Skip to main content Accessibility help
×
Home
Hostname: page-component-5c569c448b-s84wp Total loading time: 1.573 Render date: 2022-07-05T02:02:57.161Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true
Bipolar Disorders Bipolar Disorders
Basic Mechanisms and Therapeutic Implications
Buy print or eBook[Opens in a new window]

3 - An assessment of the catecholamine hypothesis of bipolar disorder

Published online by Cambridge University Press:  05 May 2016

Jair C. Soares
Affiliation:
University of Texas Health Science Center, Houston
Allan H. Young
Affiliation:
King's College London
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Bipolar Disorders
Basic Mechanisms and Therapeutic Implications
, pp. 21 - 42
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abel, J.J., Crawford, A.C. On the blood-pressure raising constituent of the suprarenal capsule. Trans Assoc Am Phys. 1897;12: 461.Google Scholar
Ahmad, S., Fowler, L.J., Whitton, P.S.. Effect of acute and chronic lamotrigine on basal and stimulated extracellular 5-hydroxytryptamine and dopamine in the hippocampus of the freely moving rat. Br J Pharmacol. 2004;142(1):136–42.CrossRefGoogle ScholarPubMed
Ahmad, S., Fowler, L.J., Whitton, P.S. Effects of combined lamotrigine and valproate on basal and stimulated extracellular amino acids and monoamines in the hippocampus of freely moving rats. Naunyn-Schmiedebergs Arch Pharmacol. 2005;371(1):18.CrossRefGoogle ScholarPubMed
Amsterdam, J.D., Newberg, A.B. A preliminary study of dopamine transporter binding in bipolar and unipolar depressed patients and healthy controls. Neuropsychobiol. 2007;55(34):167–70.CrossRefGoogle ScholarPubMed
Anand, A., Darnell, A., Miller, H.L., et al. Effect of catecholamine depletion on lithium-induced long-term remission of bipolar disorder. Biol Psychiatry. 1999;45(8):972–8.CrossRefGoogle ScholarPubMed
Anand, A., Verhoeff, P., Seneca, N., et al. Brain SPECT imaging of amphetamine-induced dopamine release in euthymic bipolar disorder patients. Am J Psychiatry. 2000;157(7):1108–14.CrossRefGoogle ScholarPubMed
Anand, A., Barkay, G., Dzemidzic, M., et al. Striatal dopamine transporter availability in unmedicated bipolar disorder. Bipolar Disord. 2011;13(4):406–13.CrossRefGoogle ScholarPubMed
Azorin, J.M., Pupeschi, G., Valli, M., et al. Plasma 3-methoxy-4-hydroxyphenylglycol in manic patients: relationships with clinical variables. Acta Psychiatr Scand. 1990;81(1):1418.CrossRefGoogle ScholarPubMed
Barger, G., Dale, H.H. Chemical structure and sympathomimetic action of amines. J Physiol. 1910;41(12): 1959.CrossRefGoogle ScholarPubMed
Battaglia, G., Brooks, B., Kulsakdinun, C., et al. harmacologic profile of MDMA (3,4- methylenedioxymethamphetamine) at various brain recognition sites. Eur J Pharmacol. 1988;159163.CrossRefGoogle ScholarPubMed
Beaulieu, J.M., Sotnikova, T.D., Yao, W.D., et al. Lithium antagonizes dopamine-dependent behaviors mediated by an AKT/glycogen synthase kinase 3 signaling cascade. Proc Natl Acad Sci USA. 2004;101(14):5099–104.CrossRefGoogle ScholarPubMed
Benkelfat, C., Ellenbogen, M.A., Dean, P., et al. Mood- lowering effect of tryptophan depletion: enhanced susceptibility in young men at genetic risk for major affective disorders. Arch Gen Psychiatry. 1994;51(9):687–97.CrossRefGoogle ScholarPubMed
Berggren, U. The effect of acute lithium administration on brain monoamine synthesis and the precursor amino acids tyrosine and tryptophan in brain and plasma in rats. J Neural Transm. 1985;61(34):175–81.CrossRefGoogle ScholarPubMed
Berggren, U., Ahlenius, S., Engel, J. Effects of acute lithium administration on conditioned avoidance behavior and monoamine synthesis in rats. J Neural Transm. 1980;47(1):110.CrossRefGoogle ScholarPubMed
Berk, M., Dodd, S., Kauer-Sant’Anna, M., et al. Dopamine dysregulation syndrome: Implications for a dopamine hypothesis of bipolar disorder. Acta Psychiatr Scand. 2007;116(434):41–9.CrossRefGoogle Scholar
Bertler, Å., Rosengren, E. Occurrence and distribution of dopamine in brain and other tissues. Experientia. 1959;15(1):1011.CrossRefGoogle ScholarPubMed
Birdsill, A.C., Walker, D.G., Lue, L., et al. Postmortem interval effect on RNA and gene expression in human brain tissue.Cell Tissue Banking. 2011;12(4):311–18.CrossRefGoogle ScholarPubMed
Brauer, L.H., De Wit, H. High dose pimozide does not block amphetamine-induced euphoria in normal volunteers. Pharmacol Biochem Behav. 1996;56(2):265–72.Google Scholar
Brodie, H.K., Murphy, D.L., Goodwin, F.K., et al. Catecholamines and mania: The effect of alpha-methyl-para-tyrosine on manic behavior and catecholamine metabolism. Clin PharmacolTher. 1971;12(2):218–24.Google ScholarPubMed
Brook, N.M., Cookson, I.B. Bromocriptine-induced mania? Br Med J. 1978;1(6115):790.CrossRefGoogle ScholarPubMed
Bunney, W.E., Davis, J.M. Norepinephrine in depressive reactions: A review. Arch Gen Psychiatry. 1965;13(6):483–94.CrossRefGoogle ScholarPubMed
