Kew, J.N., Kemp, J.A. Ionotropic and metabotropic glutamate receptor structure and pharmacology. Psychopharmacol. 2005;179(1):429.CrossRefGoogle ScholarPubMed
Knight, H.M., Walker, R., James, R., et al. GRIK4/KA1 protein expression in human brain and correlation with bipolar disorder risk variant status. Am j Med Genet. Part B, Neuropsychiatric Genet. 2012;159B(1):21–9.Google ScholarPubMed
Koepp, M.J., Richardson, M.P., Brooks, D.J., et al. Central benzodiazepine/gamma-aminobutyric acid A receptors in idiopathic generalized epilepsy: an [11C]flumazenil positron emission tomography study. Epilepsia. 1997;38(10):1089–97.CrossRefGoogle ScholarPubMed
Kristiansen, L.V., Meador-Woodruff, J.H. Abnormal striatal expression of transcripts encoding NMDA interacting PSD proteins in schizophrenia, bipolar disorder and major depression. Schizophrenia Res. 2005;78(1):8793.CrossRefGoogle ScholarPubMed
Laeng, P., Pitts, R.L., Lemire, A.L., et al. The mood stabilizer valproic acid stimulates GABA neurogenesis from rat forebrain stem cells. J Neurochem. 2004;91(1):238–51.CrossRefGoogle ScholarPubMed
Larsson, O.M., Gram, L., Schousboe, I., et al. Differential effect of gamma-vinyl GABA and valproate on GABA- transaminase from cultured neurones and astrocytes. Neuropharmacol. 1986;25(6):617–25.CrossRefGoogle ScholarPubMed
Law, A.J., Deakin, J.F. Asymmetrical reductions of hippocampal NMDAR1 glutamate receptor mRNA in the psychoses. Neuroreport. 2001;12(13):2971–4.CrossRefGoogle ScholarPubMed
Leng, Y., Liang, M.H., Ren, M., et al. Synergistic neuroprotective effects of lithium and valproic acid or other histone deacetylase inhibitors in neurons: roles of glycogen synthase kinase-3 inhibition. J Neurosci. 2008;28(10):2576–88.CrossRefGoogle ScholarPubMed
Leng, Y., Fessler, E.B., Chuang, D.M. Neuroprotective effects of the mood stabilizer lamotrigine against glutamate excitotoxicity: Roles of chromatin remodelling and Bcl-2 induction. Intl J Neuropsychopharmacol. 2013;16(3):607–20.CrossRefGoogle ScholarPubMed
Li, B., Zhang, S., Li, M., et al. Down-regulation of GluK2 kainate receptor expression by chronic treatment with mood-stabilizing anti-convulsants or lithium in cultured astrocytes and brain, but not in neurons, Neuropharmacol. 2009;57(4):375–85.CrossRefGoogle ScholarPubMed
Lingford-Hughes, A., Hume, S. P., Feeney, A., et al. Imaging the GABA-benzodiazepine receptor subtype containing the alpha5-subunit in vivo with [11C]Ro15 4513 positron emission tomography. J Cereb Blood Flow Metab. 2002;22(7):878–89.CrossRefGoogle Scholar
Lingford-Hughes, A., Reid, A.G., Myers, J., et al. A [11C]Ro15 4513 PET study suggests that alcohol dependence in man is associated with reduced alpha5 benzodiazepine receptors in limbic regions. J Psychopharmacol. 2012;26(2):273–81.CrossRefGoogle Scholar
Loscher, W. In vivo administration of valproate reduces the nerve terminal (synaptosomal) activity of GABA aminotransferase in discrete brain areas of rats. Neurosci Lett. 1993;160(2):177–80.CrossRefGoogle ScholarPubMed
Loscher, W., Horstermann, D. Differential effects of vigabatrin, gamma-acetylenic GABA, aminooxyacetic acid, and valproate on levels of various amino acids in rat brain regions and plasma. Naunyn Schmiedebergs Arch Pharmacol. 1994;349(3):270–8.CrossRefGoogle ScholarPubMed
Loscher, W., Schmidt, D. Increase of human plasma GABA by sodium valproate. Epilepsia. 1980;21(6):611–15.CrossRefGoogle ScholarPubMed
Loscher, W., Vetter, M. In vivo effects of aminooxyacetic acid and valproic acid on nerve terminal (synaptosomal) GABA levels in discrete brain areas of the rat. Correlation to pharmacological activities. Biochem Pharmacol. 1985; 34(10):1747–56.CrossRefGoogle ScholarPubMed
Magalhaes, P.V., Dean, O.M., Bush, A.I., et al. N-acetyl cysteine add-on treatment for bipolar II disorder: A subgroup analysis of a randomized placebo-controlled trial. J Affect Disord. 2011; 129(1–3): 317–20.CrossRefGoogle ScholarPubMed
