Skip to main content Accessibility help
×
Home
Hostname: page-component-768dbb666b-9qwsl Total loading time: 1.142 Render date: 2023-02-05T21:29:55.031Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

18 - Microfabricated gels for tissue engineering

from Part III - Hydrogel scaffolds for regenerative medicine

Published online by Cambridge University Press:  05 February 2015

Gulden Camci-Unal
Affiliation:
Harvard Medical School
Jesper Hjortnaes
Affiliation:
Harvard Medical School
Hojae Bae
Affiliation:
Harvard Medical School
Mehmet Remzi Dokmeci
Affiliation:
Harvard Medical School
Ali Khademhosseini
Affiliation:
Harvard Medical School
Peter X. Ma
Affiliation:
University of Michigan, Ann Arbor
Get access

Summary

Introduction

Tissue engineering aims to develop biological substitutes that repair or replace damaged tissues or whole organs by combining technologies from engineering and medical sciences [1]. Although tissue engineering has enabled successful generation of various artificial tissue substitutes, such as skin [2], bladder [3], cartilage [4], bone [5], heart valves [6], and blood vessels [7], a number of challenges remain to be solved. It has been challenging to engineer large and vascularized organs such as the heart or liver. These tissues depend on adequate vascularization for the supply of nutrients and oxygen. In tissue engineering, this translates into not only creating the specific tissue but also making the highly organized vasculature. On the other hand, avascular tissues such as heart valves or cartilage depend on adequate diffusion for their supply of nutrients and oxygen. In terms of engineering, an avascular biomimetic construct cannot be too thick [8, 9], since this would lead to a limited supply of nutrients and oxygen [1]. Microfabrication strategies aim to overcome these limitations by controlling the size, geometry and features of three-dimensional (3D) in-vitro tissue-engineered constructs. Recent advances in biomaterials combined with developments in microengineering methods have enabled the development of vascular networks, prevascularized tissue constructs, and creation of well-ordered tissue constructs from microgel units with different cell types. [10].

Native tissues consist of cells that reside in a framework called the extracellular matrix (ECM). The ECM is composed of proteins (e.g. collagen), fibers (e.g. elastin), polysaccharides (e.g. hyaluronic acid), glycosaminoglycans (e.g. heparan sulfate), and growth factors (e.g. fibroblast growth factor). The ECM functions as a support system for cells to exert their biological function and can be viewed as the scaffolding environment for the tissues. Traditional tissue engineering uses synthetic scaffolds or biomaterials as molds to create tissue constructs. These scaffolds are typically porous, biocompatible, and degradable, and allow sufficient diffusion to occur [11]. Furthermore, such scaffolds enable cell adhesion, proliferation, and differentation, and tissue organization that are similar to those in their native counterparts [12]. Over time, the synthetic scaffold will degrade in vivo, while the cells deposit new natural scaffolding (ECM), thus leading to the formation of new tissue.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Langer, R. and Vacanti, J. P. 1993. Tissue engineering. Science, 260, 920–6.CrossRefGoogle ScholarPubMed
