Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-plzwj Total loading time: 0.917 Render date: 2022-05-17T01:51:41.852Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

3 - How Yersinia escapes the host: To Yop or not to Yop

Published online by Cambridge University Press:  21 August 2009

Geertrui Denecker
Affiliation:
Biozentrum, 70 Klingelbergstrasse, CH 4056 Basel, Switzerland
Guy R. Cornelis
Affiliation:
Biozentrum, 70 Klingelbergstrasse, CH 4056 Basel, Switzerland
Richard J. Lamont
Affiliation:
University of Florida
Get access

Summary

The genus Yersinia contains three species of Gram-negative bacteria that are pathogenic for humans: Y. pestis, the agent of bubonic plague; Y. pseudotuberculosis, causing mesenteric adenitis and septicemia; and Y. enterocolitica, causing gastrointestinal syndromes (enteritis and mesenteric lymphadenitis). Bacteria from these three species have a tropism for lymphoid tissues and share the common capacity to resist the innate immune response. Whereas Y. pestis is generally inoculated by a fleabite or aerosol, Y. enterocolitica and Y. pseudotuberculosis are foodborne pathogens, which gain access to the underlying lymphoid tissue (e.g., Peyer's patches) of the intestinal mucosa through M cells (Fig. 3.1; see Autenrieth and Firsching, 1996; Perry and Fetherston, 1997). Once Yersinia has entered the lymphoid system, it overcomes the primary immune response of the host by using the type III secretion system (TTSS) (Cornelis et al., 1998; Cornelis, 2002). TTSS is a sophisticated virulence mechanism by which Gram-negative pathogens inject effector proteins directly into host cells. Currently, more than 20 different TTSSs have been described in animal, plant, and even insect pathogens (Hueck, 1998; Galan and Collmer, 1999; Cornelis, 2000; Buttner and Bonas, 2002).

Depending on the effectors injected, the employment of the TTSS will have a different outcome. Some, like the Mxi–Spa system of Shigella flexneri or the Salmonella pathogenicity island 1 (SPI-1) system of Salmonella enterica, make use of the innate immune system of the host to enhance the proinflammatory response and to trigger phagocytosis by normally nonphagocytic cells, whereas others, such as the pathogenic Yersinia Ysc–Yop system, essentially paralyze the innate immune response of the host (Galan, 2001; Sansonetti, 2001; Cornelis, 2002; Juris et al., 2002).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aepfelbacher, M. and Heesemann, J. (2001). Modulation of Rho GTPases and the actin cytoskeleton by Yersinia outer proteins (Yops). Int. J. Med. Microbiol. 291, 269–276CrossRefGoogle Scholar
Akira, S., Takeda, K., and Kaisho, T. (2001). Toll-like receptors: critical proteins linking innate and acquired immunity. Nat. Immunol. 2, 675–680CrossRefGoogle ScholarPubMed
Alberta, J. A., Auger, K. R., Batt, D., Iannarelli, P., Hwang, G., Elliott, H. L., Duke, R., Roberts, T. M., and Stiles, C. D. (1999). Platelet-derived growth factor stimulation of monocyte chemoattractant protein-1 gene expression is mediated by transient activation of the phosphoinositide 3-kinase signal transduction pathway. J. Biol. Chem. 274, 31,062–31,067CrossRefGoogle ScholarPubMed
Allen, L. A. and Aderem, A. (1996). Mechanisms of phagocytosis. Curr. Opin. Immunol. 8, 36–40CrossRefGoogle ScholarPubMed
Anderson, D. M. and Schneewind, O. (1997). A mRNA signal for the type III secretion of Yop proteins by Yersinia enterocolitica. Science 278, 1140–1143CrossRefGoogle ScholarPubMed