Bunney, W.E. Jr., Garland, B.L. A second generation catecholamine hypothesis. Pharmacopsychiatria. 1982;15(4):111–15.CrossRefGoogle ScholarPubMed
Bunney, W.E., Brodie, H.K.H., Murphy, D.L., et al. Studies of alpha-methyl-para-tyrosine, L-dopa, and L-tryptophan in depression and mania. Am J Psychiatry. 1971;127(7):872–81.CrossRefGoogle ScholarPubMed
Carlsson, A., Lindqvist, M., Magnusson, T.O.R. 3, 4-Dihydroxyphenylalanine and 5-hydroxytryptophan as reserpine antagonists. Nature. 1957;180:1200.CrossRefGoogle ScholarPubMed
Castensson, A., Emilsson, L., Preece, P., et al. High-resolution quantification of specific mRNA levels in human brain autopsies and biopsies.Genome Res. 2000;10(8):1219–29.CrossRefGoogle ScholarPubMed
Celesia, G.G., Wanamaker, W.M. Psychiatric disturbances in Parkinson’s disease. Diseases of the Nervous System. 1972;33:577–83.Google ScholarPubMed
Chang, T.T., Yeh, T.L., Chiu, N.T., et al. Higher striatal dopamine transporters in euthymic patients with bipolar disorder: a SPECT study with [99mTc] TRODAT-1. Bipolar Disord. 2010;12(1):102–6.CrossRefGoogle Scholar
Chase, T.N., Gordon, E.K., Ng, L.K.Y. Norepinephrine metabolism in the central nervous system of man: Studies using 3-methoxy-4-hydroxyphenylethylene glycol levels in cerebrospinal fluid. J Neurochem. 1973;21(3):581–7.CrossRefGoogle ScholarPubMed
Choi, C., Sohn, Y.H., Lee, J.H., et al. The effect of long-term levodopa therapy on depression level in de novo patients with Parkinson’s disease. J Neurol Sci. 2000;172(1):12–16,CrossRefGoogle ScholarPubMed
Colonna, L., Petit, M., Lepine, J.P. Bromocriptine in affective disorders: a pilot study. J Affect Disord. 1979;1(3):173–7.CrossRefGoogle ScholarPubMed
Corrodi, H., Fuxe, K., Schou, M. The effect of prolonged lithium administration on cerebral monoamine neurons in the rat. Life Sci. 1969;8(11), 643651.CrossRefGoogle ScholarPubMed
Cox, C., Harrison-Read, P.E., Steinberg, H., et al. Lithium attenuates drug-induced hyperactivity in rats. Nature. 1971; 232(5309):336–8.CrossRefGoogle ScholarPubMed
Davidoff, M.S., Ungefroren, H., Middendorff, R., et al. Catecholamine-synthesizing enzymes in the adult and prenatal human testis. Histochem Cell Biol. 2005;124(34):313–23.CrossRefGoogle ScholarPubMed
DeKosky, S.T., Scheff, S.W. Synapse loss in frontal cortex biopsies in Alzheimer’s disease: correlation with cognitive severity. Ann Neurol. 1990;27(5):457–64.CrossRefGoogle ScholarPubMed
Delva, N.J., Brooks, D.L., Franklin, M., et al. Effects of short-term administration of valproate on serotonin-1A and dopamine receptor function in healthy human subjects. J Psychiatry Neurosci. 2002;27(6):429.Google ScholarPubMed
Dempster, E.L., Mill, J., Craig, I.W., et al. The quantification of COMT mRNA in post mortem cerebellum tissue: diagnosis, genotype, methylation and expression. BMC Med Genet. 2006;7(1):10.CrossRefGoogle ScholarPubMed
Donaldson, A.E., Lamont, I.L. Metabolomics of post-mortem blood: identifying potential markers of post-mortem interval. Metabolomics. 2013;46(1):19.Google Scholar
D’Souza, A., Onem, E., Patel, P., et al. Valproic acid regulates catecholaminergic pathways by concentration-dependent threshold effects on TH mRNA synthesis and degradation. Brain Res. 2009;1247:110.CrossRefGoogle ScholarPubMed
Duncan, R.J.S., Sourkes, T.L. Some enzymic aspects of the production of oxidized or reduced metabolites of catecholamines and 5-hydroxytryptamine by brain tissues. J Neurochem. 1974;22(5):663–9.CrossRefGoogle ScholarPubMed
Eisenhofer, G., Goldstein, D.S., Ropchak, T.G., et al. Source and physiological significance of plasma 3, 4-dihydroxyphenylglycol and 3-methoxy-4-hydroxyphenylglycol. J Autonom Nerv System. 1988a;24(1):114.CrossRefGoogle ScholarPubMed
Eisenhofer, G., Ropchak, T.G., Kopin, I.J., et al. Release, metabolism and intraneuronal disposition of exogenous, endogenous and newly synthesized norepinephrine in the rat vas deferens. J Pharmacol Exp Ther. 1988b;245(1):81–8.Google ScholarPubMed
Eisenhofer, G., Esler, M.D., Meredith, I.T., et al. Sympathetic nervous function in human heart as assessed by cardiac spillovers of dihydroxyphenylglycol and norepinephrine. Circulation. 1992;85(5):1775–85.CrossRefGoogle ScholarPubMed
Eisenhofer, G., Friberg, P., Pacak, K., et al. Plasma metadrenalines: do they provide useful information about sympatho-adrenal function and catecholamine metabolism? Clin Sci. 1995a;88:533–42.Google ScholarPubMed
Eisenhofer, G., Rundquist, B., Aneman, A., et al. Regional release and removal of catecholamines and extraneuronal metabolism to metanephrines. J Clin Endocrinol Metab. 1995b;80(10):3009–17.Google ScholarPubMed
Eisenhofer, G., Aneman, A., Hooper, D., et al. Mesenteric organ production, hepatic metabolism, and renal elimination of norepinephrine and its metabolites in humans. J Neurochem. 1996;1565–73.Google ScholarPubMed
