Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-24T03:04:08.373Z Has data issue: false hasContentIssue false

5 - Acute vascular aphasia

Published online by Cambridge University Press:  10 October 2009

Alexandre Croquelois
Affiliation:
University Hospital, Lausanne, Switzerland
Olivier Godefroy
Affiliation:
University Hospital, Amiens, France
Julien Bogousslavsky
Affiliation:
Swiss Medical Network, Montreux, Switzerland
Olivier Godefroy
Affiliation:
Université de Picardie Jules Verne, Amiens
Julien Bogousslavsky
Affiliation:
Université de Lausanne, Switzerland
Get access

Summary

Introduction

Aphasia has been studied extensively at the acute and subacute stages of stroke (see Chapter 4). However, these important studies do not adequately cover the initial stage (i.e. the first hours and days post-stroke), a critical period for the diagnosis and treatment of stroke. With the development of hyperacute management of stroke, a few studies have re-examined the characteristics, determinants, and prognosis of acute aphasia.

Aphasia at the acute stage of stroke

Aphasia is observed with a prevalence ranging from 21% to 33% of patients admitted for acute stroke (Brust et al., 1976; Laska et al., 2001; Godefroy et al., 2002). A very high prevalence (from 38% to 45%) has been observed at the hyperacute stage with tests including non-aphasic disturbances such as the language subtest of stroke scale (Pedersen et al., 1995) or a naming subtest (Riepe et al., 2004) and this presumably inflates the prevalence of aphasia (Thommessen et al., 2002).