Andersson, K., Carballeira, N., Magnusson, K. E., Persson, C., Stendahl, O., Wolf-Watz, H., and Fallman, M. (1996). YopH of Yersinia pseudotuberculosis interrupts early phosphotyrosine signalling associated with phagocytosis. Mol. Microbiol. 20, 1057–1069CrossRefGoogle ScholarPubMed
Andersson, K., Magnusson, K. E., Majeed, M., Stendahl, O., and Fallman, M. (1999). Yersinia pseudotuberculosis-induced calcium signaling in neutrophils is blocked by the virulence effector YopH. Infect. Immun. 67, 2567–2574Google ScholarPubMed
Andor, A., Trulzsch, K., Essler, M., Roggenkamp, A., Wiedemann, A., Heesemann, J., and Aepfelbacher, M. (2001). YopE of Yersinia, a GAP for Rho GTPases, selectively modulates Rac-dependent actin structures in endothelial cells. Cell. Microbiol. 3, 301–310CrossRefGoogle ScholarPubMed
Arencibia, I., Frankel, G., and Sundqvist, K. G. (2002). Induction of cell death in T lymphocytes by invasin via beta 1-integrin. Eur. J. Immunol. 32, 1129–11383.0.CO;2-G>CrossRefGoogle Scholar
Autenrieth, I. B. and Firsching, R. (1996). Penetration of M cells and destruction of Peyer's patches by Yersinia enterocolitica: an ultrastructural and histological study. J. Med. Microbiol. 44, 285–294CrossRefGoogle ScholarPubMed
Bar-Sagi, D. and Hall, A. (2000). Ras and Rho GTPases: a family reunion. Cell 103, 227–238CrossRefGoogle ScholarPubMed
Barz, C., Abahji, T. N., Trulzsch, K., and Heesemann, J. (2000). The Yersinia Ser/Thr protein kinase YpkA/YopO directly interacts with the small GTPases RhoA and Rac-1. FEBS Lett. 482, 139–143CrossRefGoogle ScholarPubMed
Berton, G. and Lowell, C. A. (1999). Integrin signalling in neutrophils and macrophages. Cell. Signal. 11, 621–635CrossRefGoogle ScholarPubMed
Black, D. S. and Bliska, J. B. (1997). Identification of p130Cas as a substrate of Yersinia YopH (Yop51), a bacterial protein tyrosine phosphatase that translocates into mammalian cells and targets focal adhesions. EMBO J. 16, 2730–2744CrossRefGoogle Scholar
Black, D. S. and Bliska, J. B. (2000). The RhoGAP activity of the Yersinia pseudotuberculosis cytotoxin YopE is required for antiphagocytic function and virulence. Mol. Microbiol. 37, 515–527CrossRefGoogle ScholarPubMed
Black, D. S., Marie-Cardine, A., Schraven, B., and Bliska, J. B. (2000). The Yersinia tyrosine phosphatase YopH targets a novel adhesion-regulated signalling complex in macrophages. Cell. Microbiol. 2, 401–414CrossRefGoogle ScholarPubMed
Black, D. S., Montagna, L. G., Zitsmann, S., and Bliska, J. B. (1998). Identification of an amino-terminal substrate-binding domain in the Yersinia tyrosine phosphatase that is required for efficient recognition of focal adhesion targets. Mol. Microbiol. 29, 1263–1274CrossRefGoogle ScholarPubMed
Bliska, J. B. and Black, D. S. (1995). Inhibition of the Fc receptor-mediated oxidative burst in macrophages by the Yersinia pseudotuberculosis tyrosine phosphatase. Infect. Immun. 63, 681–685Google ScholarPubMed
Boland, A. and Cornelis, G. R. (1998). Role of YopP in suppression of tumor necrosis factor alpha release by macrophages during Yersinia infection. Infect. Immun. 66, 1878–1884Google ScholarPubMed
Boland, A. and Cornelis, G. R. (2000). Interaction of Yersinia with host cells. Subcell. Biochem. 33, 343–382CrossRefGoogle ScholarPubMed
Boland, A., Sory, M. P., Iriarte, M., Kerbourch, C., Wattiau, P., and Cornelis, G. R. (1996). Status of YopM and YopN in the Yersinia Yop virulon: YopM of Y. enterocolitica is internalized inside the cytosol of PU5-1.8 macrophages by the YopB, D, N delivery apparatus. EMBO J. 15, 5191–5201Google Scholar
Boyd, A. P., Lambermont, I., and Cornelis, G. R. (2000). Competition between the Yops of Yersinia enterocolitica for delivery into eukaryotic cells: role of the SycE chaperone binding domain of YopE. J. Bacteriol. 182, 4811–4821CrossRefGoogle ScholarPubMed