Eisenhofer, G., Åneman, A., Friberg, P., et al. Substantial production of dopamine in the human gastrointestinal tract. J Clin Endocrinol Metab. 1997;82(11):3864–71.CrossRefGoogle ScholarPubMed
Eisenhofer, G., Rundqvist, B., Friberg, P. Determinants of cardiac tyrosine hydroxylase activity during exercise-induced sympathetic activation in humans. Am J Physiol-Regulat Integr Comp Physiol. 1998;274(3):R626–34.Google ScholarPubMed
Eisenhofer, G., Huynh, T.T., Hiroi, M., et al. Understanding catecholamine metabolism as a guide to the biochemical diagnosis of pheochromocytoma. Rev Endocr Metab Disord. 2001;2(3):297311.CrossRefGoogle ScholarPubMed
Eisenhofer, G., Kopin, I.J., Goldstein, D.S. Catecholamine metabolism: a contemporary view with implications for physiology and medicine. Pharmacol Rev. 2004;56(3):331–49.CrossRefGoogle Scholar
Elsworth, J.D., Leahy, D.J., Roth, R.H., et al. Homovanillic acid concentrations in brain, CSF and plasma as indicators of central dopamine function in primates. J Neural Transm. 1987;68(12):5162.CrossRefGoogle ScholarPubMed
Erwin, V.G., Deitrich, R.A. Brain aldehyde dehydrogenase localization, purification, and properties. J Biol Chem. 1966;241(15):3533–9.Google ScholarPubMed
Esler, M., Jennings, G., Korner, P., et al. Measurement of total and organ-specific norepinephrine kinetics in humans. Am J Physiol. 1984;247(1):E21–8.Google ScholarPubMed
Fernstrom, M., Fernstrom, J. (). Acute tyrosine depletion reduces tyrosine hydroxylation rate in rat central nervous system. Life Sci. 1996;PL97102.Google ScholarPubMed
Gainetdinov, R.R., Wetsel, W.C., Jones, S.R., et al. Role of serotonin in the paradoxical calming effect of psychostimulants on hyperactivity. Science. 1999;283(5400):397401.CrossRefGoogle ScholarPubMed
Gallager, D.W., Pert, A., Bunney, W.E. Haloperidol-induced presynaptic dopamine supersensitivity is blocked by chronic lithium. 1978;273(5660):309–12.
Gillman, P.K., Bartlett, J.R., Bridges, P.K., et al. Indolic substances in plasma, cerebrospinal fluid, and frontal cortex of human subjects infused with saline or tryptophan. J Neurochem. 1981;37(2):410–17.CrossRefGoogle ScholarPubMed
Goldberg, J.F., Garno, J.L., Leon, A.C., et al. A history of substance abuse complicates remission from acute mania in bipolar disorder. J Clin Psychiatry. 1999;60(11):733–40.CrossRefGoogle ScholarPubMed
Goldberg, J.F., Burdick, K.E., Endick, C.J. Preliminary randomized, double-blind, placebo-controlled trial of pramipexole added to mood stabilizers for treatment-resistant bipolar depression. Am J Psychiatry. 2004;161(3): 564–6.CrossRefGoogle ScholarPubMed
Goldstein, D.S., Holmes, C. Neuronal source of plasma dopamine. Clin Chem. 2008;54(11):1864–71.CrossRefGoogle ScholarPubMed
Goldstein, D.S., Eisenhofer, G., Stull, R., et al. Plasma dihydroxyphenylglycol and the intraneuronal disposition of norepinephrine in humans. J Clin Investig. 1988;81(1):213.CrossRefGoogle ScholarPubMed
Goldstein, D.S., Mezey, E., Yamamoto, T., et al. Is there a third peripheral catecholaminergic system? Endogenous dopamine as an autocrine/paracrine substance derived from plasma DOPA and inactivated by conjugation. Hypertens Res. 1995;18:S93–9.CrossRefGoogle Scholar
Goldstein, D.S., Eisenhofer, G., Kopin, I.J. Sources and significance of plasma levels of catechols and their metabolites in humans. J Pharmacol Exp Ther. 2003;305(3):800–11.CrossRefGoogle ScholarPubMed
Goodwin, F.K. Psychiatric side effects of levodopa in man. JAMA 1971;218( 13):1915–20.Google Scholar
Gos, T., Krell, D., Bielau, H., et al. Tyrosine hydroxylase immunoreactivity in the locus coeruleus is elevated in violent suicidal depressive patients. Eur Arch Psychiatry Clin Neurosci. 2008;258(8):513–20.CrossRefGoogle ScholarPubMed
Greenspan, K., Schildkraut, J.J., Gordon, E.K., et al. Catecholamine metabolism in affective disorders – III: MHPG and other catecholamine metabolites in patients treated with lithium carbonate. J Psychiatric Res. 1970;7(3):171–83.Google Scholar
Grunhaus, L., Tiongco, D., Zelnik, T., et al. Intravenous yohimbine selective enhancer of norepinephrine and cortisol secretion and systolic blood pressure in humans. Clin Neuropharmacol. 1989;12(2):106–14.CrossRefGoogle ScholarPubMed
Haarman, B.B.C., Van der Lek, R.F.R., Ruhé, H.G., et al. Bipolar disorders. In: PET and SPECT in Psychiatry. Berlin: Springer; 2014: pp. 223–51.Google Scholar
Halbrügge, T., Wölfel, R., Graefe, K.H. Plasma 3, 4-dihydroxyphenylglycol as a tool to assess the role of neuronal uptake in the anaesthetized rabbit. Naunyn-Schmiedebergs Arch Pharmacol. 1989;340(6):726–32.CrossRefGoogle ScholarPubMed
Harish, G., Venkateshappa, C., Mahadevan, A., et al. Glutathione metabolism is modulated by postmortem interval, gender difference and agonal state in postmortem human brains. Neurochem Intl. 2011;59(7):1029–42.CrossRefGoogle ScholarPubMed