Auger, F. A., Lacroix, D. and Germain, L. 2009. Skin substitutes and wound healing. Skin Pharmacol. Physiology, 22, 94–102.CrossRefGoogle ScholarPubMed
Atala, A., Bauer, S. B., Soker, S., Yoo, J. J. and Retik, A. B. 2006. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet, 367, 1241–6.CrossRefGoogle ScholarPubMed
Ashiku, S. K., Randolph, M. A. and Vacanti, C. A. 1997. Tissue engineered cartilage. Porous Mater. Tissue Eng., 250, 129–50.Google Scholar
Petite, H., Viateau, V., Bensaid, W. et al. 2000. Tissue-engineered bone regeneration, Nature Biotechnol., 18, 959–63.CrossRefGoogle ScholarPubMed
Cebotari, S., Lichtenberg, A., Tudorache, I. et al. 2006. Clinical application of tissue engineered human heart valves using autologous progenitor cells. Circulation, 114, I132–7.CrossRefGoogle ScholarPubMed
L’Heureux, N., Dusserre, N., Konig, G. et al. 2006. Human tissue-engineered blood vessels for adult arterial revascularization. Nature Med., 12, 361–5.CrossRefGoogle ScholarPubMed
Liu, B., Liu, Y., Lewis, A. K. and Shen, W. 2010. Modularly assembled porous cell-laden hydrogels. Biomaterials, 31, 4918–25.CrossRefGoogle ScholarPubMed
Muschler, G. E., Nakamoto, C. and Griffith, L. G. 2004. Engineering principles of clinical cell-based tissue engineering. J. Bone Joint Surg., 86A, 1541–58.CrossRefGoogle Scholar
Nichol, J. W., Bae, H., Kachouie, N. et al. 2011. Microscale technologies for tissue engineering and stem cell differentiation. In Stem Cell and Tissue Engineering, ed. Li, S., L’Heureux, N., and Elisseeff, J., Singapore: World Scientific Publishing Company.Google Scholar
Pescosolido, L., Schuurman, W., Malda, J. et al. 2011. Hyaluronic acid and dextran-based semi-IPN hydrogels as biomaterials for bioprinting. Biomacromolecules, 12, 1831–8.CrossRefGoogle ScholarPubMed
Fedorovich, N. E., Alblas, J., de Wijn, J. R. et al. 2007. Hydrogels as extracellular matrices for skeletal tissue engineering: state-of-the-art and novel application in organ printing, Tissue Eng., 13, 1905–25.CrossRefGoogle ScholarPubMed
Landers, R., Hubner, U., Schmelzeisen, R. and Mulhaupt, R. 2002. Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering. Biomaterials, 23, 4437–47.CrossRefGoogle ScholarPubMed
DeKosky, B. J., Dormer, N. H., Ingavle, G. C. et al. 2010. Hierarchically designed agarose and poly(ethylene glycol) interpenetrating network hydrogels for cartilage tissue engineering. Tissue Eng. Part C, 16, 1533–42.CrossRefGoogle ScholarPubMed
Lutolf, M. P. 2009. Spotlight on hydrogels. Nature Mater., 8, 451–3.CrossRefGoogle ScholarPubMed
Khademhosseini, A. and Langer, R. 2007. Microengineered hydrogels for tissue engineering. Biomaterials, 28, 5087–92.CrossRefGoogle ScholarPubMed
Benoit, D. S. W., Durney, A. R. and Anseth, K. S. 2006. Manipulations in hydrogel degradation behavior enhance osteoblast function and mineralized tissue formation, Tissue Eng., 12, 1663–73.CrossRefGoogle ScholarPubMed
Kaji, H., Camci-Unal, G., Langer, R. and Khademhosseini, A. 2011. Engineering systems for the generation of patterned co-cultures for controlling cell–cell interactions. Biochim. Biophys. Acta – General Subjects, 1810, 239–50.CrossRefGoogle ScholarPubMed
