Skip to main content Accessibility help
×
Home
Hostname: page-component-56f9d74cfd-b2czv Total loading time: 0.473 Render date: 2022-06-25T23:29:48.502Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

11 - Signaling by a cell-surface-associated signal during fruiting-body morphogenesis in Myxococcus xanthus

Published online by Cambridge University Press:  08 August 2009

Lotte Søgaard-Andersen
Affiliation:
Max Planck Institute for Terrestrial Microbiology Marburg, Germany
Donald R. Demuth
Affiliation:
University of Louisville, Kentucky
Richard Lamont
Affiliation:
University of Florida
Get access

Summary

INTRODUCTION

Over the past decade the perception of bacterial cells as autonomous individuals, each following their own agenda and not interacting with each other, has been replaced by the view that bacteria interact extensively both within and between species by means of intercellular signal molecules. Each of these signal molecules constitutes part of an information system that is constructed of four parts: the donor cell synthesizing the signal, the signal molecule, the recipient cell, and the output response. As in any other information system, the signal must be tailored to the talents of the recipient. A clear example of a tailor-made signal molecule is the C-signal molecule in Myxococcus xanthus. Most intercellular signals identified in bacteria are small (i.e. with a molecular mass of less than 1000 Da), freely diffusible molecules that are part of quorum sensing systems, which help bacterial cells to assess population size (90). However, that is not the case for the C-signal in Myxococcus xanthus. The C-signal is a 17 kDa cell-surface-associated protein and is thus non-diffusible, and it helps to guide M. xanthus cells into nascent fruiting bodies and to assess their position in a field of cells.

C-signal transmission occurs by a contact-dependent mechanism, i.e. it depends on direct contact between the donor and the receiving cell. The C-signal is used repeatedly during the starvation-induced formation of spore-filled fruiting bodies in M. xanthus. Early during fruiting-body formation, the C-signal induces the aggregation of cells into the nascent fruiting bodies.

Type
Chapter
Information
Bacterial Cell-to-Cell Communication
Role in Virulence and Pathogenesis
, pp. 269 - 300
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnold, J. W. and Shimkets, L. J. 1988. Cell surface properties correlated with cohesion in Myxococcus xanthus. J. Bacteriol. 170: 5771–7.CrossRefGoogle ScholarPubMed
Baker, M. E. 1994. Myxococcus xanthus C-factor, a morphogenetic paracrine signal, is similar to Escherichia coli 3-oxoacyl-[acyl-carrier-protein] reductase and human 17 beta-hydroxysteroid dehydrogenase. Biochem. J. 301: 311–12.CrossRefGoogle ScholarPubMed
Behmlander, R. M. and Dworkin, M. 1994. Biochemical and structural analyses of the extracellular matrix fibrils of Myxococcus xanthus. J. Bacteriol. 176: 6295–303.CrossRefGoogle ScholarPubMed
Behmlander, R. M. and Dworkin, M. 1991. Extracellular fibrils and contact-mediated cell interactions in Myxococcus xanthus. J. Bacteriol. 173: 7810–21.CrossRefGoogle ScholarPubMed
Blackhart, B. D. and Zusman, D. R. 1985. ‘Frizzy’ genes of Myxococcus xanthus are involved in control of frequency of reversal of gliding motilityProc. Natn. Acad. Sci. USA 82: 8771–4.CrossRefGoogle ScholarPubMed