Harper, A.E., Benevenga, N.J., Wohlhueter, R.M. Effects of ingestion of disproportionate amounts of amino acids. Physiol Rev. 1970;50(3):428–558.Google ScholarPubMed
Harrison, B., Olver, J., Norman, T., et al. et al. Selective effects of acute serotonin and catecholamine depletion on memory in healthy women. J Psychopharmacol. 2004;3240.CrossRefGoogle ScholarPubMed
Harsch, H.H., Miller, M., Young, L.D. Induction of mania by L-dopa in a nonbipolar patient. J Clin Psychopharmacol. 1985;5( 6):338–9.Google Scholar
Hasler, G., Fromm, S., Carlson, P.J., et al. Neural response to catecholamine depletion in unmedicated subjects with major depressive disorder in remission and healthy subjects. Arch Gen Psychiatry. 2008;65(5):521–31.CrossRefGoogle ScholarPubMed
Hoeldtke, R., Rogawski, M., Wurtman, R. Effect of selective destruction of central and peripheral catecholamine-containing neurones with 6-hydroxydopamine on catecholamine excretion in the rat. Br J Pharmacol. 1974;50:265–70.CrossRefGoogle ScholarPubMed
Holmans, P., Green, E.K., Pahwa, J.S., et al. Gene ontology analysis of GWA study data sets provides insights into the biology of bipolar disorder. Am J Hum Genet. 2009;85(1):1324.CrossRefGoogle ScholarPubMed
Holmes, A., Quirk, G.J. Pharmacological facilitation of fear extinction and the search for adjunct treatments for anxiety disorders – the case of yohimbine. Trends Pharmacol. Sci. 2010;31( 1): 27.CrossRefGoogle Scholar
Ikarashi, Y., Sasahara, T., Maruyama, Y. Postmortem changes in catecholamines, indoleamines, and their metabolites in rat brain regions: prevention with 10-kW microwave irradiation. J Neurochem. 1985;45(3):935–9.CrossRefGoogle ScholarPubMed
Inoue, T., Tsuchiya, K., Miura, J., et al. Bromocriptine treatment of tricyclic and heterocyclic antidepressant- resistant depression. Biol Psychiatry. 1996;40(2): 151–3.CrossRefGoogle ScholarPubMed
Jacobs, D., Silverstone, T. Dextroamphetamine-induced arousal in human subjects as a model for mania. Psychol Med. 1986;16(02):323–9.CrossRefGoogle ScholarPubMed
Jimerson, D.C., Nurnberger, J.I., Post, R.M., et al. Plasma MHPG in rapid cyclers and healthy twins. Arch Gen Psychiatry. 1981;38(11):1287–90.CrossRefGoogle ScholarPubMed
Kawamura, M., Eisenhofer, G., Kopin, I.J., et al. Aldose reductase, a key enzyme in the oxidative deamination of norepinephrine in rats. Biochem Pharmacol. 1999;58(3):517–24.CrossRefGoogle ScholarPubMed
Kawamura, M., Eisenhofer, G., Kopin, I.J., et al. Aldose reductase: an aldehyde scavenging enzyme in the intraneuronal metabolism of norepinephrine in human sympathetic ganglia. Autonom Neurosci. 2002;96(2):131–9.CrossRefGoogle ScholarPubMed
Kemperman, C.J., Zwanikken, G.J. Psychiatric side effects of bromocriptine therapy for postpartum galactorrhoea. J R Soc Med. 1987;80(6):387.CrossRefGoogle ScholarPubMed
Kirov, G., Murphy, K.C., Arranz, M.J., et al. Low activity allele of catechol-O-methyltransferase gene associated with rapid cycling bipolar disorder. Mol Psychiatry. 1998;3(4):342–5.CrossRefGoogle ScholarPubMed
Klaassen, T., Riedel, W.J., van Someren, A., et al. Mood effects of 24-hour tryptophan depletion in healthy first-degree relatives of patients with affective disorders. Biol Psychiatry. 1999;46(4):489–97.CrossRefGoogle ScholarPubMed
Kopin, I.J. Catecholamine metabolism: basic aspects and clinical significance. Pharmacol Rev. 1985;37(4):333–64.Google ScholarPubMed
Kopin, I.J., Gordon, E.K., Jimerson, D.C., et al. Relation between plasma and cerebrospinal fluid levels of 3-methoxy-4-hydroxyphenylglycol. Science. 1983;219(4580):73–5.CrossRefGoogle ScholarPubMed
Kopin, I.J., Jimerson, D.C., Markey, S.P., et al. Disposition and metabolism of MHPG in humans: application to studies in depression. Pharmacopsychiatry. 1984;17(01):38.CrossRefGoogle ScholarPubMed
Koslow, S.H., Maas, J.W., Bowden, C.L., et al. CSF and urinary biogenic amines and metabolites in depression and mania: A controlled, univariate analysis. Arch Gen Psychiatry. 1983;40(9):9991010.CrossRefGoogle ScholarPubMed
Kuhar, M.J., Couceyro, P.R., Lambert, P.D. Biosynthesis of Catecholamines. In: Siegel, G.J., Agranoff, B.W., Albers, R.W., et al. (eds). Basic Neurochemistry: Molecular, Cellular, and Medical Aspects. 6th edn. Philadelphia: Lippincott-Raven; 1999.Google Scholar
Kunugi, H., Vallada, H.P., Hoda, F., et al. No evidence for an association of affective disorders with high- or low-activity allele of catechol-o-methyltransferase gene. Biol Psychiatry. 1997;42(4):282–5.CrossRefGoogle ScholarPubMed
Kurita, M., Nishino, S., Numata, Y., et al. (). The noradrenaline metabolite MHPG is a candidate biomarker from the manic to the remission state in bipolar disorder i: a clinical naturalistic study. PloS One. 2014;9(6):e100634.CrossRefGoogle Scholar
Lachman, H.M., Kelsoe, J., Moreno, L., et al. Lack of association of catechol-O-methyltransferase (COMT) functional polymorphism in bipolar affective disorder. Psychiatric Genet. 1997;7(1):1318.CrossRefGoogle ScholarPubMed