Fukuda, J., Khademhosseini, A., Yeo, Y. et al. 2006. Micromolding of photocrosslinkable chitosan hydrogel for spheroid microarray and co-cultures. Biomaterials, 27, 5259–67.CrossRefGoogle ScholarPubMed
Wheeldon, I., Fernandez, J., Bae, H., Kaji, H. and Khademhosseini, A. 2011. Microscale biomaterials for regenerative medicine and engineered cellular microenvironments. In Biomaterials for Tissue Engineering: A Review of the Past and Future Trends, ed. Burdick, J. A., and Mauck, R. L., New York: Springer.Google Scholar
Camci-Unal, G., Aubin, H., Ahari, A. F. et al. 2010. Surface-modified hyaluronic acid hydrogels to capture endothelial progenitor cells. Soft Matter, 6, 5120–6.CrossRefGoogle ScholarPubMed
Camci-Unal, G., Nichol, J. W., Bae, H. et al. 2013. Hydrogel surfaces to promote attachment and spreading of endothelial progenitor cells. J. Tissue Eng. Regen. Med., 7(5), 337–47.CrossRefGoogle ScholarPubMed
Khademhosseini, A., Eng, G., Yeh, J. et al. 2006. Micromolding of photocrosslinkable hyaluronic acid for cell encapsulation and entrapment. J. Biomed. Mater. Res. A, 79, 522–32.CrossRefGoogle ScholarPubMed
Chung, B. G., Kang, L. and Khademhosseini, A. 2007. Micro- and nanoscale technologies for tissue engineering and drug discovery applications. Expert Opinion Drug Discovery, 2, 1653–68.CrossRefGoogle ScholarPubMed
Karp, J. M., Yeh, J., Eng, G. et al. 2007. Controlling size, shape and homogeneity of embryoid bodies using poly(ethylene glycol) microwells. Lab Chip, 7, 786–94.CrossRefGoogle ScholarPubMed
Moeller, H. C., Mian, M. K., Shrivastava, S., Chung, B. G. and Khademhosseini, A. 2008. A microwell array system for stem cell culture. Biomaterials, 29, 752–63.CrossRefGoogle ScholarPubMed
Yamazoe, H., Uemura, T. and Tanabe, T. 2008. Facile cell patterning on an albumin-coated surface. Langmuir, 24, 8402–4.CrossRefGoogle ScholarPubMed
Wojciak-Stothard, B., Curtis, A., Monaghan, W., Macdonald, K. and Wilkinson, C. 1996. Guidance and activation of murine macrophages by nanometric scale topography. Exp. Cell Res., 223, 426–35.CrossRefGoogle ScholarPubMed
Meyle, J., Gultig, K., Wolburg, H. and Von Recum, A. F. 1993. Fibroblast anchorage to microtextured surfaces. J. Biomed. Mater. Res. A, 27, 1553–7.CrossRefGoogle ScholarPubMed
Rajnicek, A. M., Britland, S. and McCaig, C. D. 1997. Contact guidance of CNS neurites on grooved quartz: influence of groove dimensions, neuronal age and cell type. J. Cell Sci., 110, 2905–13.Google ScholarPubMed
Chen, C. S., Mrksich, M., Huang, S., Whitesides, G. M. and Ingber, D. E. 1997. Geometric control of cell life and death. Science, 276, 1425–8.CrossRefGoogle ScholarPubMed
Yeh, J., Ling, Y., Karp, J. M. et al. 2006. Micromolding of shape-controlled, harvestable cell-laden hydrogels. Biomaterials, 27, 5391–8.CrossRefGoogle ScholarPubMed
McGuigan, A. P. and Sefton, M. V. 2006. Vascularized organoid engineered by modular assembly enables blood perfusion. Proc. Nat. Acad. Sci. USA, 103, 11461–6.CrossRefGoogle ScholarPubMed
Nguyen, K. T. and West, J. L. 2002. Photopolymerizable hydrogels for tissue engineering applications. Biomaterials, 23, 4307–14.CrossRefGoogle ScholarPubMed
Mironov, V., Prestwich, G. and Forgacs, G. 2007. Bioprinting living structures. J. Mater. Chem., 17, 2054–60.CrossRefGoogle Scholar