Buttner, D. and Bonas, U. (2002). Port of entry – the type III secretion translocon. Trends Microbiol. 10, 186–192CrossRefGoogle ScholarPubMed
Carniel, E. (2001). The Yersinia high-pathogenicity island: an iron-uptake island. Microbes Infect. 3, 561–569CrossRefGoogle Scholar
Cheng, L. W. and Schneewind, O. (1999). Yersinia enterocolitica type III secretion. On the role of SycE in targeting YopE into HeLa cells. J. Biol. Chem. 274, 22,102–22,108CrossRefGoogle ScholarPubMed
Chimini, G. and Chavrier, P. (2000). Function of Rho family proteins in actin dynamics during phagocytosis and engulfment. Nat. Cell. Biol. 2, E191–E196CrossRefGoogle ScholarPubMed
China, B., Sory, M. P., N'Guyen, B. T., Bruyere, M., and Cornelis, G. R. (1993). Role of the YadA protein in prevention of opsonization of Yersinia enterocolitica by C3b molecules. Infect. Immun. 61, 3129–3136Google ScholarPubMed
Cole, S. T. and Buchrieser, C. (2001). Bacterial genomics. A plague o' both your hosts. Nature 413, 467, 469–470CrossRefGoogle ScholarPubMed
Cornelis, G. (2002). Yersinia type III secretion: send the effectors. J. Cell Biol. 158, 401–408CrossRefGoogle ScholarPubMed
Cornelis, G., Vanootegem, J. C., and Sluiters, C. (1987). Transcription of the yop regulon from Y. enterocolitica requires trans acting pYV and chromosomal genes. Microb. Pathog. 2, 367–379CrossRefGoogle Scholar
Cornelis, G. R. (2000). Type III secretion: a bacterial device for close combat with cells of their eukaryotic host. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 355, 681–693CrossRefGoogle ScholarPubMed
Cornelis, G. R., Boland, A., Boyd, A. P., Geuijen, C., Iriarte, M., Neyt, C., Sory, M. P., and Stainier, I. (1998). The virulence plasmid of Yersinia, an antihost genome. Microbiol. Mol. Biol. Rev. 62, 1315–1352Google ScholarPubMed
Cornelis, G. R., Sluiters, C., Delor, I., Geib, D., Kaniga, K., Lambert de Rouvroit, C., Sory, M. P., Vanooteghem, J. C., and Michiels, T. (1991). ymoA, a Yersinia enterocolitica chromosomal gene modulating the expression of virulence functions. Mol. Microbiol. 5, 1023–1034CrossRefGoogle ScholarPubMed
Cowan, C., Jones, H. A., Kaya, Y. H., Perry, R. D., and Straley, S. C. (2000). Invasion of epithelial cells by Yersinia pestis: evidence for a Y. pestis-specific invasin. Infect. Immun. 68, 4523–4530CrossRefGoogle Scholar
Denecker, G., Declercq, W., Geuijen, C. A., Boland, A., Benabdillah, R., Gurp, M., Sory, M. P., Vandenabeele, P., and Cornelis, G. R. (2001). Yersinia enterocolitica YopP-induced apoptosis of macrophages involves the apoptotic signaling cascade upstream of Bid. J. Biol. Chem. 276, 19,706–19,714CrossRefGoogle ScholarPubMed
Denecker, G., Totemeyer, S., Mota, L. J., Troisfontaines, P., Lambermont, I., Youta, C., Stainier, I., Ackermann, M., and Cornelis, G. R. (2002). Effect of low- and high-virulence Yersinia enterocolitica strains on the inflammatory response of human umbilical vein endothelial cells. Infect. Immun. 70, 3510–3520CrossRefGoogle ScholarPubMed
DeVinney, I., Steele-Mortimer, I., and Finlay, B. B. (2000). Phosphatases and kinases delivered to the host cell by bacterial pathogens. Trends Microbiol. 8, 29–33CrossRefGoogle ScholarPubMed
Du, Y., Rosqvist, R., and Forsberg, A. (2002). Role of fraction 1 antigen of Yersinia pestis in inhibition of phagocytosis. Infect. Immun. 70, 1453–1460CrossRefGoogle ScholarPubMed
Dukuzumuremyi, J. M., Rosqvist, R., Hallberg, B., Akerstrom, B., Wolf-Watz, H., and Schesser, K. (2000). The Yersinia protein kinase A is a host factor inducible RhoA/Rac-binding virulence factor. J. Biol. Chem. 275, 35,281–35,290CrossRefGoogle ScholarPubMed