Lambert, G.W., Eisenhofer, G., Cox, H.S., et al. Direct determination of homovanillic acid release from the human brain, and indicator of central dopaminergic activity. Life Sci. 1991;49(15):1061–72.CrossRefGoogle ScholarPubMed
Lambert, G.W., Eisenhofer, G., Jennings, G.L., et al. Regional homovanillic acid production in humans. Life Sci. 1993;53(1):6375.CrossRefGoogle ScholarPubMed
Lambert, G.W., Kaye, D.M., Vaz, M., et al. Regional origins of 3-methoxy-4-hydroxyphenylglycol in plasma: Effects of chronic sympathetic nervous activation and denervation, and acute reflex sympathetic stimulation. J Autonom Nerv System. 1995;55(3):169–78.CrossRefGoogle ScholarPubMed
Lee, M.R. Dopamine and the kidney: Ten years on. Clin Sci. 1993;84:357.CrossRefGoogle Scholar
Leyton, M. Effects on mood of acute phenylalanine/tyrosine depletion in healthy women. Neuropsychopharmacol. 2000;52–63.CrossRefGoogle ScholarPubMed
Leyton, M., aan het Rot, M., Booij, L., et al. Mood-elevating effects of d-amphetamine and incentive salience: The effect of acute dopamine precursor depletion. J Psychiatry Neurosci. 2007;32(2):129.Google ScholarPubMed
Liggins, J., Pihl, R.O., Benkelfat, C., et al. The dopamine augmenter L-DOPA does not affect positive mood in healthy human volunteers. PloS One. 2011;7(1): e28370.CrossRefGoogle Scholar
Little, K.Y., Krolewski, D.M., Zhang, L., et al. Loss of striatal vesicular monoamine transporter protein (VMAT2) in human cocaine users. Am J Psychiatry. 2003;160(1):4755.CrossRefGoogle Scholar
Losada, M.E.O., Rubio, M.C. Striatal dopamine and motor activity changes observed shortly after lithium administration. Naunyn-Schmiedebergs Arch Pharmacol. 1985;330(3):169–74.Google Scholar
Lythe, K.E., Anderson, I.M., Deakin, J.F.W., et al. Lack of behavioural effects after acute tyrosine depletion in healthy volunteers. J Psychopharmacol. 2005;19(1): 511.CrossRefGoogle ScholarPubMed
Maas, J.W., Benensohn, H., Landis, D.H. A kinetic study of the disposition of circulating norepinephrine in normal male subjects. J Pharmacol Exp Ther. 1970;174(3):381–7.Google ScholarPubMed
Maas, J.W., Hattox, S.E., Greene, N.M., et al. 3-Methoxy-4-hydroxyphenethyleneglycol production by human brain in vivo. Science. 1979;205(4410):1025–7.CrossRefGoogle ScholarPubMed
Malhi, G.S., Tanious, M., Das, P., et al. Potential mechanisms of action of lithium in bipolar disorder. CNS Drugs. 2013;27(2):135–53.CrossRefGoogle ScholarPubMed
Mamelak, M. An amphetamine model of manic depressive illness. Intl Pharmacopsychiatry. 1978;13(4):193208.CrossRefGoogle ScholarPubMed
Manji, H.K., Hsiao, J.K., Risby, E.D., et al. The mechanisms of action of lithium: I. Effects on serotoninergic and noradrenergic systems in normal subjects. Arch GenPsychiatry. 1991;48(6):505–12.Google ScholarPubMed
Marc, D.T., Ailts, J.W., Campeau, D.C.A., et al. Neurotransmitters excreted in the urine as biomarkers of nervous system activity: validity and clinical applicability. Neurosci Biobehav Rev. 2011;35(3):635–44.CrossRefGoogle ScholarPubMed
Mårdh, G., Sjöquist, B., Änggård, E. Norepinephrine metabolism in humans studied by deuterium labelling: Turnover of 4–hydroxy-3–methoxyphenylglycol. J Neurochem. 1983;41(1):246–50.CrossRefGoogle ScholarPubMed
Marsh, G.G., Markham, C.H. Does levodopa alter depression and psychopathology in parkinsonism patients? J Neurol, Neurosurg Psychiatry. 1973;36(6):925–35.CrossRefGoogle ScholarPubMed
McCann, U.D., Thorne, D., Hall, M., et al. The effects of L-dihydroxyphenylalanine on alertness and mood in α-methyl-para-tyrosine-treated healthy humans: further evidence for the role of catecholamines in arousal and anxiety. Neuropsychopharmacol. 1995;13(1):4152.CrossRefGoogle ScholarPubMed
McFarlane, H.G., Steele, J., Vinion, K., et al. Acute lithium administration selectively lowers tyrosine levels in serum and brain. Brain Res. 2011;1420:2936.CrossRefGoogle ScholarPubMed
McLean, A., Rubinsztein, J.S., Robbins, T.W., et al. The effects of tyrosine depletion in normal healthy volunteers: Implications for unipolar depression. Psychopharmacol. 2004;171(3):286–97.CrossRefGoogle ScholarPubMed
McTavish, S.F.B., McPherson, M.H., Sharp, T., et al. Attenuation of some subjective effects of amphetamine following tyrosine depletion. J Psychopharmacol. 1999a;13(2):144–7.Google ScholarPubMed
McTavish, S., Callado, L., Cowen, P., et al. Comparison of the effects of α-methyl-p-tyrosine and a tyrosine- free amino acid load on extracellular noradrenaline in the rat hippocampus in vivo. J Psychopharmacol. 1999b; 379–84.CrossRefGoogle Scholar
McTavish, S.F.B., McPherson, M.H., Harmer, C.J., et al. Antidopaminergic effects of dietary tyrosine depletion in healthy subjects and patients with manic illness. Br J Psychiatry. 2001;179(4):356–60.CrossRefGoogle ScholarPubMed
