Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-pcn4s Total loading time: 0.627 Render date: 2022-05-17T01:04:42.128Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

2 - Shigella invasion

Published online by Cambridge University Press:  21 August 2009

Chihiro Sasakawa
Affiliation:
Institute of Medical Science, University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
Richard J. Lamont
Affiliation:
University of Florida
Get access

Summary

INVASION

Shigella invasion and the host inflammatory responses

Shigella cause bacillary dysentery (shigellosis), a disease provoking a severe inflammatory diarrhea in humans and primates. In tropical areas of developing countries, shigellosis is endemic and a major killer of children under 5 years of age. Shigellosis occurs following ingestion of a very small number (100–1000) of bacteria, thus permitting easy spread of the disease by person-to-person contact as well as by the drinking of contaminated water.

Shigella, a Gram-negative bacillus, comprises four species – S. dysenteriae, S. flexneri, S. boydii, and S. sonnei (Pupo et al., 2000; Lan and Reeves, 2002). Shigella is now recognized as a member of Escherichia coli; however, the group of bacteria causing shigellosis is idiomatically called Shigella in this chapter. Shigellosis is also caused by enteroinvasive E. coli (EIEC), a pathogenic E. coli. Shigella and EIEC possess a large 210- to 230-kb plasmid on which the major virulence functions are encoded. Because Shigella has neither adhesins for upper GI tract cells nor flagella, after infection by means of the fecal–oral route the bacteria reach the colon and rectum directly, where they translocate through the epithelial barrier by means of the M cells overlaying the solitary lymphoid nodules (Fig. 2.1; also see Wassef et al., 1989; Sansonetti et al., 1991, 1996). Once they have reached the underlying M cells, Shigella infect the resident macrophages and multiply.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adam, T., Giry, M., Boquet, P., and Sansonetti, P. J. (1996). Rho-dependent membrane folding causes Shigella entry into epithelial cells. EMBO J. 15, 3315–3321Google ScholarPubMed
Adler, B., Sasakawa, C., Okada, N., Makino, S., and Yoshikawa, M. (1989). A dual transcriptional activation system for the 230 kb plasmid genes coding for virulence-associated antigens of Shigella flexneri. Mol. Microbiol. 3, 627–635CrossRefGoogle ScholarPubMed
Bernardini, M. L., Mounier, J., d'Hauteville, H., Coquis-Randon, M., and Sansonetti, P. J. (1989). Identification of icsA, a plasmid locus of Shigella flexneri that governs bacterial intra-and intercellular spreading through interaction with F-actin. Proc. Natl. Acad. Sci. USA 86, 3867–3871CrossRefGoogle Scholar
Blocker, A., Gounon, P., Larquest, K., Neibuhr, V., Cabiaux, C., Parsot, C., and Sansonetti, P. J. (1999). The tripartite type III secretion of Shigella flexneri inserts IpaB and IpaC into host membranes. J. Cell Biol. 147, 683–693CrossRefGoogle ScholarPubMed
Blocker, A., Komoriyama, K., and Aizawa, S. (2003). Type III secretion systems and bacterial flagella: insights into their function from structural similarities. Proc. Natl. Acad. Sci. USA 100, 3027–3030CrossRefGoogle ScholarPubMed
Bourdet-Sicard, R., Rudiger, M., Jockusch, B. M., Gounon, P., Sansonetti, P. J., and Tran van Nhieu, G. (1999). Binding of the Shigella protein IpaA to vinculin induces F-actin depolymerization. EMBO J. 18, 5853–5862CrossRefGoogle ScholarPubMed