Fedorovich, N. E., Swennen, I., Girones, J. et al. 2009. Evaluation of photocrosslinked lutrol hydrogel for tissue printing applications. Biomacromolecules, 10, 1689–96.CrossRefGoogle ScholarPubMed
Seitz, H., Rieder, W., Irsen, S., Leukers, B. and Tille, C. 2005. Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering. J. Biomed. Mater. Res. Part B – Appl. Biomater., 74, 782–8.CrossRefGoogle ScholarPubMed
Wang, X. H., Yan, Y. N., Pan, Y. Q. et al. 2006. Generation of three-dimensional hepatocyte/gelatin structures with rapid prototyping system. Tissue Eng., 12, 83–90.CrossRefGoogle ScholarPubMed
Ang, T. H., Sultana, F. S. A., Hutmacher, D. W. et al. 2002. Fabrication of 3D chitosan–hydroxyapatite scaffolds using a robotic dispensing system. Mater. Sci. Eng. C – Biomimetic Supramolec. Systems, 20, 35–42.CrossRefGoogle Scholar
Wilson, W. C. and Boland, T. 2003. Cell and organ printing 1: protein and cell printers. Anat. Rec. A Discov. Molec. Cell Evol. Biol., 272, 491–6.CrossRefGoogle Scholar
Odde, D. J. and Renn, M. J. 2000. Laser-guided direct writing of living cells. Biotechnol. Bioeng., 67, 312–18.3.0.CO;2-F>CrossRefGoogle ScholarPubMed
Barron, J. A., Wu, P., Ladouceur, H. D. and Ringeisen, B. R. 2004. Biological laser printing: a novel technique for creating heterogeneous 3-dimensional cell patterns. Biomed. Microdevices, 6, 139–47.CrossRefGoogle ScholarPubMed
Ringeisen, B. R., Kim, H., Barron, J. A. et al. 2004. Laser printing of pluripotent embryonal carcinoma cells. Tissue Eng., 10, 483–91.CrossRefGoogle ScholarPubMed
Cohen, D. L., Malone, E., Lipson, H. and Bonassar, L. J. 2006. Direct freeform fabrication of seeded hydrogels in arbitrary geometries. Tissue Eng., 12, 1325–35.CrossRefGoogle ScholarPubMed
Varghese, D., Deshpande, M., Xu, T. et al. 2005. Advances in tissue engineering: cell printing. J. Thorac. Cardiovasc. Surg., 129, 470–2.CrossRefGoogle ScholarPubMed
Landers, R., Pfister, A., Hubner, U. et al. 2002. Fabrication of soft tissue engineering scaffolds by means of rapid prototyping techniques. J. Mater. Sci., 37, 3107–16.CrossRefGoogle Scholar
Skardal, A., Zhang, J. X. and Prestwich, G. D. 2010. Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates. Biomaterials, 31, 6173–81.CrossRefGoogle ScholarPubMed
Lam, C. X. F., Mo, X. M., Teoh, S. H. and Hutmacher, D. W. 2002. Scaffold development using 3D printing with a starch-based polymer. Mater. Sci. Eng. C – Biomimetic Supramolec. Systems, 20, 49–56.CrossRefGoogle Scholar
Nahmias, Y., Schwartz, R. E., Verfaillie, C. M. and Odde, D. J. 2005. Laser-guided direct writing for three-dimensional tissue engineering. Biotechnol. Bioeng., 92, 129–36.CrossRefGoogle ScholarPubMed
Boland, T., Mironov, V., Gutowska, A., Roth, E. A. and Markwald, R. R. 2003. Cell and organ printing 2: fusion of cell aggregates in three-dimensional gels. Anatomical Record Part A – Discoveries Molec. Cellular Evolutionary Biol., 272, 497–502.CrossRefGoogle ScholarPubMed
Smith, C. M., Stone, A. L., Parkhill, R. L. et al. 2004. Three-dimensional bioassembly tool for generating viable tissue-engineered constructs. Tissue Eng., 10, 1566–76.CrossRefGoogle ScholarPubMed
Han, L. H., Suri, S., Schmidt, C. E. and Chen, S. C. 2010. Fabrication of three-dimensional scaffolds for heterogeneous tissue engineering. Biomed. Microdevices, 12, 721–5.CrossRefGoogle ScholarPubMed