Bowden, M. G. and Kaplan, H. B. 1998. The Myxococcus xanthus lipopolysaccharide O-antigen is required for social motility and multicellular development. Molec. Microbiol. 30: 275–84.CrossRefGoogle ScholarPubMed
Boysen, A., Ellehauge, E., Julien, B. and Søgaard-Andersen, L. 2002. The DevT protein stimulates synthesis of FruA, a signal transduction protein required for fruiting body morphogenesis in Myxococcus xanthus. J. Bacteriol. 184: 1540–6.CrossRefGoogle ScholarPubMed
Cho, K. and Zusman, D. R. 1999. Sporulation timing in Myxococcus xanthus is controlled by the espAB locus. Molec. Microbiol. 34: 714–25.CrossRefGoogle ScholarPubMed
Crawford, E. W. and Shimkets, L. J. 2000. The Myxococcus xanthus socE and csgA genes are regulated by the stringent response. Molec. Microbiol. 37: 788–99.CrossRefGoogle ScholarPubMed
Crawford, E. W. and Shimkets, L. J. 2000. The stringent response in Myxococcus xanthus is regulated by SocE and the CgsA C-signaling protein. Genes Dev. 14: 483–92.Google Scholar
Cusick, J. K., Hager, E. and Gill, R. E. 2002. Characterization of bcsA mutations that bypass two distinct signaling requirements for Myxococcus xanthus development. J. Bacteriol. 184: 5141–50.CrossRefGoogle ScholarPubMed
Downard, J., Ramaswamy, S. V. and Kil, K. S. 1993. Identification of esg, a genetic locus involved in cell-cell signaling during Myxococcus xanthus development. J. Bacteriol. 175: 7762–70.CrossRefGoogle ScholarPubMed
Dworkin, M. 1996. Recent advances in the social and developmental biology of the Myxobacteria. Microbiol. Rev. 60: 70–102.Google ScholarPubMed
Dworkin, M. and Gibson, S. M. 1964. A system for studying microbial morphogenesis: rapid formation of microcysts in Myxococcus xanthus. Science 146: 243–4.CrossRefGoogle ScholarPubMed
Ellehauge, E., Nørregaard-Madsen, M. and Søgaard-Andersen, L. 1998. The FruA signal transduction protein provides a checkpoint for the temporal co-ordination of intercellular signals in M. xanthus development. Molec. Microbiol. 30: 807–17.CrossRefGoogle Scholar
Garza, A. G., Pollack, J. S., Harris, B. Z.et al. 1998. SdeK is required for early fruiting body development in Myxococcus xanthus. J. Bacteriol. 180: 4628–37.Google ScholarPubMed
Gronewold, T. M. A. and Kaiser, D. 2001. The act operon controls the level and time of C-signal production for Myxococcus xanthus development. Molec. Microbiol. 40: 744–56.CrossRefGoogle ScholarPubMed
Hagen, D. C., Bretscher, A. P. and Kaiser, D. 1978. Synergism between morphogenetic mutants of Myxococcus xanthus. Dev. Biol. 64: 284–96.CrossRefGoogle ScholarPubMed
Hager, E., Tse, H. and Gill, R. E. 2001. Identification and characterization of spdR mutations that bypass the BsgA protease-dependent regulation of developmental gene expression in Myxococcus xanthus. Molec. Microbiol. 39: 765–80.CrossRefGoogle ScholarPubMed
Harris, B. Z., Kaiser, D. and Singer, M. 1998. The guanosine nucleotide (p)ppGpp initiates development and A-factor production in Myxococcus xanthus. Genes Dev. 12: 1022–35.CrossRefGoogle ScholarPubMed
Hartzell, P. L. 1997. Complementation of sporulation and motility defects in a prokaryote by a eukaryotic GTPase. Proc. Natn. Acad. Sci. USA 94: 9881–6.CrossRefGoogle Scholar