El Tahir, Y. and Skurnik, M. (2001). YadA, the multifaceted Yersinia adhesin. Int. J. Med. Microbiol. 291, 209–218CrossRefGoogle ScholarPubMed
Evdokimov, A. G., Anderson, D. E., Routzahn, K. M., and Waugh, D. S. (2001). Unusual molecular architecture of the Yersinia pestis cytotoxin YopM: a leucine-rich repeat protein with the shortest repeating unit. J. Mol. Biol. 312, 807–821CrossRefGoogle ScholarPubMed
Evdokimov, A. G., Tropea, J. E., Routzahn, K. M., and Waugh, D. S. (2002). Crystal structure of the Yersinia pestis GTPase activator YopE. Protein Sci. 11, 401–408CrossRefGoogle ScholarPubMed
Feldman, M. F., Müller, S., Wüest, E., and Cornelis, G. R. (2002). SycE allows secretion of YopE-DHFR hybrids by the Yersinia enterocolitica type III Ysc system. Mol. Microbiol. 46, 1183–1197CrossRefGoogle ScholarPubMed
Foultier, B., Troisfontaines, P., Müller, S., Opperdoes, F., and Cornelis, G. R. (2002). Characterization of the ysa pathogenicity locus in the chromosome of Yersinia enterocolitica and phylogenic analysis of type III secretion systems. J. Mol. Evol. 55, 37–51CrossRefGoogle Scholar
Francis, M. S., Wolf-Watz, H., and Forsberg, A. (2002). Regulation of type III secretion systems. Curr. Opin. Microbiol. 5, 166–172CrossRefGoogle ScholarPubMed
Frithz-Lindsten, E., Rosqvist, R., Johansson, L., and Forsberg, A. (1995). The chaperone-like protein YerA of Yersinia pseudotuberculosis stabilizes YopE in the cytoplasm but is dispensible for targeting to the secretion loci. Mol. Microbiol. 16, 635–647CrossRefGoogle ScholarPubMed
Galan, J. E. (2001). Salmonella interactions with host cells: type III secretion at work. Annu. Rev. Cell. Dev. Biol. 17, 55–68CrossRefGoogle ScholarPubMed
Galan, J. E. and Collmer, A. (1999). Type III secretion machines: bacterial devices for protein delivery into host cells. Science 284, 1322–1328Google ScholarPubMed
Galyov, E. E., Hakansson, S., Forsberg, A., and Wolf-Watz, H. (1993). A secreted protein kinase of Yersinia pseudotuberculosis is an indispensable virulence determinant. Nature 361, 730–732CrossRefGoogle ScholarPubMed
Greenberg, S., Chang, P., and Silverstein, S. C. (1993). Tyrosine phosphorylation is required for Fc receptor-mediated phagocytosis in mouse macrophages. J. Exp. Med. 177, 529–534CrossRefGoogle ScholarPubMed
Grosdent, N., Maridonneau-Parini, I., Sory, M. P., and Cornelis, G. R. (2002). Role of Yops and adhesins in resistance of Yersinia enterocolitica to phagocytosis. Infect. Immun. 70, 4165–4176CrossRefGoogle ScholarPubMed
Guan, K. L. and Dixon, J. E. (1990). Protein tyrosine phosphatase activity of an essential virulence determinant in Yersinia. Science 249, 553–556CrossRefGoogle ScholarPubMed
Hakansson, S., Galyov, E. E., Rosqvist, R., and Wolf-Watz, H. (1996a). The Yersinia YpkA Ser/Thr kinase is translocated and subsequently targeted to the inner surface of the HeLa cell plasma membrane. Mol. Microbiol. 20, 593–603CrossRefGoogle Scholar
Hakansson, S., Schesser, K., Persson, C., Galyov, E. E., Rosqvist, R., Homble, F., and Wolf-Watz, H. (1996b). The YopB protein of Yersinia pseudotuberculosis is essential for the translocation of Yop effector proteins across the target cell plasma membrane and displays a contact-dependent membrane disrupting activity. EMBO J. 15, 5812–5823Google Scholar
Hall, A. (1998). Rho GTPases and the actin cytoskeleton. Science 279, 509–514CrossRefGoogle ScholarPubMed