Buchrieser, C., Glaser, P. P., Rusniok, C., Nedjari, H., d'Hauteville, H., Kunst, F., Sansonetti, P. J., and Parsot, P. J. (2000). The virulence plasmid pRW100 and the repertoire of proteins secreted by the type III secretion apparatus of Shigella flexneri. Mol. Microbiol. 38, 760–771CrossRefGoogle ScholarPubMed
Charles, M., Perez, M., Kobil, J. H., and Goldberg, M. B. (2001). Polar targeting of Shigella virulence factor IcsA in Enterobacteriacae and Vibrio. Proc. Natl. Acad. Sci. USA 98, 9871–9876CrossRefGoogle ScholarPubMed
Collazo, C. M. and Galán, J. E. (1996). Requirement of exported proteins for secretion through the invasion-associated Type III system in Salmonella typhimurium. Infect. Immun. 64, 3524–3531Google ScholarPubMed
Cornelis, G. R. and Gijsegem, F. (2000). Assembly and function of type III secretory systems. Annu. Rev. Microbiol. 30, 47–56Google Scholar
Daniell, S. H., Takahashi, N., Wilson, R., Friedberg, D., Rosenshine, I., Boody, F. P., Shaw, R. K., Knutton, S., Frankel, G., and Aizawa, S. (2001). The filamentous type III secretion translocon of enteropathogenic Escherichia coli. Cell. Microbiol. 3, 865–871CrossRefGoogle ScholarPubMed
Dehio, C., Prévost, M. C., and Sansonetti, P. J. (1995). Invasion of epithelial cells by Shigella flexneri induces tyrosine phosphorylation of cortactin by a pp60c-src-mediated signalling pathway. EMBO J. 14, 2471–2482Google ScholarPubMed
Dorman, C. J. and Porter, M. E. (1998). The Shigella virulence gene regulatory cascade: a paradigm of bacterial gene control mechanisms. Mol. Microbiol. 29, 677–684CrossRefGoogle ScholarPubMed
Duménil G., Olivo J. C., Pellegrini, S., Fellous, M., Sansonetti, P. J., and Tran van Nhieu, G. (1998). Interferon α inhibits a Src-mediated pathway necessary for Shigella-induced cytoskeletal rearrangements in epithelial cells. J. Cell Biol. 143, 1003–1012CrossRefGoogle ScholarPubMed
Egile, C., d'Hauteville, H., Parsot, C., and Sansonetti, P. J. (1997). SopA, the outer membrane protease responsible for polar localization of IcsA in Shigella flexneri. Mol. Microbiol. 23, 1063–1073CrossRefGoogle ScholarPubMed
Egile, C., Loisel, T. P., Laurent, V., Li, R., Pantaloni, D., Sansonetti, P. J., and Carlier, M-F. (1999). Activation of the CDC42 effector N-WASP by the Shigella flexneri IcsA protein promotes actin nucleation by Arp2/3 complex and bacterial actin-based motility. J. Cell Biol. 146, 1319–1332CrossRefGoogle ScholarPubMed
Elliott, S. J., Krejany, E. O., Mellies, J. L., Robins-Browne, R. M., Sasakawa, C., and Kaper, J. B. (2001). EspG a novel type III system-secreted protein from enteropathogenic Escherichia coli with similarities to VirA of Shigella flexneri. Infect. Immun. 69, 4027–4033CrossRefGoogle ScholarPubMed
Enomoto, T. (1996). Microtuble disruption induces the formation of actin stress fibers and focal adhesions in cultured cells: possible involvement of Rho signal cascade. Cell Struc. Func. 5, 317–326CrossRefGoogle Scholar
Galyov, E. E., Wood, M. W., Rosquist, R., Mullan, P. B., Watson, P. R., Hedges, S., and Wallis, T. S. (1997). A secreted effector protein of Salmonella dublin is translocated into eukaryotic cells and mediates inflammation and fluid secretion in infected ileal mucosa. Mol. Microbiol. 25, 903–912CrossRefGoogle ScholarPubMed
Girardin, S. E., Tournebize, R., Mavris, M., Page, A-L., Li, X., Stark, G. R., Bertin, J., DiStefano, P. S., Yaniv, M., Sansonetti, P. J., and Philpott, D. J. (2001). CARD/Nod1 mediates NF-κB and JNK activation by invasive Shigella flexneri. EMBO Reports 21, 736–742CrossRefGoogle Scholar