Chen, C. Y., Barron, J. A. and Ringeisen, B. R. 2006. Cell patterning without chemical surface modification: cell–cell interactions between printed bovine aortic endothelial cells (BAEC) on a homogeneous cell-adherent hydrogel. Appl. Surf. Sci., 252, 8641–5.CrossRefGoogle Scholar
Guillotin, B. and Guillemot, F., Cell patterning technologies for organotypic tissue fabrication. Trends Biotechnol., 29, 183–90.CrossRef
Ovsianikov, A., Gruene, M., Pflaum, M. et al. 2010. Laser printing of cells into 3D scaffolds. Biofabrication, 2, 014104.CrossRefGoogle ScholarPubMed
Kikuchi, A. and Okano, T. 2005. Nanostructured designs of biomedical materials: applications of cell sheet engineering to functional regenerative tissues and organs. J. Controll. Release, 101, 69–84.CrossRefGoogle ScholarPubMed
Shimizu, T., Sekine, H., Isoi, Y. et al. 2006. Long-term survival and growth of pulsatile myocardial tissue grafts engineered by the layering of cardiomyocyte sheets. Tissue Eng., 12, 499–507.CrossRefGoogle ScholarPubMed
L’Heureux, N., Paquet, S., Labbe, R., Germain, L. and Auger, F. A. 1998. A completely biological tissue-engineered human blood vessel. FASEB J., 12, 47–56.CrossRefGoogle ScholarPubMed
Mikos, A. G., Herring, S. W., Ochareon, P. et al. 2006. Engineering complex tissues. Tissue Eng., 12, 3307–39.CrossRefGoogle ScholarPubMed
Lee, K. Y. and Mooney, D. J. 2001. Hydrogels for tissue engineering. Chem. Rev., 101, 1869–79.CrossRefGoogle ScholarPubMed
Kaihara, S., Borenstein, J., Koka, R. et al. 2000. Silicon micromachining to tissue engineer branched vascular channels for liver fabrication. Tissue Eng., 6, 105–17.CrossRefGoogle ScholarPubMed
Stevens, M. M., Mayer, M., Anderson, D. G. et al. 2005. Direct patterning of mammalian cells onto porous tissue engineering substrates using agarose stamps. Biomaterials, 26, 7636–41.CrossRefGoogle ScholarPubMed
Tekin, H., Ozaydin-Ince, G., Tsinman, T. et al. 2011. Responsive microgrooves for the formation of harvestable tissue constructs. Langmuir, 27, 5671–9.CrossRefGoogle ScholarPubMed
Bian, W. N. and Bursac, N. 2009. Engineered skeletal muscle tissue networks with controllable architecture. Biomaterials, 30, 1401–12.CrossRefGoogle ScholarPubMed
Xia, Y. N. and Whitesides, G. M. 1998. Soft lithography. Ann. Rev. Mater. Sci., 28, 153–84.CrossRefGoogle Scholar
Slaughter, B. V., Khurshid, S. S., Fisher, O. Z., Khademhosseini, A. and Peppas, N. A. 2009. Hydrogels in regenerative medicine. Adv. Mater., 21, 3307–29.CrossRefGoogle ScholarPubMed
Oh, J. K., Lee, D. I. and Park, J. M. 2009. Biopolymer-based microgels/nanogels for drug delivery applications. Prog. Polymer Sci., 34, 1261–82.CrossRefGoogle Scholar
Folch, A. and Toner, M. 2000. Microengineering of cellular interactions. Ann. Rev. Biomed. Eng., 2, 227–56.CrossRefGoogle ScholarPubMed
Suh, K. Y., Choi, S. J., Baek, S. J., Kim, T. W. and Langer, R. 2005. Observation of high-aspect-ratio nanostructures using capillary lithography. Adv. Mater., 17, 560–4.CrossRefGoogle Scholar
Chandra, D., Taylor, J. A. and Yang, S. 2008. Replica molding of high-aspect-ratio (sub-)micron hydrogel pillar arrays and their stability in air and solvents. Soft Matter, 4, 979–84.CrossRefGoogle Scholar
Johann, R. M., Baiotto, C. and Renaud, P. 2007. Micropatterned surfaces of PDMS as growth templates for HEK 293 cells. Biomed. Microdevices, 9, 475–85.CrossRefGoogle ScholarPubMed