Haller, J. C., Carlson, S., Pederson, K. J., and Pierson, D. E. (2000). A chromosomally encoded type III secretion pathway in Yersinia enterocolitica is important in virulence. Mol. Microbiol. 36, 1436–1446CrossRefGoogle ScholarPubMed
Hamid, N., Gustavsson, A., Andersson, K., McGee, K., Persson, C., Rudd, C. E., and Fallman, M. (1999). YopH dephosphorylates Cas and Fyn-binding protein in macrophages. Microb. Pathog. 27, 231–242CrossRefGoogle ScholarPubMed
Heesemann, J., Hantke, K., Vocke, T., Saken, E., Rakin, A., Stojiljkovic, I., and Berner, R. (1993). Virulence of Yersinia enterocolitica is closely associated with siderophore production, expression of an iron-repressible outer membrane polypeptide of 65,000 Da and pesticin sensitivity. Mol. Microbiol. 8, 397–408CrossRefGoogle ScholarPubMed
Hinnebusch, B. J., Fischer, E. R., and Schwan, T. G. (1998). Evaluation of the role of the Yersinia pestis plasminogen activator and other plasmid-encoded factors in temperature-dependent blockage of the flea. J. Infect. Dis. 178, 1406–1415CrossRefGoogle ScholarPubMed
Hinnebusch, B. J., Rudolph, A. E., Cherepanov, P., Dixon, J. E., Schwan, T. G., and Forsberg, A. (2002). Role of Yersinia murine toxin in survival of Yersinia pestis in the midgut of the flea vector. Science 296, 733–735CrossRefGoogle ScholarPubMed
Hueck, C. J. (1998). Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol. Mol. Biol. Rev. 62, 379–433Google ScholarPubMed
Imler, J. L. and Hoffmann, J. A. (2001). Toll receptors in innate immunity. Trends Cell Biol. 11, 304–311CrossRefGoogle ScholarPubMed
Iriarte, M. and Cornelis, G. R. (1998). YopT, a new Yersinia Yop effector protein, affects the cytoskeleton of host cells. Mol. Microbiol. 29, 915–929CrossRefGoogle ScholarPubMed
Isberg, R. R., Hamburger, Z., and Dersch, P. (2000). Signaling and invasin-promoted uptake via integrin receptors. Microbes Infect 2, 793–801CrossRefGoogle ScholarPubMed
Juris, S. J., Rudolph, A. E., Huddler, D., Orth, K., and Dixon, J. E. (2000). A distinctive role for the Yersinia protein kinase: actin binding, kinase activation, and cytoskeleton disruption. Proc. Natl. Acad. Sci. USA 97, 9431–9436CrossRefGoogle ScholarPubMed
Juris, S. J., Shao, F., and Dixon, J. E. (2002). Yersinia effectors target mammalian signalling pathways. Cell. Microbiol. 4, 201–211CrossRefGoogle ScholarPubMed
Kobe, B. and Kajava, A. V. (2001). The leucine-rich repeat as a protein recognition motif. Curr. Opin. Struct. Biol. 11, 725–732CrossRefGoogle ScholarPubMed
Lambert de Rouvroit, C., Sluiters, C., and Cornelis, G. R. (1992). Role of the transcriptional activator, VirF, and temperature in the expression of the pYV plasmid genes of Yersinia enterocolitica. Mol. Microbiol. 6, 395–409CrossRefGoogle ScholarPubMed
Lee, V. T. and Schneewind, O. (2002). Yop fusions to tightly folded protein domains and their effects on Yersinia enterocolitica type III secretion. J. Bacteriol. 184, 3740–3745CrossRefGoogle ScholarPubMed
Mangel, W. F., McGrath, W. J., Toledo, D. L., and Anderson, C. W. (1993). Viral DNA and a viral peptide can act as cofactors of adenovirus virion proteinase activity. Nature 361, 274–275CrossRefGoogle Scholar
May, R. C. and Machesky, L. M. (2001). Phagocytosis and the actin cytoskeleton. J. Cell Sci. 114, 1061–1077Google ScholarPubMed
Michiels, T., Wattiau, P., Brasseur, R., Ruysschaert, J. M., and Cornelis, G. (1990). Secretion of Yop proteins by Yersiniae. Infect. Immun. 58, 2840–2849Google ScholarPubMed
Miller, V. L. (2002). Connections between transcriptional regulation and type III secretion? Curr. Opin. Microbiol. 5, 211–215CrossRefGoogle ScholarPubMed