Goldberg, M. B. (2001). Actin-based motility of intracellular microbial pathogens. Microbiol. Mol. Biol. Rev. 65, 595–626CrossRefGoogle Scholar
Goldberg, M. B., Barzu, O., Parsot, C., and Sansonetti, P. J. (1993). Unipolar localization and ATPase activity of IcsA, a Shigella flexneri protein involved in intracellular movement. J. Bacteriol. 175, 2189–2196CrossRefGoogle ScholarPubMed
Håkansson, S., Schesser, K., Person, C., Galyov, E. E., Rosqvist, R., Homblé, F., and Walf-Watz, H. (1996). The YopB protein of Yersinia pseudotu berculosis is essential for the translocation of Yop effector proteins across the target cell plasma membrane and displays a contact-dependent membrane disrupting activity. EMBO J. 15, 5812–5823Google Scholar
Hirao, M., Sato, N., Kondo, T., Yonemura, S., Monden, M., Sasaki, T., Takai, Y., and Tsukita, S. (1996). Regulation mechanisms of ERM (ezrin/radixin/moesin) protein/plasma membrane association: possible involvement of phosphatidylinositol turnover and Rho-dependent signaling pathway. J. Cell Biol. 135, 37–51CrossRefGoogle Scholar
Hong, K. H. and Miller, V. L. (1998). Identification of a novel Salmonella invasion locus homologous to Shigella ipgDE. J. Bacteriol. 180, 1793–1802Google ScholarPubMed
Hueck, C. J. (1998). Type III protein secretion systems bacterial pathogens of animal and plants. Microbiol. Mol. Biol. Rev. 62, 379–433Google ScholarPubMed
Inohara, N., Ogura, Y., Chen, F. F., Muto, A., and Nunez, G. (2001). Human Nod1 confers responsiveness to bacterial lipopolysaccharides. J. Biol. Chem. 276, 2551–2554CrossRefGoogle ScholarPubMed
Jockusch, B. M. and Rudiger, M. (1996). Crosstalk between cell adhesion molecules: vinculin as a paradigm for regulation by conformation. Trends Cell Biol. 6, 311–315CrossRefGoogle ScholarPubMed
Knutton, S., Rosenshine, I., Pallen, M. J., Nisan, I., Neves, B. C., Bain, C., Wolf, C., Dougan, G., and Frankel, G. (1998). A novel EspA-associated surface organelle of enteropathogenic Escherichia coli involved in protein translocation into epithelial cells. EMBO J. 17, 2166–2176CrossRefGoogle ScholarPubMed
Krendel, M., Zenke, F. T., and Bokoch, G. M. (2002). Nucleotide exchange factor GEF-H1 mediates cross-talk between microtubles and the actin cytoskeleton. Nat. Cell Biol. 4, 294–301CrossRefGoogle Scholar
Kubori, T., Matsushima, Y., Nakamura, D., Uralil, J., Lara-Tejero, M., Sukhan, A., Galan, J. E., and Aizawa, S. (1998). Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science 280, 602–605CrossRefGoogle ScholarPubMed
Kubori, T., Shkan, A., Aizawa, S., and Galán, J. E. (2000). Molecular characterization and assembly of the needle complex of the Salmonella typhimurium type III protein secretion system. Proc. Natl. Acad. Sci. USA 97, 10,225–10,230CrossRefGoogle ScholarPubMed
Krugmann, S. K., Jordens, I., Gevaert, K., Driessens, M., Vandekerckhove, J., and Hall, A. (2001). Cdc42 induces filopodia by promoting the formation of an IRSp53: Mena complex. Curr. Biol. 11, 1645–1655CrossRefGoogle ScholarPubMed
Kuwae, A., Yoshida, S., Tamano, K., Mimuro, H., Suzuki, T., and Sasakawa, C. (2001). Shigella invasion of macrophage requires the insertion of IpaC into the host plasma membrane. J. Biol. Chem. 276, 32,230–32,239CrossRefGoogle ScholarPubMed