Rivest, C., Morrison, D. W. G., Ni, B. et al. 2007. Microscale hydrogels for medicine and biology: synthesis, characteristics and applications. J. Mechanics Mater. Structures, 2, 1103–19.CrossRefGoogle Scholar
Rolland, J. P., Maynor, B. W., Euliss, L. E. et al. 2005. Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials. J. Am. Chem. Soc., 127, 10096–100.CrossRefGoogle ScholarPubMed
Khademhosseini, A., Yeh, J., Jon, S. et al. 2004. Molded polyethylene glycol microstructures for capturing cells within microfluidic channels. Lab Chip, 4, 425–30.CrossRefGoogle ScholarPubMed
Tekin, H., Tsinman, T., Sanchez, J. G. et al. 2011. Responsive micromolds for sequential patterning of hydrogel microstructures. J. Am. Chem. Soc., 133, 12944–7.CrossRefGoogle ScholarPubMed
Khademhosseini, A., Ferreira, L., Blumling, J. et al. 2006. Co-culture of human embryonic stem cells with murine embryonic fibroblasts on microwell-patterned substrates. Biomaterials, 27, 5968–77.CrossRefGoogle ScholarPubMed
Park, J. H., Chung, B. G., Lee, W. G. et al. 2010. Microporous cell-laden hydrogels for engineered tissue constructs. Biotechnol. Bioeng., 106, 138–48.Google ScholarPubMed
Du, Y., Ghodousi, M., Qi, H. et al. 2011. Sequential assembly of cell-laden hydrogel constructs to engineer vascular-like microchannels. Biotechnol. Bioeng., 108, 1693–703.CrossRefGoogle ScholarPubMed
Koh, W. G., Revzin, A. and Pishko, M. V. 2002. Poly(ethylene glycol) hydrogel microstructures encapsulating living cells. Langmuir, 18, 2459–62.CrossRefGoogle ScholarPubMed
Liu, V. A. and Bhatia, S. N. 2002. Three-dimensional photopatterning of hydrogels containing living cells. Biomed. Microdevices, 4, 257–66.CrossRefGoogle Scholar
Koh, W. G., Itle, L. J. and Pishko, M. V. 2003. Molding of hydrogel multiphenotype cell microstructures to create microarrays. Anal. Chem., 75, 5783–9.CrossRefGoogle ScholarPubMed
Aubin, H., Nichol, J. W., Hutson, C. B. et al. 2010. Directed 3D cell alignment and elongation in microengineered hydrogels. Biomaterials, 31, 6941–51.CrossRefGoogle ScholarPubMed
Mapili, G., Lu, Y., Chen, S. C. and Roy, K. 2005. Laser-layered microfabrication of spatially patterned functionalized tissue-engineering scaffolds. J. Biomed. Mater. Res. Part B – Appl. Biomater. 75, 414–24.CrossRefGoogle ScholarPubMed
Hahn, M. S., Miller, J. S. and West, J. L. 2006. Three-dimensional biochemical and biomechanical patterning of hydrogels for guiding cell behavior. Adv. Mater., 18, 2679–84.CrossRefGoogle Scholar
Fozdar, D. Y., Soman, P., Lee, J. W., Han, L. H. and Chen, S. C. 2011. Three-dimensional polymer constructs exhibiting a tunable negative Poisson’s ratio. Adv. Functional Mater., 21, 2712–20.CrossRefGoogle ScholarPubMed
Batorsky, A., Liao, J. H., Lund, A. W., Plopper, G. E. and Stegemann, J. P. 2005. Encapsulation of adult human mesenchymal stem cells within collagen–agarose microenvironments. Biotechnol. Bioeng., 92, 492–500.CrossRefGoogle ScholarPubMed
Jia, X. Q., Yeo, Y., Clifton, R. J. et al. 2006. Hyaluronic acid-based microgels and microgel networks for vocal fold regeneration. Biomacromolecules, 7, 3336–44.CrossRefGoogle ScholarPubMed