Mills, S. D., Boland, A., Sory, M. P., Smissen, P., Kerbourch, C., Finlay, B. B., and Cornelis, G. R. (1997). Yersinia enterocolitica induces apoptosis in macrophages by a process requiring functional type III secretion and translocation mechanisms and involving YopP, presumably acting as an effector protein. Proc. Natl. Acad. Sci. USA 94, 12,638–12,643CrossRefGoogle ScholarPubMed
Monack, D. M., Mecsas, J., Ghori, N., and Falkow, S. (1997). Yersinia signals macrophages to undergo apoptosis and YopJ is necessary for this cell death. Proc. Natl. Acad. Sci. USA 94, 10,385–10,390CrossRefGoogle ScholarPubMed
Orth, K. (2002). Function of the Yersinia effector YopJ. Curr. Opin. Microbiol. 5, 38–43CrossRefGoogle ScholarPubMed
Orth, K., Palmer, L. E., Bao, Z. Q., Stewart, S., Rudolph, A. E., Bliska, J. B., and Dixon, J. E. (1999). Inhibition of the mitogen-activated protein kinase kinase superfamily by a Yersinia effector. Science 285, 1920–1923CrossRefGoogle ScholarPubMed
Orth, K., Xu, Z., Mudgett, M. B., Bao, Z. Q., Palmer, L. E., Bliska, J. B., Mangel, W. F., Staskawicz, B., and Dixon, J. E. (2000). Disruption of signaling by Yersinia effector YopJ, a ubiquitin-like protein protease. Science 290, 1594–1597CrossRefGoogle ScholarPubMed
Palmer, L. E., Hobbie, S., Galan, J. E., and Bliska, J. B. (1998). YopJ of Yersinia pseudotuberculosis is required for the inhibition of macrophage TNF-alpha production and downregulation of the MAP kinases p38 and JNK. Mol. Microbiol. 27, 953–965CrossRefGoogle ScholarPubMed
Palmer, L. E., Pancetti, A. R., Greenberg, S., and Bliska, J. B. (1999). YopJ of Yersinia spp. is sufficient to cause downregulation of multiple mitogen-activated protein kinases in eukaryotic cells. Infect. Immun. 67, 708–716Google ScholarPubMed
Parkhill, J., Wren, B. W., Thomson, N. R., Titball, R. W., Holden, M. T., Prentice, M. B., Sebaihia, M., James, K. D., Churcher, C., Mungall, K. L., Baker, S., Basnam, D., Bentley, S. D., Brooks, K., Cerendo-Tarraga, A. M., Chillingworth, T., Cronin, A., Davies, R. M., Davis, P., Dougan, G., Feltwell, T., Hemlin, N., Holroyd, S., Jagels, K., Karlyshev, A. V., Leather, S., Moule, S., Oyston, P. C., Quail, M., Rutherford, K., Simmons, M., Skelton, J., Stevens, K., Whitehead, S., Barrell, B. G. (2001). Genome sequence of Yersinia pestis, the causative agent of plague. Nature 413, 523–527CrossRefGoogle ScholarPubMed
Pepe, J. C. and Miller, V. L. (1993). Yersinia enterolitica invasin: a primary role in the initiation of infection. Proc. Natl. Acad. Sci. USA 90, 6473–6477CrossRefGoogle Scholar
Perry, R. D. and Fetherston, J. D. (1997). Yersinia pestis – etiologic agent of plague. Clin. Microbiol. Rev. 10, 35–66Google ScholarPubMed
Persson, C., Carballeira, N., Wolf-Watz, H., and Fallman, M. (1997). The PTPase YopH inhibits uptake of Yersinia, tyrosine phosphorylation of p130Cas and FAK, and the associated accumulation of these proteins in peripheral focal adhesions. EMBO J. 16, 2307–2318CrossRefGoogle ScholarPubMed
Pettersson, J., Nordfelth, R., Dubinina, E., Bergman, T., Gustafsson, M., Magnusson, K. E., and Wolf-Watz, H. (1996). Modulation of virulence factor expression by pathogen target cell contact. Science 273, 1231–1233CrossRefGoogle ScholarPubMed
Ridley, A. J. (2001). Rho proteins, PI 3-kinases, and monocyte/macrophage motility. FEBS Lett. 498, 168–171CrossRefGoogle ScholarPubMed
Rohde, J. R., Luan, X. S., Rohde, H., Fox, J. M., and Minnich, S. A. (1999). The Yersinia enterocolitica pYV virulence plasmid contains multiple intrinsic DNA bends which melt at 37 degrees C. J. Bacteriol. 181, 4198–4204Google ScholarPubMed