Lafont, F., Tran van Nhieu, G., Hanada, K., Sansonetti, P. J., and Gisou van der Goot, F. (2002). Initial steps of Shigella infection depend on the cholesterol/ spingolipid raft-mediated CD44-IpaB interaction. EMBO J. 21, 4449–4457CrossRefGoogle Scholar
Laine, R. O., Zeile, W., Kang, F., Purich, D. L., and Southwick, F. S. (1997). Vinculin proteolysis unmasks an ActA homolog for actin-based Shigella motility. J. Cell Biol. 138, 1255–1264CrossRefGoogle ScholarPubMed
Lan, R. and Reeves, P. R. (2002). Escherichia coli in disguise: molecular origins of Shigella. Microb. Infect. 4, 1125–1132CrossRefGoogle ScholarPubMed
Lett, M-C., Sasakawa, C., Okada, N., Sakai, T., Makino, S., Yamada, M., Komatsu, K., and Yoshikawa, M. (1989). virG, a plasmid-coded virulence gene of Shigella flexneri: identification of the virG protein and determination of the complete coding sequence. J. Bacteriol. 171, 353–359CrossRefGoogle ScholarPubMed
Loisel, T. P., Boujemaa, R., Pantaloni, D., and Carlier, M-F. (1999). Reconstitution of actin-based motility of Listeria and Shigella using pure proteins. Nature 401, 613–616CrossRefGoogle ScholarPubMed
, Makino S., Sasakawa, C., Kamata, T., Kurata, T., and Yoshikawa, M. (1986). A genetic determinant required for continuous reinfection of adjacent cells on a large plasmid in Shigella flexneri 2a. Cell 46, 551–555Google Scholar
Mavris, M., Page, A. L., Tournebize, R., Demers, B., Sansonetti, P. J., and Parsot, C. (2002). Regulation of transcription by the activity of the Shigella flexneri type III secretion apparatus. Mol. Microbiol. 43, 1543–1553CrossRefGoogle ScholarPubMed
Ménard, R., Prévost, M. C., Gounon, P., Sansonetti, P. J., and Dehio, C. (1996). The secreted Ipa complex of Shigella flexneri promotes entry into mammalian cells. Proc. Natl. Acad. Sci. USA 93, 1254–1258CrossRefGoogle ScholarPubMed
Ménard, R., Sansonetti, P. J., and Parsot, C. (1994a). The secretion of the Shigella flexneri Ipa invasins is induced by the epithelial cells and controlled by IpaB and IpaD. EMBO J. 13, 5293–5302Google Scholar
Ménard, R., Sansonetti, P. J., Parsot, C., and Vasselon, T. (1994b). Extracellular association and cytoplasmic partioning of the IpaB and IpaC invasins of Shigella flexneri. Cell 79, 515–525CrossRefGoogle Scholar
Miki, H., Miura, K., and Takenawa, T. (1996). N-WASP, a novel actin-depolymerizing protein, regulate the cortical cytoskeletal rearrangement in a PIP2-dependent manner downstream of tyrosine kinase. EMBO J. 15, 5326–5335Google Scholar
Miki, H., Yamaguchi, H., Suetsugu, S., and Takenawa, T. (2000). IRSp53 is an essential intermediate between Rac and WAVE in the regulation of membrane ruffling. Nature 408, 732–735CrossRefGoogle ScholarPubMed
Mimuro, H., Susuki, T., Suetsugu, S., Miki, H., Takenawa, T., and Sasakawa, C. (2000). Profilin is required for sustaining efficient intra-and intercellular spreading of Shigella flexneri. J. Biol. Chem. 275, 28,893–28,901CrossRefGoogle ScholarPubMed
Mounier, J., Laurent, V., Hall, A., Fort, P., Calier, M-F., Sansonetti, P. J., and Egile, C. (1999). Rho family GTPases control entry of Shigella flexneri into epithelial cells but not intracellular motility. J. Cell Sci. 112, 2069–2080Google Scholar
Mounier, J., Vasselon, T., Hellio, R., Lesourd, M., and Sansonetti, P. J. (1992). Shigella flexneri enters human colonic Caco-2 epithelial cells through the basolateral pole. Infect. Immun. 60, 237–248Google ScholarPubMed