Magalhaes, P.V., Dean, O.M., Bush, A.I., et al. A preliminary investigation on the efficacy of N-acetyl cysteine for mania or hypomania. Aust N Z J Psychiatry. 2013;47(6):564–8.Google ScholarPubMed
Maggi, A., Enna, S.J.Regional alterations in rat brain neurotransmitter systems following chronic lithium treatment. J Neurochem. 1980;34(4):888–92.CrossRefGoogle ScholarPubMed
Makkar, S.R., Zhang, S.Q., Cranney, J. Behavioral and neural analysis of GABA in the acquisition, consolidation, reconsolidation, and extinction of fear memory. Neuropsychopharmacol. 2010;35(8):1625–52.CrossRefGoogle ScholarPubMed
Malizia, A.L., Cunningham, V.J., Bell, C.J., et al. Decreased brain GABA(A)-benzodiazepine receptor binding in panic disorder: preliminary results from a quantitative PET study. Arch Gen Psychiatry. 1998;55(8):715–20.CrossRefGoogle Scholar
Marti, S.B., Cichon, S., Propping, P., et al. Metabotropic glutamate receptor 3 (GRM3) gene variation is not associated with schizophrenia or bipolar affective disorder in the German population. Am J Med Genet. 2002;114(1):4650.CrossRefGoogle ScholarPubMed
McCullumsmith, R.E., Meador-Woodruff, J.H. Striatal excitatory amino acid transporter transcript expression in schizophrenia, bipolar disorder, and major depressive disorder. Neuropsychopharmacol. 2002;26(3):368–75.CrossRefGoogle ScholarPubMed
McCullumsmith, R.E., Kristiansen, L.V., Beneyto, M., et al. Decreased NR1, NR2A, and SAP102 transcript expression in the hippocampus in bipolar disorder. Brain Res. 2007;1127(1):108–18.CrossRefGoogle ScholarPubMed
Meador-Woodruff, J.H., Hogg, A.J., Jr., Smith, R.E. Striatal ionotropic glutamate receptor expression in schizophrenia, bipolar disorder, and major depressive disorder. Brain Res Bull. 2001;55(5):631–40.CrossRefGoogle ScholarPubMed
Michels, L., Martin, E., Klaver, P., et al. Frontal GABA levels change during working memory. PLoS One. 2012;7(4):e31933.CrossRefGoogle ScholarPubMed
Muhleisen, T.W., Leber, M., Schulze, T.G., et al. Genome-wide association study reveals two new risk loci for bipolar disorder. Nat Commun. 2014;5:3339.CrossRefGoogle ScholarPubMed
Niciu, M.J., Henter, I.D., Luckenbaugh, D.A., et al. Glutamate receptor antagonists as fast-acting therapeutic alternatives for the treatment of depression: ketamine and other compounds. Annu Rev Pharmacol Toxicol. 2014;54: 119–39.CrossRefGoogle Scholar
Nurnberger, J.I., Jr., Koller, D.L., Jung, J., et al. Identification of pathways for bipolar disorder: a meta-analysis. JAMA Psychiatry. 2014;71(6):657–64.CrossRefGoogle ScholarPubMed
Oliveira, R.M., Guimaraes, F.S., Deakin, J.F. Expression of neuronal nitric oxide synthase in the hippocampal formation in affective disorders, Brazil J Med BiolRes. et al.2008;41(4):333–41.Google ScholarPubMed
Olsen, R.W., Sieghart, W. GABA A receptors: Subtypes provide diversity of function and pharmacology. Neuropharmacol. 2009;56(1):141–8.CrossRefGoogle ScholarPubMed
Otero Losada, M.E., Rubio, M.C. Acute and chronic effects of lithium chloride on GABA-ergic function in the rat corpus striatum and frontal cerebral cortex. Naunyn Schmiedebergs Arch Pharmacol. 1986;332(2):169–72.CrossRefGoogle ScholarPubMed
Perlis, R.H., Smoller, J.W., Ferreira, M.A., et al. A genomewide association study of response to lithium for prevention of recurrence in bipolar disorder. Am J Psychiatry. 2009;166(6):718–25.CrossRefGoogle ScholarPubMed
Petty, F., Kramer, G.L., Fulton, M., et al. Low plasma GABA is a trait-like marker for bipolar illness. Neuropsychopharmacol. 1993;9(2):125–32.CrossRefGoogle ScholarPubMed
Petty, F., Rush, A. J., Davis, J. M., et al. Plasma GABA predicts acute response to divalproex in mania. Biol Psychiatry. 1996;39(4):278–84.CrossRefGoogle ScholarPubMed