Henrichsen, J. 1972. Bacterial surface translocation: a survey and a classification. Bacteriol. Rev. 36: 478–503.Google Scholar
Hodgkin, J. and Kaiser, D. 1979. Genetics of gliding motility in Myxococcus xanthus (Myxobacterales): genes controlling movement of single cells. Molec. Gen. Genet. 171: 167–76.CrossRefGoogle Scholar
Hodgkin, J. and Kaiser, D. 1979. Genetics of gliding motility in Myxococcus xanthus (Myxobacteriales): two gene systems control movement. Molec. Gen. Genet. 171: 177–91.CrossRefGoogle Scholar
Hoiczyk, E. and Baumeister, W. 1998. The junctional pore complex, a prokaryotic secretion organelle, is the molecular motor underlying gliding motility in cyanobacteria. Curr. Biol. 8: 1161–8.CrossRefGoogle ScholarPubMed
Horiuchi, T., Taoka, M., Isobe, T., Komano, T. and Inouye, S. 2002. Role of fruA and csgA genes in gene expression during development of Myxococcus xanthus. Analysis by two-dimensional gel electrophoresis. J. Biol. Chem. 277: 26753–60.CrossRefGoogle ScholarPubMed
Inouye, M., Inouye, S. and Zusman, D. R. 1979. Gene expression during development of Myxococcus xanthus: pattern of protein synthesis. Dev. Biol. 68: 579–91.CrossRefGoogle ScholarPubMed
Jelsbak, L. and Søgaard-Andersen, L. 1999. The cell surface-associated intercellular C-signal induces behavioral changes in individual Myxococcus xanthus cells during fruiting body morphogenesis. Proc. Natn. Acad. Sci. USA 96: 5031–6.CrossRefGoogle ScholarPubMed
Jelsbak, L. and Søgaard-Andersen, L. 2002. Pattern formation by a cell surface-associated morphogen in Myxococcus xanthus. Proc. Natn. Acad. Sci. USA 99: 2032–7.CrossRefGoogle ScholarPubMed
Julien, B., Kaiser, A. D. and Garza, A. 2000. Spatial control of cell differentiation in Myxococcus xanthus. Proc. Natn. Acad. Sci. USA 97: 9098–103.CrossRefGoogle ScholarPubMed
Kaiser, D. 2003. Coupling cell movement to multicellular development in myxobacteria. Nature Rev. Microbiol. 1: 45–54.CrossRefGoogle ScholarPubMed
Kaiser, D. 1979. Social gliding is correlated with the presence of pili in Myxococcus xanthus. Proc. Natn. Acad. Sci. USA 76: 5952–6.CrossRefGoogle ScholarPubMed
Kim, S. K. and Kaiser, D. 1990. Cell alignment required in differentiation of Myxococcus xanthus. Science 249: 926–8.CrossRefGoogle ScholarPubMed
Kim, S. K. and Kaiser, D. 1990. Cell motility is required for the transmission of C-factor, an intercellular signal that coordinates fruiting body morphogenesis of Myxococcus xanthus. Genes Dev. 4: 896–904.CrossRefGoogle ScholarPubMed
Kim, S. K. and Kaiser, D. 1991. C-factor has distinct aggregation and sporulation thresholds during Myxococcus development. J. Bacteriol. 173: 1722–8.CrossRefGoogle ScholarPubMed
Kim, S. K. and Kaiser, D. 1990. C-factor: a cell-cell signaling protein required for fruiting body morphogenesis of M. xanthus. Cell 61: 19–26.CrossRefGoogle ScholarPubMed
Kim, S. K. and Kaiser, D. 1990. Purification and properties of Myxococcus xanthus C-factor, an intercellular signaling protein. Proc. Natn. Acad. Sci. USA 87: 3635–9.CrossRefGoogle ScholarPubMed
Kirby, J. R. and Zusman, D. R. 2003. Chemosensory regulation of developmental gene expression in Myxococcus xanthus. Proc. Natn. Acad. Sci. USA 100: 2008–13.CrossRefGoogle ScholarPubMed