Nakata, N., Tobe, T., Fukuda, I., Suzuki, T., Komatsu, K., Yoshikawa, M., and Sasakawa, C. (1993). The absence of surface protease, OmpT, determines the intercellular spreading ability of Shigella: the relationship between the ompT and kcpA loci. Mol. Microbiol. 9, 459–468CrossRefGoogle ScholarPubMed
Niebuhr, K., Jouihri, N., Allaoui, A., Gounon, P., Sansonetti, P. J., and Parsot, C. (2000). IpgD, a protein secreted by the type III secretion machinery of Shigella flexneri, is chaperoned by IpgE and implicated in entry focus formation. Mol. Microbiol. 38, 8–19CrossRefGoogle ScholarPubMed
Niebuhr, K., Giuriato, S., Pedron, T., Philpott, D. J., Gaits, F., Sable, J., Sheetz, M. P., Parsot, C., Sansonetti, P. J., and Payrastre, B. (2002). Conversion of PtdIns(4,5)P2 into PtdIns(5)P by the S. flexneri effector IpgD reorganizes host cell morphology. EMBO J. 21, 5069–5078CrossRefGoogle Scholar
Norris, F. A., Wilson, M. P., Wallis, T. S., Galyov, E. E., and Majerus, P. W. (1998). SopB, a protein required for virulence of Salmonella dublin, is an inositol phosphate phosphatase. Proc. Natl. Acad. Sci. USA 95, 14,057–14,059CrossRefGoogle ScholarPubMed
Okada, N., , Sasakawa C., Tobe, T., Yamada, M., Nagai, S., Talkder, K., Komatsu, K., Kanegasaki, S., and Yoshikawa, M. (1991). Virulence-associated chromosomal loci of Shigella flexneri identified by random Tn5 insertion mutagenesis. Mol. Microbiol. 5, 887–893Google ScholarPubMed
Page, A-L., Sansonetti, P. J., and Parsot, C. (2002). Spa15 of Shigella flexneri, a third type of chaperone in the type III secretion pathway. Mol. Microbiol. 43, 1533–1542CrossRefGoogle ScholarPubMed
Perdomo, J. J., Gounon, P., and Sansonetti, P. J. (1994). Polymorphonuclear leukocyte transmigration promotes invasion of colonic epithelial monolayers by Shigella flexneri. J. Clin. Invest. 93, 633–643CrossRefGoogle Scholar
Plano, G. V., Day, J. B., and Ferracci, F. (2001). Type III export: new uses for an old pathway. Mol. Microbiol. 40, 284–293CrossRefGoogle ScholarPubMed
Pohlner, J., Halter, K., Beyreuther, K., and Meyer, T. F. (1987). Gene structure and extracellular secretion of Neisseria gonorrhoeae IgA protease. Nature 325, 458–462CrossRefGoogle ScholarPubMed
Pupo, G. M., Lan, R., and Reeves, P. R. (2000). Multiple independent origins of Shigella clones of Escherichia coli and convergent evolution of many of their characteristics. Proc. Natl. Acad. Sci. USA 97, 10,567–10,572CrossRefGoogle ScholarPubMed
Rajakumar, R., Jost, B. H., Sasakawa, C., Okada, N., Yoshikawa, M., and Adler, B. (1994). Nucleotide sequence of the rhamnose biosynthetic operon of Shigella flexneri 2a and role of lipopolysacchride in virulence. J. Bacteriol. 176, 2364–2373CrossRefGoogle Scholar
Renesto, P., Mounier, J., and Sansonetti, P. J. (1996). Induction of adherence and degranulation of polymorphonuclear leukocytes: A new expression of the invasive phenotype of Shigella flexneri. Infect. Immun. 64, 719–723Google ScholarPubMed
Robbins, J. R., Monack, D., McCallum, S. J., Vegas, A., Pham, E., Goldberg, M. B., and Theriot, J. A. (2001). The making of a gradient: IcsA (VirG) polarity in Shigella flexneri. Mol. Microbiol. 41, 861–872CrossRefGoogle ScholarPubMed
Rohatgi, R., Ho, H. Y., and Kirschner, M. W. (2000). Mechanisms of N-WASP activation by CDC42 and phosphatidylinositol 4,5-bisphosphate. J. Cell Biol. 150, 1299–1310CrossRefGoogle Scholar
Rohatgi, R., Ma, H., Miki, H., Lopez, M., Kirchhausen, T., Takenawa, T., and Kirschner, M. W. (1999). The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell 97, 221–231CrossRefGoogle ScholarPubMed