Rosqvist, R., Forsberg, A., Rimpilainen, M., Bergman, T., and Wolf-Watz, H. (1990). The cytotoxic protein YopE of Yersinia obstructs the primary host defence. Mol. Microbiol. 4, 657–667CrossRefGoogle ScholarPubMed
Ruckdeschel, K., Harb, S., Roggenkamp, A., Hornef, M., Zumbihl, R., Kohler, S., Heesemann, J., and Rouot, B. (1998). Yersinia enterocolitica impairs activation of transcription factor NF-kappa B: involvement in the induction of programmed cell death and in the suppression of the macrophage tumor necrosis factor alpha production. J. Exp. Med. 187, 1069–1079CrossRefGoogle ScholarPubMed
Ruckdeschel, K., Machold, J., Roggenkamp, A., Schubert, S., Pierre, J., Zumbihl, R., Liautard, J. P., Heesemann, J., and Rouot, B. (1997). Yersinia enterocolitica promotes deactivation of macrophage mitogen-activated protein kinases extracellular signal-regulated kinase-1/2, p38, and c-Jun NH2-terminal kinase. Correlation with its inhibitory effect on tumor necrosis factor-alpha production. J. Biol. Chem. 272, 15,920–15,927CrossRefGoogle ScholarPubMed
Ruckdeschel, K., Mannel, O., Richter, K., Jacobi, C., Trülzsch, K., Rouot, B., and Heesemann, J. (2001a). Yersinia outer protein P of Yersinia enterocolitica simultaneously blocks the nuclear factor-κ B pathhway and exploits lipopolysaccharide signaling to trigger apoptosis in macrophages. J. Immunol. 166, 1823–1831CrossRefGoogle Scholar
Ruckdeschel, K., Mannel, O., and Schrottner, P. (2002). Divergence of apoptosis-inducing and preventing signals in bacteria-faced macrophages through myeloid differentiation factor 88 and IL-1 receptor-associated kinase members. J. Immunol. 168, 4601–4611CrossRefGoogle ScholarPubMed
Ruckdeschel, K., Richter, K., Mannel, O., and Heesemann, J. (2001b). Arginine-143 of Yersinia enterocolitica YopP crucially determines isotype-related NF-kappa B suppression and apoptosis induction in macrophages. Infect. Immun. 69, 7652–7662CrossRefGoogle Scholar
Ruckdeschel, K., Roggenkamp, A. S., Chubert, S., and Heesemann, J. (1996). Differential contribution of Yersinia enterocolitica virulence factors to evasion of microbicidal action of neutrophils. Infect. Immun. 64, 724–733Google ScholarPubMed
Sansonetti, P. (2002). Host-pathogen interactions: the seduction of molecular cross talk. Gut 50 (Suppl 3), 12–18CrossRefGoogle ScholarPubMed
Sansonetti, P. J. (2001). Microbes and microbial toxins: paradigms for microbial-mucosal interactions III. Shigellosis: from symptoms to molecular pathogenesis. Am. J. Physiol. Gastrointest. Liver Physiol. 280, G319–G323CrossRefGoogle ScholarPubMed
Sauvonnet, N., Lambermont, I., van der Bruggen, P., and Cornelis, G. (2002a). YopH prevents monocyte chemoattractant protein 1 expression in macrophages and T-cell proliferation through inactivation of the phosphatidylinositol 3-kinase pathway. Mol. Microbiol
Sauvonnet, N., Pradet-Balade, B., Garcia-Sanz, J. A., and Cornelis, G. R. (2002b). Regulation of mRNA expression in macrophages following Yersinia enterocolitica infection: role of different Yop effectors. J. Biol. Chem. 2, 2Google Scholar
Scheid, M. P. and Woodgett, J. R. (2001). PKB/AKT: functional insights from genetic models. Nat. Rev. Mol. Cell. Biol. 2, 760–768CrossRefGoogle ScholarPubMed
Schesser, K., Spiik, A. K., Dukuzumuremyi, J. M., Neurath, M. F., Pettersson, S., and Wolf-Watz, H. (1998). The yopJ locus is required for Yersinia-mediated inhibition of NF-kappa B activation and cytokine expression: YopJ contains a eukaryotic SH2-like domain that is essential for its repressive activity. Mol. Microbiol. 28, 1067–1079CrossRefGoogle ScholarPubMed