Kroos, L., Hartzell, P., Stephens, K. and Kaiser, D. 1988. A link between cell movement and gene expression argues that motility is required for cell-cell signaling during fruiting body development. Genes Dev. 2: 1677–85.CrossRefGoogle ScholarPubMed
Kroos, L. and Kaiser, D. 1987. Expression of many developmentally regulated genes in Myxococcus depends on a sequence of cell interactions. Genes Dev. 1: 840–54.CrossRefGoogle ScholarPubMed
Kroos, L., Kuspa, A. and Kaiser, D. 1986. A global analysis of developmentally regulated genes in Myxococcus xanthus. Dev. Biol. 117: 252–66.CrossRefGoogle ScholarPubMed
Kruse, T., Lobedanz, S., Berthelsen, N. M. S. and Søgaard-Andersen, L. 2001. C-signal: A cell surface-associated morphogen that induces and coordinates multicellular fruiting body morphogenesis and sporulation in M. xanthus. Molec. Microbiol. 40: 156–68.CrossRefGoogle Scholar
Kuner, J. M. and Kaiser, D. 1982. Fruiting body morphogenesis in submerged cultures of Myxococcus xanthus. J. Bacteriol. 151: 458–61.Google ScholarPubMed
Kuspa, A., Kroos, L. and Kaiser, D. 1986. Intercellular signaling is required for developmental gene expression in Myxococcus xanthus. Dev. Biol. 117: 267–76.CrossRefGoogle ScholarPubMed
Kuspa, A., Plamann, L. and Kaiser, D. 1992. Identification of heat-stable A-factor from Myxococcus xanthus. J. Bacteriol. 174: 3319–26.CrossRefGoogle ScholarPubMed
Kuspa, A., Plamann, L. and Kaiser, D. 1992. A-signaling and the cell density requirement for Myxococcus xanthus development. J. Bacteriol. 174: 7360–9.CrossRefGoogle Scholar
Lee, B.-U., Lee, K., Mendez, J. and Shimkets, L. J. 1995. A tactile sensory system of Myxococcus xanthus involves an extracellular NAD(P)+-containing protein. Genes Dev. 9: 2964–73.CrossRefGoogle ScholarPubMed
Lee, K. and Shimkets, L. J. 1994. Cloning and characterization of the socA locus which restores development to Myxococcus xanthus C-signaling mutants. J. Bacteriol. 176: 2200–9.CrossRefGoogle ScholarPubMed
Lee, K. and Shimkets, L. J. 1996. Suppression of a signaling defect during Myxococcus xanthus development. J. Bacteriol. 178: 977–84.CrossRefGoogle ScholarPubMed
Li, S., Lee, B.-U. and Shimkets, L. J. 1992. csgA expression entrains Myxococcus xanthus development. Genes Dev. 6: 401–10.CrossRefGoogle ScholarPubMed
Li, Y., Sun, H., Ma, X.et al. 2003. Extracellular polysaccharides mediate pilus retraction during social motility of Myxococcus xanthus. Proc. Natn. Acad. Sci. USA 100: 5443–8.CrossRefGoogle ScholarPubMed
Licking, E., Gorski, L. and Kaiser, D. 2000. A common step for changing cell shape in fruiting body and starvation-independent sporulation in Myxococcus xanthus. J. Bacteriol. 182: 3553–8.CrossRefGoogle ScholarPubMed
Llamas, M. A., Rodriguez-Herva, J. J., Hancock, R. E. W.et al. 2003. Role of Pseudomonas putida tol-oprL gene products in uptake of solutes through the cytoplasmic membrane. J. Bacteriol. 185: 4707–16.CrossRefGoogle ScholarPubMed
Lobedanz, S. and Søgaard-Andersen, L. 2003. Identification of the C-signal, a contact-dependent morphogen coordinating multiple developmental responses in Myxococcus xanthus. Genes Dev. 17: 2151–61.CrossRefGoogle ScholarPubMed
Mattick, J. S. 2002. Type IV pili and twitching motility. A. Rev. Microbiol. 56: 289–314.CrossRefGoogle ScholarPubMed