Sansonetti, P. J., Arondel, J., Fountaine, A., D'Hauteville, H., and Bernardini, L. (1991). ompB (osmo-regulation) and icsA (cell to cell spreading) mutants of Shigella flexneri: vaccine candidates and probes to study the pathogenesis of shigellosis. Vaccine 9, 416–422CrossRefGoogle Scholar
Sansonetti, P. J., Arondel, J. R., Prévost, M. C., and Huerre, M. (1996). Infection of rabbit Peyer's patches by Shigella flexneri: effect of adhesive or invasive bacterial phenotypes on follicle-associated epithelium. Infect. Immun. 64, 2752–2764Google ScholarPubMed
Sansonetti, P. J., Ryter, A., Clerc, P., Maurelli, A. T., and Mounier, J. (1986). Multiplication of Shigella flexneri within HeLa cells: lysis of the phagocytic vacuole and plasmid-mediated contact hemolysis. Infect. Immun. 51, 461–469Google ScholarPubMed
Sasakawa, C., Kamata, K., Sakai, T., Makino, S., Yamada, H., Okada, N., and Yoshikawa, M. (1988). Virulence-associated genetic regions comprising 31 kilobases of the 230-kilobase plasmid in Shigella flexneri 2a. J. Bacteriol. 170, 2480–2484CrossRefGoogle ScholarPubMed
Schuch, R., Sandlin, R. C., and Maurelli, A. T. (1999). A system for identifying post-invasion functions of invasion genes: requirements for the Mxi-Spa type III secretion pathway of Shigella flexneri in intercellular dissemination. Mol. Microbiol. 34, 675–689CrossRefGoogle ScholarPubMed
Sekiya, K., Ohishi, M., Ogino, T., Tamano, K., Sasakawa, C., and Abe, A. (2001). Supermolecular structure of the enteropathogenic Escherichia coli type III secretion system and its direct interaction with the EspA-sheath-like structure. Proc. Natl. Acad. Sci. USA 98, 11,638–11,643CrossRefGoogle ScholarPubMed
Shere, K. D., Sallustion, S., Manessis, A., D'Aversa, T. G., and Goldberg, M. B. (1997). Distribution of IcsP, the major Shigella protease that cleaves IcsA, accelerates actin-based motility. Mol. Microbiol. 25, 451–462CrossRefGoogle ScholarPubMed
Skoudy, A., Mounier, J., Aruffo, A., Ohayon, H., Gounon, P., Sansonetti, P. J., and Tran van Nhieu, G. (2000). CD44 binds to the Shigella IpaB protein and participates in bacterial invasion of epithelial cells. Cell. Microbiol. 2, 19–33CrossRefGoogle ScholarPubMed
Skoudy, A., Tran van Nhieu, G., Mantis, N., Aprin, M., Mounier, J., Gounon, P., and Sansonetti, P. J. (1999). A functional role for ezrin during Shigella flexneri entry into epithelial cells. J. Cell Sci. 112, 2059–2068Google ScholarPubMed
Snapper, S. B., Takeshima, F., Anton, I., Liu, C. H., Thomas, S. M., Nguyen, D., Dudley, D., Fraser, H., Purich, D., Lopez-Llasaca, M., Klein, C., Davidson, L., Bronson, R., Mulligan, R., Southwick, F., Geha, R., Goldberg, M. B., Rosen, F. S., Hartwig, J. H., and Alt, F. W. (2001). N-WASP deficiency reveals distinct pathways for cell surface projections and microbial actin-based motility. Nat. Cell Biol. 3, 897–904CrossRefGoogle ScholarPubMed
Steinhauer, J., Agha, R., Andrew, T. P., Varga, W., and Goldberg, B. (1999). The nuipolar Shigella surface protein IcsA is targeted directly to the bacterial old pole: IcsP cleavage of IcsA occurs over the entire bacterial surface. Mol. Microbiol. 32, 367–377CrossRefGoogle ScholarPubMed
Suzuki, T., Lett, M-C., and Sasakawa, C. (1995). Extracellular transport of VirG protein in Shigella. J. Biol. Chem. 270, 30,874–30,880CrossRefGoogle ScholarPubMed
Suzuki, T., Miki, T., Takenawa, T., and Sasakawa, C. (1998). Neural Wiskott-Aldrich syndrome protein is implicated in actin-based motility of Shigella flexneri. EMBO J. 17, 2767–2776CrossRefGoogle ScholarPubMed