Phillips, N.I., Fowler, L.J. The effects of sodium valproate on gamma-aminobutyrate metabolism and behaviour in naive and ethanolamine-O-sulphate pretreated rats and mice. Biochem Pharmacol. 1982;31(13):2257–61.CrossRefGoogle ScholarPubMed
Pickard, B.S., Knight, H.M., Hamilton, R.S., et al. A common variant in the 3’UTR of the GRIK4 glutamate receptor gene affects transcript abundance and protects against bipolar disorder. Proc Natl Acad Sci U S A. 2008;105(39):14940–5.CrossRefGoogle ScholarPubMed
Pittenger, C., Coric, V., Banasr, M., et al. Riluzole in the treatment of mood and anxiety disorders. CNS Drugs. 2008;22(9):761–86.CrossRefGoogle ScholarPubMed
Post, R.M., Ballenger, J.C., Hare, T.A., et al. Lack of effect of carbamazepine on gamma-aminobutyric acid in cerebrospinal fluid. Neurology. 1980;30(9):1008–11.CrossRefGoogle ScholarPubMed
Prevett, M.C., Lammertsma, A.A., Brooks, D.J., et al. Benzodiazepine-GABAA receptors in idiopathic generalized epilepsy measured with [11C]flumazenil and positron emission tomography. Epilepsia. 1995;36(2):113–21.CrossRefGoogle ScholarPubMed
Raffa, M., Barhoumi, S., Atig, F., et al. Reduced antioxidant defense systems in schizophrenia and bipolar I disorder. Progress Neuro-Psychopharmacol Biol Psychiatry. 2012;39(2):371–5.CrossRefGoogle ScholarPubMed
Rao, J.S., Kellom, M., Reese, E.A., et al. Dysregulated glutamate and dopamine transporters in postmortem frontal cortex from bipolar and schizophrenic patients. J Affect Disord. 2012;136(1–2):6371.CrossRefGoogle ScholarPubMed
Rodriguez-Moreno, A., Sihra, T.S. Kainate receptors with a metabotropic modus operandi. Trends Neurosci. 2007;30(12):630–7.CrossRefGoogle ScholarPubMed
Rosa, A.R., Singh, N., Whitaker, E., et al. Altered plasma glutathione levels in bipolar disorder indicates higher oxidative stress; A possible risk factor for illness onset despite normal brain-derived neurotrophic factor (BDNF) levels. Psychol Med. 2014;110.Google ScholarPubMed
Serretti, A., Lilli, R., Lorenzi, C., et al. Dopamine receptor D2 and D4 genes, GABA(A) alpha-1 subunit genes and response to lithium prophylaxis in mood disorders. Psychiatry Res. 1999;87(1):719.CrossRefGoogle ScholarPubMed
Shiah, I.S., Yatham, L.N., Lam, R.W., et al. Divalproex sodium attenuates growth hormone response to baclofen in healthy human males. Neuropsychopharmacol. 1998; 18(5):370–6.CrossRefGoogle ScholarPubMed
Shiah, I.S., Yatham, L.N., Baker, G.B. Divalproex sodium increases plasma GABA levels in healthy volunteers. Intl Clin Psychopharmacol. 2000;15(4):221–5.CrossRefGoogle ScholarPubMed
Shibuya-Tayoshi, S., Tayoshi, S., Sumitani, S., et al. Lithium effects on brain glutamatergic and GABAergic systems of healthy volunteers as measured by proton magnetic resonance spectroscopy. Prog Neuro-Psychopharmacol Biol Psychiatry. 2008;32(1):249–56.CrossRefGoogle ScholarPubMed
Sieghart, W., Ramerstorfer, J., Sarto-Jackson, I., et al. A novel GABA(A) receptor pharmacology: drugs interacting with the alpha(+) beta(–) interface. Br J Pharmacol. 2012;166(2):476–85.CrossRefGoogle ScholarPubMed
Smolnik, R., Pietrowsky, R., Fehm, H.L., et al. Enhanced selective attention after low-dose administration of the benzodiazepine antagonist flumazenil. J Clin Psychopharmacol. 1998;18(3):241–7.CrossRefGoogle ScholarPubMed
Sourial-Bassillious, N., Rydelius, P.A., Aperia, A., et al. Glutamate-mediated calcium signaling: a potential target for lithium action. Neuroscience. 2009;161(4):1126–34.CrossRefGoogle ScholarPubMed
Stokes, P.R., Myers, J.F., Kalk, N.J., et al. Acute increases in synaptic GABA detectable in the living human brain: A [(11)C]Ro15-4513 PET study. Neuroimage., 2014;99:158–65.CrossRefGoogle Scholar
Tan, K.R., Rudolph, U., Luscher, C. Hooked on benzodiazepines: GABAA receptor subtypes and addiction. Trends Neurosci. 2011;34(4):, 188–97.CrossRefGoogle ScholarPubMed