Schulte, R., Kerneis, S., Klinke, S., Bartels, H., Preger, S., Kraehenbuhl, J. P., Pringault, E., and Autenrieth, I. B. (2000). Translocation of Yersinia entrocolitica across reconstituted intestinal epithelial monolayers is triggered by Yersinia invasin binding to beta 1 integrins apically expressed on M-like cells. Cell. Microbiol. 2, 173–185CrossRefGoogle Scholar
Shao, F., Merritt, P. M., Bao, Z., Innes, R. W., and Dixon, J. E. (2002). A Yersinia effector and a Pseudomonasy avirulence protein define a family of cysteine proteases functioning in bacterial pathogenesis. Cell 109, 575–588CrossRefGoogle Scholar
Sing, A., Roggenkamp, A., Geiger, A. M., and Heesemann, J. (2002). Yersinia enterocolitica evasion of the host innate immune response by V antigen-induced IL-10 production of macrophages is abrogated in IL-10-deficient mice. J. Immunol. 168, 1315–1321CrossRefGoogle ScholarPubMed
Skrzypek, E., Cowan, C., and Straley, S. C. (1998). Targeting of the Yersinia pestis YopM protein into HeLa cells and intracellular trafficking to the nucleus. Mol. Microbiol. 30, 1051–1065CrossRefGoogle ScholarPubMed
Sorg, I., Goehring, U. M., Aktories, K., and Schmidt, G. (2001). Recombinant Yersinia YopT leads to uncoupling of RhoA-effector interaction. Infect. Immun. 69, 7535–7543CrossRefGoogle ScholarPubMed
Sory, M. P., Boland, A., Lambermont, I., and Cornelis, G. R. (1995). Identification of the YopE and YopH domains required for secretion and internalization into the cytosol of macrophages, using the cyaA gene fusion approach. Proc. Natl. Acad. Sci. USA 92, 11,998–12,002CrossRefGoogle ScholarPubMed
Stebbins, C. E. and Galan, J. E. (2001). Maintenance of an unfolded polypeptide by a cognate chaperone in bacterial type III secretion. Nature 414, 77–81CrossRefGoogle ScholarPubMed
Underhill, D. M. and Ozinsky, A. (2002a). Phagocytosis of microbes: complexity in action. Annu. Rev. Immunol. 20, 825–852CrossRefGoogle Scholar
Underhill, D. M. and Ozinsky, A. (2002b). Toll-like receptors: key mediators of microbe detection. Curr. Opin. Immunol. 14, 103–110CrossRefGoogle Scholar
Viboud, G. I. and Bliska, J. B. (2001). A bacterial type III secretion system inhibits actin polymerization to prevent pore formation in host cell membranes. EMBO J. 20, 5373–5382CrossRefGoogle ScholarPubMed
Pawel-Rammingen, U., Telepnev, M. V., Schmidt, G., Aktories, K., Wolf-Watz, H., and Rosqvist, R. (2000). GAP activity of the Yersinia YopE cytotoxin specifically targets the Rho pathway: a mechanism for disruption of actin microfilament structure. Mol. Microbiol. 36, 737–748CrossRefGoogle Scholar
Wattiau, P., Woestyn, S., and Cornelis, G. R. (1996). Customized secretion chaperones in pathogenic bacteria. Mol. Microbiol. 20, 255–262CrossRefGoogle ScholarPubMed
Wulff-Strobel, C. R., Williams, A. W., and Straley, S. C. (2002). LcrQ and SycH function together at the Ysc type III secretion system in Yersinia pestis to impose a hierarchy of secretion. Mol. Microbiol. 43, 411–423CrossRefGoogle ScholarPubMed
Yao, T., Mecsas, J., Healy, J. I., Falkow, S., and Chien, Y. (1999). Suppression of T and B lymphocyte activation by a Yersinia pseudotuberculosis virulence factor, yopH. J. Exp. Med. 190, 1343–1350CrossRefGoogle Scholar
Yeh, E. T., Gong, L., and Kamitani, T. (2000). Ubiquitin-like proteins: new wines in new bottles. Gene 248, 1–14CrossRefGoogle ScholarPubMed
Zumbihl, R., Aepfelbacher, M., Andor, A., Jacobi, C. A., Ruckdeschel, K., Rouot, B., and Heesemann, J. (1999). The cytotoxin YopT of Yersinia enterocolitica induces modification and cellular redistribution of the small GTP-binding protein RhoA. J. Biol. Chem. 274, 29,289–29,293CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×