Suzuki, T., Mimuro, H., Suetsugu, S., Miki, H., Takenawa, T., and Sasakawa, C. (2002). Neural Wiskott-Aldrich syndrome protein (N-WASP) is the specific ligand for Shigella VirG among the WASP family and determines the host cell type allowing actin-based spreading. Cell. Microbiol. 4, 223–233CrossRefGoogle ScholarPubMed
Suzuki, T., Mimuro, H., Miki, H., Takenawa, T., Sasaki., , Nakanishi, H., Takai, Y., and Sasakawa, C. (2000). Rho family GTPase Cdc42 is essential for the actin-based motility of Shigella in mammalian cells. J. Exp. Med. 191, 1905–1920CrossRefGoogle ScholarPubMed
Suzuki, T., Murai, T., Fukuda, I., Tobe, T., Yoshikawa, M., and Sasakawa, C. (1994). Identification and characterization of a chromosomal virulence gene, vacJ, required for intercellular spreading of Shigella flexneri. Mol. Microbiol. 11, 31–41CrossRefGoogle ScholarPubMed
Suzuki, T., Saga, S., and Sasakawa, C. (1996). Functional analysis of Shigella VirG domains essential for interaction with vinculin and actin-based motility. J. Biol. Chem. 271, 21,878–21,885CrossRefGoogle ScholarPubMed
Suzuki, T. and Sasakawa, C. (2001). Molecular basis of the intracellular spreading of Shigella. Infect. Immun. 69, 5959–5966CrossRefGoogle ScholarPubMed
Tamano, K., Aizawa, S., Katayama, E., Nonaka, T., Imajo-Ohmi, S., Kuwae, A., Nagai, S., and Sasakawa, C. (2000). Supramolecular structure of the Shigella type III secretion machinery: the needle part is changeable in length and essential for delivery of effectors. EMBO J. 19, 3876–3887CrossRefGoogle ScholarPubMed
Tamano, K., Eisaku, K., Toyotome, T., and Sasakawa, C. (2002). Shigella Spa32 is an essential secretory protein for functional type III secretion machinery and uniformity of its needle length. J. Bacteriol. 184, 1244–1252CrossRefGoogle ScholarPubMed
Takenawa, T. and Miki, H. (2000). WASP and WAVE family proteins: key molecules for rapid rearrangment of cortical actin filaments and cell movement. J. Cell Sci. 114, 1801–1809Google Scholar
Terebiznik, M. R., Vieira, O. V., Marcus, S. L., Slade, A., Yip, C. M., Trimble, W. S., Meyer, T., Finlay, B. B., and Grinstein, S. (2002). Elimination of host cell PtdIns(4, 5)P2 by bacterial SiDg promotes membrane fission during invasion by Salmonella. Nature Cell Biol. 4, 766–773CrossRefGoogle Scholar
Tran van Nhieu, G., Caron, E., Hall, A., and Sansonetti, P. J. (1999). IpaC induces actin polymerization and filopodia formation during Shigella entry into epithelial cells. EMBO J. 18, 3249–3262CrossRefGoogle ScholarPubMed
Tran van Nhieu, G. and Sansonetti, P. J. (1999). Mechanism of Shigella entry into epithelial cells. Curr. Opin. Microbiol. 2, 51–55CrossRefGoogle Scholar
Gijsegem, F., Vasse, J-C., Camus, M., Marenda, M. and Boucher, C., (2000). Rastonia solanaceram produts Hrp-dependent pili that are required for PopA secretion but not for attachment of bacteria to plant cells. Mol. Microbiol. 36, 249–260CrossRefGoogle Scholar
Gijsegem, F., Vasse, J., Camus, J-C., Marenda, M., and Boucher, C. (2000). Ralstonia solanacearum produces Hrp-dependent pili that are required for PopA secretion but not for attachment of bacteria to plant cells. Mol. Microbiol. 36, 249–260CrossRefGoogle Scholar
Venkatesan, M. M., Goldberg, M. B., Rose, D. J., Grotbeck, E. J., Burland, V., and Blattner, F. R. (2001). Complete DNA sequence and analysis of the large virulence plasmid of Shigella flexneri. Infect. Immun. 69, 3271–3285CrossRefGoogle ScholarPubMed