Laroui, H., Grossin, L., Leonard, M. et al. 2007. Hyaluronate-covered nanoparticles for the therapeutic targeting of cartilage. Biomacromolecules, 8, 3879–85.CrossRefGoogle ScholarPubMed
Ethirajan, A., Ziener, U., Chuvilin, A. et al. 2008. Biomimetic hydroxyapatite crystallization in gelatin nanoparticles synthesized using a miniemulsion process. Adv. Functional Mater., 18, 2221–7.CrossRefGoogle Scholar
Dang, S. M., Kyba, M., Perlingeiro, R., Daley, G. Q. and Zandstra, P. W. 2002. Efficiency of embryoid body formation and hematopoietic development from embryonic stem cells in different culture systems. Biotechnol. Bioeng., 78, 442–53.CrossRefGoogle ScholarPubMed
Dang, S. and Zandstra, P. 2005. Scalable production of embryonic stem cell-derived cells. Methods Molec. Biol., 290, 353–64.Google ScholarPubMed
Magyar, J. P., Nemir, M., Ehler, E. et al. 2001. Mass production of embryoid bodies in microbeads. Ann. New York Acad. Sci., 944, 135–43.CrossRefGoogle ScholarPubMed
Xu, S., Nie, Z., Seo, M. et al. 2005. Generation of monodisperse particles by using microfluidics: control over size, shape, and composition. Angewandte Chem. Int. Edition Engl., 44, 3799.CrossRefGoogle ScholarPubMed
Franzesi, G. T., Ni, B., Ling, Y. B. and Khademhosseini, A. 2006. A controlled-release strategy for the generation of cross-linked hydrogel microstructures. J. Am. Chem. Soc., 128, 15064–5.CrossRefGoogle ScholarPubMed
Dendukuri, D., Pregibon, D. C., Collins, J., Hatton, T. A. and Doyle, P. S. 2006. Continuous-flow lithography for high-throughput microparticle synthesis. Nature Mater., 5, 365–9.CrossRefGoogle ScholarPubMed
Chung, S. E., Park, W., Park, H. et al. 2007. Optofluidic maskless lithography system for real-time synthesis of photopolymerized microstructures in microfluidic channels. Appl. Phys. Lett., 91, 041106.CrossRefGoogle Scholar
Lee, S. A., Chung, S. E., Park, W., Lee, S. H. and Kwon, S. 2009. Three-dimensional fabrication of heterogeneous microstructures using soft membrane deformation and optofluidic maskless lithography. Lab Chip, 9, 1670–5.CrossRefGoogle ScholarPubMed
Panda, P., Ali, S., Lo, E. et al. 2008. Stop-flow lithography to generate cell-laden microgel particles. Lab Chip, 8, 1056–61.CrossRefGoogle ScholarPubMed
Braschler, T., Johann, R., Heule, M., Metref, L. and Renaud, P. 2005. Gentle cell trapping and release on a microfluidic chip by in situ alginate hydrogel formation. Lab Chip, 5, 553–9.CrossRefGoogle ScholarPubMed
Tan, W. and Desai, T. A. 2004. Layer-by-layer microfluidics for biomimetic three-dimensional structures. Biomaterials, 25, 1355–64.CrossRefGoogle ScholarPubMed
Burdick, J. A., Khademhosseini, A. and Langer, R. 2004. Fabrication of gradient hydrogels using a microfluidics/photopolymerization process. Langmuir, 20, 5153–6.CrossRefGoogle ScholarPubMed
Hancock, M. J., Piraino, F., Camci-Unal, G., Rasponi, M. and Khademhosseini, A. 2011. Anisotropic material synthesis by capillary flow in fluid stripes. Biomaterials, 32, 6493–504.CrossRefGoogle Scholar
Zaari, N., Rajagopalan, P., Kim, S. K., Engler, A. J. and Wong, J. Y. 2004. Photopolymerization in microfluidic gradient generators: microscale control of substrate compliance to manipulate cell response. Adv. Mater., 16, 2133–7.CrossRefGoogle Scholar
Hoerstrup, S. P., Zund, G., Sodian, R. et al. 2001. Tissue engineering of small caliber vascular grafts. Eur. J. Cardio-Thorac. Surg., 20, 164–9.CrossRefGoogle ScholarPubMed