Mezey, E., Eisenhofer, G., Harta, G., et al. A novel nonneuronal catecholaminergic system: exocrine pancreas synthesizes and releases dopamine. Proc Natl Acad Sci. 1996;93(19):10377–82.CrossRefGoogle ScholarPubMed
Miller, H.L., Delgado, P.L., Salomon, R.M., Clinical and biochemical effects of catecholamine depletion on antidepressant-induced remission of depression. Arch Gen Psychiatry. 1996;53(2):117–28.CrossRefGoogle Scholar
Mindham, R.H.S., Marsden, C.D., Parkes, J.D. Psychiatric symptoms during L-dopa therapy for Parkinson’s disease and their relationship to physical disability. Psychol Med. 1976;6(01):2333.CrossRefGoogle ScholarPubMed
Mistry, M., Pavlidis, P. A cross-laboratory comparison of expression profiling data from normal human postmortem brain. Neuroscience. 2010;167(2):384–95.CrossRefGoogle ScholarPubMed
Moir, A., Ashcroft, G., Crawford, T., et al. Cerebral metabolites in cerebrospinal fluid as a biochemical approach to the brain. Brain. 1970;357–68.CrossRefGoogle Scholar
Montagu, K.A. Catechol compounds in rat tissues and in brains of different animals. Nature. 1957;180:244–5.CrossRefGoogle ScholarPubMed
Muck-Seler, D., Sagud, M., Mustapic, M., et al. The effect of lamotrigine on platelet monoamine oxidase type B activity in patients with bipolar depression. Progr Neuro-Psychopharmacol Biol Psychiatry. 2008;32(5):1195–8.CrossRefGoogle Scholar
Murphy, D., Brodie, H., Goodwin, F., et al. Regular induction of hypomania by L-dopa in “bipolar” manic-depressive patients. Nature. 1971;135–6.CrossRefGoogle ScholarPubMed
Muscettola, G., Potter, W.Z., Pickar, D., et al. Urinary 3-methoxy-4-hydroxyphenylglycol and major affective disorders: a replication and new findings. Arch Gen Psychiatry. 1984;41(4):337–42.CrossRefGoogle ScholarPubMed
Nuti, A., Ceravolo, R., Piccini, A., et al. Psychiatric comorbidity in a population of Parkinson’s disease patients. Eur J Neurol. 2004;11(5):315–20.CrossRefGoogle Scholar
O’Brien, C.P., DiGiacomo, J.N., Fahn, S., et al. Mental effects of high-dosage levodopa. Arch Gen Psychiatry. 1971;24(1):61–4.Google ScholarPubMed
Oliver, G., Schäfer, E.A. The physiological effects of extracts of the suprarenal capsules. J Physiol. 1895;18(3):230.CrossRefGoogle ScholarPubMed
Papolos, D.F., Veit, S., Faedda, G.L., et al. Ultra-ultra rapid cycling bipolar disorder is associated with the low activity catecholamine-O-methyltransferase allele. Mol Psychiatry. 1998;3(4):346–9.CrossRefGoogle ScholarPubMed
Pearlson, G.D., Wong, D.F., Tune, L.E., et al. In vivo D2 dopamine receptor density in psychotic and nonpsychotic patients with bipolar disorder. Arch Gen Psychiatry. 1995;52(6):471–7.CrossRefGoogle ScholarPubMed
Perry, E.K., Tomlinson, B.E., Blessed, G., et al. Neuropathological and biochemical observations on the noradrenergic system in Alzheimer’s disease. J Neurol Sci. 1981;51(2):279–87.CrossRefGoogle ScholarPubMed
Petroff, O.A., Ogino, T., Alger, J.R. High-resolution proton magnetic resonance spectroscopy of rabbit brain: regional metabolite levels and postmortem changes. J Neurochem. 1988;51(1):163–71.CrossRefGoogle ScholarPubMed
Popova, T., Mennerich, D., Weith, A., et al. Effect of RNA quality on transcript intensity levels in microarray analysis of human post-mortem brain tissues. BMC Genomics. 2008;9(1):91.CrossRefGoogle ScholarPubMed
Post, R.M., Gordon, E.K., Goodwin, F.K., et al. . Central norepinephrine metabolism in affective illness: MHPG in the cerebrospinal fluid. Science, 1973;179(4077):1002–3.CrossRefGoogle ScholarPubMed
Price, L.H., Charney, D.S., Heninger, G.R. Three cases of manic symptoms following yohimbine administration. Am J Psychiatry. 1984;141.10:1267.Google ScholarPubMed
Quintin, P., Benkelfat, C., Launay, J.M., et al. Clinical and neurochemical effect of acute tryptophan depletion in unaffected relatives of patients with bipolar affective disorder. Biol Psychiatry, 2001;50(3):184–90.CrossRefGoogle ScholarPubMed
Randrup, A., Munkvad, I., Fog, R., et al. Mania, depression and brain dopamine. Curr Dev Psychopharmacol. 1975;2:206–48.Google Scholar
Redmond, D.E., Katz, M.M., Maas, J.W., et al. Cerebrospinal fluid amine metabolites: relationsphips with behavioral measurements in depressed, manic, and healthy control subjects. Arch Gen Psychiatry. 1986;43(10):938–47.CrossRefGoogle ScholarPubMed
Richter, D. Adrenaline and amine oxidase. Biochem J. 1937;31(11):2022.CrossRefGoogle ScholarPubMed
Rosenblatt, S., Chanley, J.D., Sobotka, H., et al. Interrelationships between electroshock, the blood brain barrier, and catecholamines. J Neurochem. 1960;5(2):172–6.CrossRefGoogle ScholarPubMed
Rotondo, A., Mazzanti, C., Dell’Osso, L., et al. Catechol o-methyltransferase, serotonin transporter, and tryptophan hydroxylase gene polymorphisms in bipolar disorder patients with and without comorbid panic disorder. Am J Psychiatry. 2002;159(1):23–9.Google ScholarPubMed
Salomon, R.M., Miller, H.L., Krystal, J.H., et al. Lack of behavioral effects of monoamine depletion in healthy subjects. Biol Psychiatry. 1997;41(1):5864.CrossRefGoogle ScholarPubMed