McBride, M. J., Köhler, T. and Zusman, D. R. 1992. Methylation of FrzCD, a methyl-accepting taxis protein of Myxococcus xanthus, is correlated with factors affecting cell behaviour. J. Bacteriol. 174: 4246–57.CrossRefGoogle Scholar
McBride, M. J., Weinberg, R. A. and Zusman, D. R. 1989. ‘Frizzy’ aggregation genes of the gliding bacterium Myxococcus xanthus show sequence similarities to the chemotaxis genes of enteric bacteria. Proc. Natn. Acad. Sci. USA 86: 424–8.CrossRefGoogle ScholarPubMed
Merz, A. J., So, M. and Sheetz, M. P. 2000. Pilus retraction powers bacterial twitching motility. Nature 407: 98–102.Google ScholarPubMed
Munoz, D. J., Inouye, S. and Inouye, M. 1991. A gene encoding a protein serine/threonine kinase is required for normal development of M. xanthus, a gram-negative bacterium. Cell 67: 995–1006.CrossRefGoogle Scholar
O'Connor, K. A. and Zusman, D. R. 1991. Development in Myxococcus xanthus involves differentiation into two cell types, peripheral rods and spores. J. Bacteriol. 173: 3318–33.CrossRefGoogle ScholarPubMed
O'Connor, K. A. and Zusman, D. R. 1989. Patterns of cellular interactions during fruiting-body formation in Myxococcus xanthus. J. Bacteriol. 171: 6013–24.CrossRefGoogle ScholarPubMed
Ogawa, M., Fujitani, S., Mao, X., Inouye, S. and Komano, T. 1996. FruA, a putative transcription factor essential for the development of Myxococcus xanthus. Molec. Microbiol. 22: 757–67.CrossRefGoogle ScholarPubMed
Oppermann, U., Filling, C., Hult, M.et al. 2003. Short-chain dehydrogenases/reductases (SDR): the 2002 update. Chem. Biol. Interact. 143–4: 247–53.CrossRefGoogle Scholar
Parkinson, J. S. 1993. Signal transduction schemes of bacteria. Cell 73: 857–71.CrossRefGoogle Scholar
Plamann, L., Kuspa, A. and Kaiser, D. 1992. Proteins that rescue A-signal-defective mutants of Myxococcus xanthus. J. Bacteriol. 174: 3311–18.CrossRefGoogle ScholarPubMed
Pollack, J. S. and Singer, M. 2001. SdeK, a histidine kinase required for Myxococcus xanthus development. J. Bacteriol. 183: 3589–96.CrossRefGoogle ScholarPubMed
Rasmussen, A. A. and Søgaard-Andersen, L. 2003. TodK, a putative histidine protein kinase, regulates timing of fruiting body morphogenesis in Myxococcus xanthus. J. Bacteriol. 185: 5452–64.CrossRefGoogle ScholarPubMed
Reichenbach, H. 1999. The ecology of the myxobacteria. Environ. Microbiol. 1: 15–21.CrossRefGoogle ScholarPubMed
Rosenbluh, A., Nir, R., Sahar, E. and Rosenberg, E. 1989. Cell-density-dependent lysis and sporulation of Myxococcus xanthus in agarose beads. J. Bacteriol. 171: 4923–9.CrossRefGoogle Scholar
Sager, B. and Kaiser, D. 1994. Intercellular C-signaling and the traveling waves of Myxococcus. Genes Dev. 8: 2793–804.CrossRefGoogle ScholarPubMed
Shimkets, L. J. 1999. Intercellular signaling during fruiting-body development of Myxococcus xanthus. Au. Rev. Microbiol. 53: 525–49.CrossRefGoogle ScholarPubMed
Shimkets, L. J. 1986. Role of cell cohesion in Myxococcus xanthus fruiting body formation. J. Bacteriol. 166: 842–88.CrossRefGoogle ScholarPubMed
Shimkets, L. J., Gill, R. E. and Kaiser, D. 1983. Developmental cell interactions in Myxococcus xanthus and the spoC locus. Proc. Natn. Acad. Sci. USA 80: 1406–10.CrossRefGoogle ScholarPubMed
Shimkets, L. J. and Rafiee, H. 1990. CsgA, an extracellular protein essential for Myxococcus xanthus development. J. Bacteriol. 172: 5299–306.CrossRefGoogle ScholarPubMed