Aphasic syndromes evolve rapidly during the first days post-stroke. Global aphasia is the most frequent syndrome observed with a frequency of about 25% (Laska et al., 2001; Godefroy et al., 2002); Wernicke's aphasia is also frequent (15–25%) followed by anomic aphasia, usually associated with various degrees of minor disorders of oral expression, transcortical motor aphasia, frequently associated with hypophonia in subcortical lesions (Kreisler et al., 2000), and Broca's aphasia (Brust et al., 1976; Laska et al., 2001; Godefroy et al., 2002).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, K., Ukita, H., Yorifuji, S. and Yanagihara, T. (1997). Crossed cerebellar diaschisis in chronic Broca's aphasia. Neuroradiology, 39, 624–6.CrossRefGoogle ScholarPubMed
Aftonomos, L. B., Appelbaum, J. S. and Steele, R. D. (1999). Improving outcomes for persons with aphasia in advanced community-based treatment programs. Stroke, 30, 1370–9.CrossRefGoogle ScholarPubMed
Alexander, M. P., Naeser, M. A. and Palumbo, C. L. (1987). Correlations of subcortical CT lesion sites and aphasia profiles. Brain, 110, 961–91.CrossRefGoogle ScholarPubMed
Basso, A., Lecours, A. R., Moraschini, S. and Vanier, M. (1985). Anatomoclinical correlations of the aphasias as defined through computerized tomography: exceptions. Brain Lang., 26, 201–29.CrossRefGoogle ScholarPubMed
Berthier, M. L. (2005). Poststroke aphasia: epidemiology, pathophysiology and treatment. Drugs Aging, 22, 163–82.CrossRefGoogle ScholarPubMed
Bhogal, S. K., Teasell, R. and Speechley, M. (2003). Intensity of aphasia therapy, impact on recovery. Stroke, 34, 987–93.CrossRefGoogle ScholarPubMed
Brust, J. C., Shafer, S. Q., Richter, R. W. and Bruun, B. (1976). Aphasia in acute stroke. Stroke, 7, 167–74.CrossRefGoogle ScholarPubMed
Cereda, C., Ghika, J., Maeder, P. and Bogousslavsky, J. (2002). Strokes restricted to the insular cortex. Neurology, 59, 1950–5.CrossRefGoogle ScholarPubMed
Coppens, P. (1991). Why are Wernicke's aphasia patients older than Broca's? A critical view of the hypotheses. Aphasiology, 5, 279–90.CrossRefGoogle Scholar
Croquelois, A., Wintermark, M., Reichhart, M., Meuli, R. and Bogousslavsky, J. (2003). Aphasia in hyperacute stroke: language follows brain penumbra dynamics. Ann. Neurol., 54, 321–9.CrossRefGoogle ScholarPubMed
Doesborgh, S. J., Sandt-Koenderman, W. M., Dippel, D. W., et al. (2003). Linguistic deficits in the acute phase of stroke. J. Neurol., 250, 977–82.CrossRefGoogle ScholarPubMed
Ferro, J. M. and Madureira, S. (1997). Aphasia type, age and cerebral infarct localization. J. Neurol., 244, 505–9.CrossRefGoogle Scholar
Godefroy, O., Rousseaux, M., Pruvo, J. P., Cabaret, M. and Leys, D. (1994). Neuropsychological changes related to unilateral lenticulostriate infarcts. J. Neurol. Neurosurg. Psychiatry, 57, 480–5.CrossRefGoogle ScholarPubMed
Godefroy, O., Dubois, C., Debachy, B., Leclerc, M. and Kreisler, A. (2002). Vascular aphasias: main characteristics of patients hospitalized in acute stroke units. Stroke, 33, 702–5.CrossRefGoogle ScholarPubMed
Goodglass, H. and Kaplan, E. (1983). The Assessment of Aphasia and Related Disorders. Philadelphia: Lea and Febiger.Google Scholar
Greener, J., Enderby, P. and Whurr, R. (2000). Speech and Language Therapy for Aphasia Following Stroke. Cochrane Database Syst Rev CD000425.Google ScholarPubMed
Greener, J., Enderby, P. and Whurr, R. (2001) Pharmacological Treatment for Aphasia Following Stroke. Cochrane Database Syst Rev CD000424.Google ScholarPubMed
Heiss, W. D., Kessler, J., Thiel, A., Ghaemi, M. and Karbe, H. (1999). Differential capacity of left and right hemispheric areas for compensation of poststroke aphasia. Ann. Neurol., 45, 430–8.3.0.CO;2-P>CrossRefGoogle ScholarPubMed
Hillis, A. E., Kane, A., Tuffiash, E., et al. (2001). Reperfusion of specific brain regions by raising blood pressure restores selective language functions in subacute stroke. Brain Lang., 79, 495–510.CrossRefGoogle ScholarPubMed
Hillis, A. E., Wityk, R. J., Barker, P. B., et al. (2002). Subcortical aphasia and neglect in acute stroke: the role of cortical hypoperfusion. Brain, 125, 1094–104.CrossRefGoogle ScholarPubMed
Hillis, A. E., Barker, P. B., Wityk, R. J., et al. (2004). Variability in subcortical aphasia is due to variable sites of cortical hypoperfusion. Brain Lang., 89, 524–30.CrossRefGoogle ScholarPubMed
Kennedy, P. G. (1988). A retrospective analysis of forty-six cases of herpes simplex encephalitis seen in Glasgow between 1962 and 1985. Q. J. Med., 68, 533–40.Google ScholarPubMed
Kertesz, A. and Sheppard, A. (1981). The epidemiology of aphasic and cognitive impairment in stroke: age, sex, aphasia type and laterality differences. Brain, 104, 117–28.CrossRefGoogle ScholarPubMed
Kleiser, R., Wittsack, H. J., Butefisch, C. M., Jorgens, S. and Seitz, R. J. (2005). Functional activation within the PI-DWI mismatch region in recovery from ischemic stroke: preliminary observations. Neuroimage, 24, 515–23.CrossRefGoogle ScholarPubMed
Kreisler, A., Godefroy, O., Delmaire, C., et al. (2000). The anatomy of aphasia revisited. Neurology, 54, 1117–23.CrossRefGoogle ScholarPubMed
Lacour, A., Seze, J., Revenco, E., et al. (2004). Acute aphasia in multiple sclerosis: A multicenter study of 22 patients. Neurology, 62, 974–7.CrossRefGoogle ScholarPubMed
Laska, A. C., Hellblom, A., Murray, V., Kahan, T. and Arbin, M. (2001). Aphasia in acute stroke and relation to outcome. J. Intern. Med., 249, 413–22.CrossRefGoogle Scholar
Marien, P., Saerens, J., Nanhoe, R., et al. (1996). Cerebellar induced aphasia: case report of cerebellar induced prefrontal aphasic language phenomena supported by SPECT findings. J. Neurol. Sci., 144, 34–43.CrossRefGoogle ScholarPubMed
Maulaz, A. B., Bezerra, D. C. and Bogousslavsky, J. (2005). Posterior cerebral artery infarction from middle cerebral artery infarction. Arch. Neurol., 62, 938–41.CrossRefGoogle ScholarPubMed
Nadeau, S. E. and Crosson, B. (1997). Subcortical aphasia. Brain Lang., 58, 355–402.CrossRefGoogle ScholarPubMed
Nespoulous, J. L., Lecours, A. R. and Lafond, D. (1986). Protocole Montréal-Toulouse de l'examen de l'aphasie, Module Standard Initial (Version Beta). Montréal, Canada: L'Ortho Édition.Google Scholar
Pedersen, P. M., Jorgensen, H. S., Nakayama, H., Raaschou, H. O. and Olsen, T. S. (1995). Aphasia in acute stroke: incidence, determinants, and recovery. Ann. Neurol., 38, 659–66.CrossRefGoogle ScholarPubMed
Pedersen, P. M., Vinter, K. and Olsen, T. S. (2004). Aphasia after stroke: type, severity and prognosis. The Copenhagen aphasia study. Cerebrovasc. Dis., 17, 35–43.CrossRefGoogle ScholarPubMed
Pohjasvaara, T., Erkinjuntti, T., Ylikoski, R., et al. (1998). Clinical determinants of poststroke dementia. Stroke, 29, 75–81.CrossRefGoogle ScholarPubMed
Puel, M., Demonet, J. F., Cardebat, D., et al. (1984). Aphasie souscorticale. Etude neurolinguistique et scangraphique de 25 cas. Rev. Neurol. (Paris), 140, 695–710.Google Scholar
Riepe, M. W., Riss, S., Bittner, D. and Huber, R. (2004). Screening for cognitive impairment in patients with acute stroke. Dement. Geriatr. Cogn. Disord., 17, 49–53.CrossRefGoogle ScholarPubMed
Tatemichi, T. K., Desmond, D. W., Stern, Y., et al. (1994). Cognitive impairment after stroke: frequency, patterns, and relationship to functional abilities. J. Neurol. Neurosurg. Psychiatry, 57, 202–7.CrossRefGoogle ScholarPubMed
Thommessen, B., Thoresen, G. E., Bautz-Holter, E. and Laake, K. (2002). Validity of the aphasia item from the Scandinavian Stroke Scale. Cerebrovasc. Dis., 13, 184–6.CrossRefGoogle ScholarPubMed
Verstichel, P. (2003). Thalamic aphasia. Rev. Neurol. (Paris), 159, 947–57.Google ScholarPubMed
Willmes, K. and Poeck, K. (1993). To what extent can aphasic syndromes be localized?Brain, 116, 1527–40.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×