Sands, S.A., Guerra, V., Morilak, D.A. Changes in tyrosine hydroxylase mRNA expression in the rat locus coeruleus following acute or chronic treatment with valproic acid. Neuropsychopharmacol. 2000;22(1):2735.CrossRefGoogle ScholarPubMed
Savitz, J., Nugent, A.C., Bellgowan, P.S., et al.. Catecholamine depletion in first-degree relatives of individuals with mood disorders: An 18F] fluorodeoxyglucose positron emission tomography study. NeuroImage: Clin. 2013;2:341–55.Google Scholar
Scarna, A., Gijsman, H.J., McTavish, S.F.B., et al. Effects of a branched-chain amino acid drink in mania. Br J Psychiatry. 2003;182(3):210–13.CrossRefGoogle ScholarPubMed
Schildkraut, J.J. The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am J Psychiatry. 1965;122(5):509–22.CrossRefGoogle ScholarPubMed
Schildkraut, J.J. The effects of lithium on norepinephrine turnover and metabolism: Basic and clinical studies. J Nerv Mental Dis. 1974;158(5):348–60.CrossRefGoogle ScholarPubMed
Schildkraut, J.J., Schanberg, S.M., Kopin, I.J. The effects of lithium ion on H3-norepinephrine metabolism in brain. Life Sci. 1966;5(16):1479–83.CrossRefGoogle ScholarPubMed
Schubert, J. Effect of chronic lithium treatment on monoamine metabolism in rat brain. Psychopharmacologia. 1973;32(3):301–11.CrossRefGoogle ScholarPubMed
Segal, M. Lithium and the monoamine neurotransmitters in the rat hippocampus. Nature. 1974;250:71–3.CrossRefGoogle ScholarPubMed
Seifuddin, F., Pirooznia, M., Judy, J.T., et al. Systematic review of genome-wide gene expression studies of bipolar disorder. BMC Psychiatry. 2013;13:213.CrossRefGoogle ScholarPubMed
Serra, G., Argiolas, A., Klimek, V., et al. Chronic treatment with antidepressants prevents the inhibitory effect of small doses of apomorphine on dopamine synthesis and motor activity. Life Sci. 1979;25(5):415–23.CrossRefGoogle ScholarPubMed
Silverstone, T. Response to bromocriptine distinguishes bipolar from unipolar depression. Lancet. 1984;323(8382):903–04.CrossRefGoogle Scholar
Silverstone, T., Fincham, J., Wells, B., et al. The effect of the dopamine receptor blocking drug pimozide on the stimulant and anorectic actions of dextroamphetamine in man. Neuropharmacol. 1980;19(12):1235–7.CrossRefGoogle ScholarPubMed
Singh, A., Althoff, R., Martineau, R.J., et al. Pramipexole, ropinirole, and mania in Parkinson’s disease. Am J Psychiatry. 2005;162(4):814-a.CrossRefGoogle ScholarPubMed
Sklar, P. Genetics of schziophrenia and bipolar disorder. In: Charney, DS, Nestler, EJ, Sklar, P, et al. (eds.). Neurobiology of Mental Illness (4th edn). New York, NY: Oxford University Press; 2013: pp. 23246.CrossRef
Sklar, P., Ripke, S., Scott, L.J., et al. Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. Nature Genet. 2011;43(10):977–83.CrossRefGoogle Scholar
Southam, E., Pereira, R., Stratton, S.C., et al. Effect of lamotrigine on the activities of monoamine oxidases A and B in vitro and on monoamine disposition in vivo. Eur J Pharmacol. 2005;519(3):237–45.CrossRefGoogle Scholar
Sporn, J., Ghaemi, S.N., Sambur, M.R., et al. Pramipexole augmentation in the treatment of unipolar and bipolar depression: a retrospective chart review. Ann Clin Psychiatry. 2000;12(3):137–40.CrossRefGoogle ScholarPubMed
Stan, A.D., Ghose, S., Gao, X.M., et al. Human postmortem tissue: What quality markers matter? Brain Res. 2006;1123(1):111.CrossRefGoogle ScholarPubMed
Stanley, M., Traskman-Bendz, L., Dorovini-Zis, K. Correlations between aminergic metabolites simultaneously obtained from human CSF and brain. Life Sci. 1985;37(14):1279–86.CrossRefGoogle ScholarPubMed
Ström-Olsen, R., Weil-Malherbe, H. Humoral changes in manic-depressive psychosis with particular reference to the excretion of catechol amines in urine. Br J Psychiatry. 1958;104(436):696704.CrossRefGoogle ScholarPubMed
Suhara, T., Nakayama, K., Inoue, O., D1 dopamine receptor binding in mood disorders measured by positron emission tomography. Psychopharmacol. 1992;106(1):1418.CrossRefGoogle ScholarPubMed
Swann, A.C., Secunda, S., Davis, J.M., et al. CSF monoamine metabolites in mania. Am J Psychiatry. 1983;140(4):396400.Google ScholarPubMed
Swann, A.C., Koslow, S.H., Katz, M.M., et al. Lithium carbonate treatment of mania: cerebrospinal fluid and urinary monoamine metabolites and treatment outcome. Arch Gen Psychiatry. 1987;44(4):345–54.CrossRefGoogle ScholarPubMed
Swann, A.C., Lijffijt, M., Lane, S.D., et al. Norepinephrine and impulsivity: Effects of acute yohimbine. Psychopharmacol. 2013;229.1:8394.CrossRefGoogle ScholarPubMed
Tabakoff, B., Erwin, V.G. Purification and characterization of a reduced nicotinamide adenine dinucleotide phosphate-linked aldehyde reductase from brain. J Biol Chem. 1970;245(12):3263–8.Google ScholarPubMed
Tabakoff, B., Anderson, R., Alivisatos, S.G. Enzymatic reduction of “biogenic” aldehydes in brain. Mol Pharmacol. 1973;9(4):428–37.Google ScholarPubMed