Wassef, J. S., Keren, D. F., and Mailloux, J. L. (1989). Role of M cells in initial antigen uptake and in ulcer formation in the rabbit intestinal loop model of shigellosis. Infect. Immun. 57, 858–863Google ScholarPubMed
Watarai, M., Funato, S., and Sasakawa, C. (1996). Interaction of Ipa proteins of Shigella flexneri with α5β1 integrin promotes entry of the bacteria into mammalian cells. J. Exp. Med. 183, 991–999CrossRefGoogle ScholarPubMed
Watarai, M., Kamata, Y., Kozaki, S., and Sasakawa, C. (1997). Rho, a small GTP-binding protein, is essential for Shigella invasion of epithelial cells. J. Exp. Med. 185, 281–292CrossRefGoogle ScholarPubMed
Waterman-Storer, C. M., Wothylake, R. A., Liu, B. P., Burridge, K., and Salmon, E. D. (1999). Microtubule growth activates Rac1 to promote lamellipodial protrusion in fibroblasts. Nat. Cell Biol. 1, 45–50CrossRefGoogle ScholarPubMed
Uchiya, K., Tobe, T., Komatsu, K., Suzuki, T., Watarai, M., Fukuda, I., Yoshikawa, M., and Sasakawa, C. (1995). Identification of a novel virulence gene, virA, on the large plasmid of Shigella, involved in invasion and intercellular spreading. Mol. Microbiol. 17, 241–250CrossRefGoogle ScholarPubMed
Yoshida, S., Katayama, E., Kuwae, A., Mimuro, H., Suzuki, T., and Sasakawa, C. (2002). Shigella deliver an effector protein to trigger host microtubule destabilization, which promotes Rac1 activity and efficient bacterial internalization. EMBO J. 21, 2923–2935CrossRefGoogle ScholarPubMed
Zychlinsky, A., Fitting, C., Cavaillon, J. M., and Sansonetti, P. J. (1994). Intereukin 1 is released by murine macrophages during apoptosis induced by Shigella flexneri. J. Clin. Invest. 94, 1328–1332CrossRefGoogle Scholar
Zychlinsky, A., Prévost, M. C., and Sansonetti, P. J. (1992). Shigella flexneri induces apoptosis in infected macrophages. Nature 358, 167–169CrossRefGoogle ScholarPubMed
Zychlinsky, A. and Sansonetti, P. J. (1997). Apoptosis as a proinflammatory event: what can we learn from bacteria-induced cell death? Trends Microbiol. 5, 201–204CrossRefGoogle ScholarPubMed
Zychlinsky, A., Thirumalai, K., Arondel, J., Cantey, J. R., Aliprantis, A. O., and Saonsonetti, P. J. (1996). In vivo apoptosis in Shigella flexneri infection. Infect. Immun. 64, 5357–5365Google Scholar
1
Cited by

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Shigella invasion
    • By Chihiro Sasakawa, Institute of Medical Science, University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
  • Edited by Richard J. Lamont, University of Florida
  • Book: Bacterial Invasion of Host Cells
  • Online publication: 21 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511546273.004
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Shigella invasion
    • By Chihiro Sasakawa, Institute of Medical Science, University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
  • Edited by Richard J. Lamont, University of Florida
  • Book: Bacterial Invasion of Host Cells
  • Online publication: 21 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511546273.004
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Shigella invasion
    • By Chihiro Sasakawa, Institute of Medical Science, University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
  • Edited by Richard J. Lamont, University of Florida
  • Book: Bacterial Invasion of Host Cells
  • Online publication: 21 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511546273.004
Available formats
×