Thompson, M., Weickert, C.S., Wyatt, E., et al. Decreased glutamic acid decarboxylase(67) mRNA expression in multiple brain areas of patients with schizophrenia and mood disorders. J Psychiatr Res. 2009;43(11):970–7.CrossRefGoogle ScholarPubMed
Tiihonen, J., Kuikka, J., Rasanen, P., et al. Cerebral benzodiazepine receptor binding and distribution in generalized anxiety disorder: a fractal analysis. Mol Psychiatry. 1997;2(6):463–71.CrossRefGoogle ScholarPubMed
Torrey, E.F., Barci, B.M., Webster, M.J., et al. Neurochemical markers for schizophrenia, bipolar disorder, and major depression in postmortem brains. Biol Psychiatry. 2005;57(3):252–60.CrossRefGoogle ScholarPubMed
Tsunoka, T., Kishi, T., Ikeda, M., et al. Association analysis of group II metabotropic glutamate receptor genes (GRM2 and GRM3) with mood disorders and fluvoxamine response in a Japanese population. Prog Neuro-Psychopharmacol Biol Psychiatry. 2009;33(5):875–9.CrossRefGoogle Scholar
Tyacke, R.J., Lingford-Hughes, A., Reed, L.J., et al. GABAB receptors in addiction and its treatment. Adv Pharmacol. 2010;58:373–96.CrossRefGoogle ScholarPubMed
Uezato, A., Meador-Woodruff, J.H., McCullumsmith, R.E. Vesicular glutamate transporter mRNA expression in the medial temporal lobe in major depressive disorder, bipolar disorder, and schizophrenia. Bipolar Disord. 2009;11(7):711–25.CrossRefGoogle Scholar
Wang, P.W., Sailasuta, N., Chandler, R.A., et al. Magnetic resonance spectroscopic measurement of cerebral gamma-aminobutyric acid concentrations in patients with bipolar disorders. Acta Neuropsychiatr, 2006;18(2):120–6.CrossRefGoogle ScholarPubMed
Whalley, H.C., Pickard, B.S., McIntosh, A.M., et al. A GRIK4 variant conferring protection against bipolar disorder modulates hippocampal function. Mol Psychiatry. 2009;14(5):467–8.CrossRefGoogle ScholarPubMed
Whitlow, R.D., Sacher, A., Loo, D.D., et al. The anticonvulsant valproate increases the turnover rate of gamma-aminobutyric acid transporters. J Biol Chem. 2003;278(20):17716–26.CrossRefGoogle ScholarPubMed
Wilson, G.M., Flibotte, S., Chopra, V., et al. DNA copy-number analysis in bipolar disorder and schizophrenia reveals aberrations in genes involved in glutamate signaling. Hum Mol Genet. 2006;15(5):743–9.CrossRefGoogle ScholarPubMed
Woo, T.U., Walsh, J.P., Benes, F.M. Density of glutamic acid decarboxylase 67 messenger RNA-containing neurons that express the N-methyl-D-aspartate receptor subunit NR2A in the anterior cingulate cortex in schizophrenia and bipolar disorder. Arch Gen Psychiatry. 2004;61(7):649–57.CrossRefGoogle ScholarPubMed
Woo, T.U., Shrestha, K., Amstrong, C., et al. Differential alterations of kainate receptor subunits in inhibitory interneurons in the anterior cingulate cortex in schizophrenia and bipolar disorder. Schizophr Res. 2007;96(1–3):4661.CrossRefGoogle ScholarPubMed
Xu, J., Dydak, U., Harezlak, J., et al. Neurochemical abnormalities in unmedicated bipolar depression and mania: a 2D 1H MRS investigation. Psychiatry Res. 2013;213(3):235–41.CrossRefGoogle ScholarPubMed
Yoon, S.J., Lyoo, I.K., Haws, C., et al. Decreased glutamate/glutamine levels may mediate cytidine’s efficacy in treating bipolar depression: a longitudinal proton magnetic resonance spectroscopy study. Neuropsychopharmacol. 2009;34(7):1810–18.CrossRefGoogle ScholarPubMed
Young, A.B., Chu, D. Distribution of GABAA and GABAB receptors in the mammalian brain: Potential targets for drug development. Drug Dev Res. 1990;21: 6.CrossRefGoogle Scholar
Zarate, C.A., Jr., Brutsche, N.E., Ibrahim, L., et al. Replication of ketamine’s antidepressant efficacy in bipolar depression: A randomized controlled add-on trial. Biol Psychiatry. 2012;71(11):939–46.CrossRefGoogle ScholarPubMed
Zhou, Y., Zomot, E., Kanner, B.I. Identification of a lithium interaction site in the gamma-aminobutyric acid (GABA) transporter GAT-1. J Biol Chem. 2006;281(31):22092–9.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×