Takamine, J. The isolation of the active principle of the suprarenal gland. J Physiol. 1901;27:2930.Google Scholar
Takebayashi, M., Motohashi, N., Saito, H., et al. Effect of acute treatment with sodium valproate on catecholamine and serotonin synthesis in mouse cerebral cortex. Neuropsychobiol. 1995;32(3):124–7.Google ScholarPubMed
Tank, A.W., Weiner, H., Thurman, J.A. Enzymology and subcellular localization of aldehyde oxidation in rat liver: Oxidation of 3, 4-dihydroxyphenylacetaldehyde derived from dopamine to 3, 4-dihydroxyphenylacetic acid. Biochem Pharmacol. 1981;30(24):3265–75.CrossRefGoogle ScholarPubMed
Tondo, L., Vázquez, G., Baldessarini, R.J. Mania associated with antidepressant treatment: Comprehensive meta-analytic review. Acta Psychiatr Scand. 2010;121(6):404–14.Google ScholarPubMed
Tunbridge, E., Burnet, P.W., Sodhi, M.S., et al. Catechol-o-methyltransferase (COMT) and proline dehydrogenase (PRODH) mRNAs in the dorsolateral prefrontal cortex in schizophrenia, bipolar disorder, and major depression. Synapse. 2004;51(2):112–18.CrossRefGoogle ScholarPubMed
Tyce, G.M., Hunter, L.W., Ward, L.E., et al. Effluxes of 3, 4-dihydroxyphenylalanine, 3, 4-dihydroxyphenylglycol, and norepinephrine from four blood vessels during basal conditions and during nerve stimulation. J Neurochem. 1995;64(2):833–41.Google ScholarPubMed
Vlissides, D.N., Gill, D., Castelow, J. Bromocriptine-induced mania? Br Med J. 1978;1(6111):510.CrossRefGoogle ScholarPubMed
Von Euler, U. A specific sympathomimetic ergone in adrenergic nerve fibres (sympathin) and its relations to adrenaline and nor-adrenaline. Acta Physiol Scand. 1946;12(1):7397.CrossRefGoogle Scholar
Vulpian, E.F.A. Note sur quelques réactions propres à la substance des capsules surrénales. CR Acad Sci. 1856;43:663–5.Google Scholar
Wang, J., Michelhaugh, S.K., Bannon, M.J. Valproate robustly increases Sp transcription factor-mediated expression of the dopamine transporter gene within dopamine cells. Eur J Neurosci. 2007;25(7):1982–6.CrossRefGoogle ScholarPubMed
Wermuth, B. Reduction of biogenic aldehydes by aldehyde reductase and alcohol dehydrogenase from human liver. Biochem Pharmacol. 1979;28(8):1431–3.CrossRefGoogle ScholarPubMed
Wester, P., Bergström, U., Eriksson, A., et al. Ventricular cerebrospinal fluid monoamine transmitter and metabolite concentrations reflect human brain neurochemistry in autopsy cases. J Neurochem. 1990;54(4):1148–56.CrossRefGoogle ScholarPubMed
Wilk, S. Cerebrospinal fluid levels of MHPG in affective disorders. Nature. 1972;235:440–1.CrossRefGoogle ScholarPubMed
Winter, J.C., Rabin, R.A. Yohimbine as a serotonergic agent: evidence from receptor binding and drug discrimination. J Pharmacol Exp Ther. 1992;263.2: 682–9.Google ScholarPubMed
Wiste, A.K., Arango, V., Ellis, S.P., et al. Norepinephrine and serotonin imbalance in the locus coeruleus in bipolar disorder. Bipolar Disord. 2008;10(3):349–59.CrossRefGoogle ScholarPubMed
Wolfovitz, E., Grossman, E., Folio, J., et al. Derivation of urinary dopamine from plasma di hydroxyphenylalanine in humans. Clin Sci. 1993;84:549–57.CrossRefGoogle Scholar
Wong, D.F., Wagner, H.N., Jr., Pearlson, G., et al. Dopamine receptor binding of C-11-3-N-methylspiperone in the caudate in schizophrenia and bipolar disorder: A preliminary report. Psychopharmacol Bull. 1985;21(3):595.Google ScholarPubMed
Yatham, L.N., Liddle, P.F., Shiah, I.-S., et al. PET study of [(18)F]6-fluoro-L-dopa uptake in neuroleptic- and mood-stabilizer-naive first-episode non- psychotic mania: effects of treatment with divalproex sodium. Am J Psychiatry. 2002a;159:768–74.Google Scholar
Yatham, L.N., Liddle, P.F., Lam, R.W., et al. PET study of the effects of valproate on dopamine D2 receptors in neuroleptic-and mood-stabilizer-naive patients with nonpsychotic mania. Am J Psychiatry. 2002b;159(10):1718–23.Google ScholarPubMed
Young, L.T., Li, P.P., Kish, S.J., et al. Cerebral cortex β-adrenoceptor binding in bipolar affective disorder. J Affect Disord. 1994a;30(2):8992.CrossRefGoogle ScholarPubMed
Young, L.T., Warsh, J.J., Kish, S.J., et al. Reduced brain 5-HT and elevated NE turnover and metabolites in bipolar affective disorder. Biol Psychiatry. 1994b;35(2):121–7.Google ScholarPubMed
Zarate, C.A., Jr., Payne, J.L., Singh, J., et al. Pramipexole for bipolar II depression: A placebo-controlled proof of concept study. Biol Psychiatry. 2004;56(1):5460.CrossRefGoogle ScholarPubMed
Zhang, Z., Lindpaintner, K., Che, R., et al. The Val/Met functional polymorphism in COMT confers susceptibility to bipolar disorder: evidence from an association study and a meta-analysis. J Neural Transm. 2009;116(10):1193–200.CrossRefGoogle ScholarPubMed
Zubieta, J.K., Taylor, S.F., Huguelet, P., et al. Vesicular monoamine transporter concentrations in bipolar disorder type I, schizophrenia, and healthy subjects. Biol Psychiatry. 2001;49(2):110–16.