Shin’oka, T., Matsumura, G., Hibino, N. et al. 2005. Midterm clinical result of tissue-engineered vascular autografts seeded with autologous bone marrow cells. J. Thorac. Cardiovasc. Surg., 129, 1330–8.CrossRefGoogle ScholarPubMed
Hjortnaes, J., Gottlieb, D., Figueiredo, J. L. et al. 2010. Intravital molecular imaging of small-diameter tissue-engineered vascular grafts in mice: a feasibility study. Tissue Eng. Part C – Methods, 16, 597–607.CrossRefGoogle ScholarPubMed
L’Heureux, N., Germain, L., Labbe, R. and Auger, F. A. 1993. In vitro construction of a human blood-vessel from cultured vascular cells – a morphologic study. J. Vasc. Surg., 17, 499–509.CrossRefGoogle Scholar
Borenstein, J. T., Terai, H., King, K. R. et al. 2002. Microfabrication technology for vascularized tissue engineering. Biomed. Microdevices, 4, 167–75.CrossRefGoogle Scholar
Fidkowski, C., Kaazempur-Mofrad, M. R., Borenstein, J. et al. 2005. Endothelialized microvasculature based on a biodegradable elastomer. Tissue Eng., 11, 302–9.CrossRefGoogle ScholarPubMed
Ling, Y., Rubin, J., Deng, Y. et al. 2007. A cell-laden microfluidic hydrogel. Lab Chip, 7, 756–62.CrossRefGoogle ScholarPubMed
Golden, A. P. and Tien, J. 2007. Fabrication of microfluidic hydrogels using molded gelatin as a sacrificial element. Lab Chip, 7, 720–5.CrossRefGoogle ScholarPubMed
Chrobak, K. M., Potter, D. R. and Tien, J. 2006. Formation of perfused, functional microvascular tubes in vitro. Microvasc. Res., 71, 185–96.CrossRefGoogle ScholarPubMed
Nichol, J. W. and Khademhosseini, A. 2009. Modular tissue engineering: engineering biological tissues from the bottom up. Soft Matter, 5, 1312–19.CrossRefGoogle ScholarPubMed
Tsang, V. L., Chen, A. A., Cho, L. M. et al. 2007. Fabrication of 3D hepatic tissues by additive photopatterning of cellular hydrogels. FASEB J., 21, 790–801.CrossRefGoogle Scholar
Wheeldon, I., Ahari, A. F. and Khademhosseini, A. 2010. Microengineering hydrogels for stem cell bioengineering and tissue regeneration. J. Assoc. Lab. Automation, 15, 440–8.CrossRefGoogle ScholarPubMed
Peppas, N. A., Hilt, J. Z., Khademhosseini, A. and Langer, R. 2006. Hydrogels in biology and medicine: from molecular principles to bionanotechnology, Adv. Mater., 18, 1345–60.CrossRefGoogle Scholar
Fernandez, J. G. and Khademhosseini, A. 2010. Micro-masonry: construction of 3D structures by microscale self-assembly. Adv. Mater., 22, 2538–41.CrossRefGoogle ScholarPubMed
Du, Y., Ghodousi, M., Lo, E. et al. 2010. Surface-directed assembly of cell-laden microgels. Biotechnol. Bioeng., 105, 655–62.CrossRefGoogle ScholarPubMed
Du, Y., Lo, E., Vidula, M. K., Khabiry, M. and Khademhosseini, A. 2008. Method of bottom-up directed assembly of cell-laden microgels. Cellular Molec. Bioeng., 1, 157–62.CrossRefGoogle ScholarPubMed
Du, Y., Lo, E., Ali, S. and Khademhosseini, A. 2008. Directed assembly of cell-laden microgels for fabrication of 3D tissue constructs. Proc. Nat. Acad. Sci., 105, 9522–7.CrossRefGoogle ScholarPubMed
Yanagawa, F., Kaji, H., Jang, Y. H. et al. 2011. Directed assembly of cell-laden microgels for building porous three-dimensional tissue constructs. J. Biomed. Mater. Res. Part A, 97, 93–102.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×