Singer, M. and Kaiser, D. 1995. Ectopic production of guanosine penta- and tetraphosphate can initiate early developmental gene expression in Myxococcus xanthus. Genes Dev. 9: 1633–44.CrossRefGoogle ScholarPubMed
Skerker, J. M. and Berg, H. C. 2001. Direct observation of extension and retraction of type IV pili. Proc. Natn. Acad. Sci. USA 98: 6901–4.CrossRefGoogle ScholarPubMed
Søgaard-Andersen, L. 2004. Cell polarity, intercellular signaling and morphogenetic cell movements in Myxococcus xanthus. Curr. Opin. Microbiol. 7: 587–93.CrossRefGoogle ScholarPubMed
Søgaard-Andersen, L. and Kaiser, D. 1996. C factor, a cell-surface-associated intercellular signaling protein, stimulates the cytoplasmic Frz signal transduction system in Myxococcus xanthus. Proc. Natn. Acad. Sci. USA 93: 2675–9.CrossRefGoogle ScholarPubMed
Søgaard-Andersen, L., Overgaard, M., Lobedanz, S.et al. 2003. Coupling gene expression and multicellular morphogenesis during fruiting body formation in Myxococcus xanthus. Molec. Microbiol. 48: 1–8.CrossRefGoogle ScholarPubMed
Søgaard-Andersen, L., Slack, F. J., Kimsey, H. and Kaiser, D. 1996. Intercellular C-signaling in Myxococcus xanthus involves a branched signal transduction pathway. Genes Dev. 10: 740–54.CrossRefGoogle ScholarPubMed
Spormann, A. M. 1999. Gliding motility in bacteria: insights from studies of Myxococcus xanthus. Microbiol. Molec. Biol. Rev. 63: 621–41.Google ScholarPubMed
Spormann, A. M. and Kaiser, A. D. 1995. Gliding movements in Myxococcus xanthus. J. Bacteriol. 177: 5846–52.CrossRefGoogle ScholarPubMed
Spormann, A. M. and Kaiser, D. 1999. Gliding mutants of Myxococcus xanthus with high reversal frequencies and small displacements. J. Bacteriol. 181: 2593–601.Google ScholarPubMed
Sun, H. and Shi, W. 2001. Analyses of mrp genes during Myxococcus xanthus development. J. Bacteriol. 183: 6733–9.CrossRefGoogle ScholarPubMed
Sun, H., Zusman, D. R. and Shi, W. 2000. Type IV pilus of Myxococcus xanthus is a motility apparatus controlled by the frz chemosensory system. Curr. Biol. 10: 1143–6.CrossRefGoogle ScholarPubMed
Taylor, B. L. and Zhulin, I. B. 1999. PAS domains: internal sensors of oxygen, redox potential, and light. Microbiol. Molec. Biol. Rev. 63: 479–506.Google ScholarPubMed
Udo, H., Inouye, M. and Inouye, S. 1996. Effects of overexpression of Pkn2, a transmembrane protein serine/threonine kinase, on development of Myxococcus xanthus. J. Bacteriol. 178: 6647–9.CrossRefGoogle ScholarPubMed
Ward, M. J. and Zusman, D. R. 1999. Motility in Myxococcus xanthus and its role in developmental aggregation. Curr. Opin. Microbiol. 2: 624–9.CrossRefGoogle ScholarPubMed
White, D. J. and Hartzell, P. L. 2000. AglU, a protein required for gliding motility and spore maturation of Myxococcus xanthus, is related to WD-repeat proteins. Molec. Microbiol. 36: 662–78.CrossRefGoogle ScholarPubMed
Winans, S. C. and Bassler, B. L. 2002. Mob psychology. J. Bacteriol. 184: 873–83.CrossRefGoogle ScholarPubMed
Wolgemuth, C., Hoiczyk, E., Kaiser, D. and Oster, G. 2002. How myxobacteria glide. Curr. Biol. 12: 369–77.CrossRefGoogle ScholarPubMed
Wu, S. S. and Kaiser, D. 1995. Genetic and functional evidence that Type IV pili are required for social gliding motility in Myxococcus xanthus. Molec. Microbiol. 18: 547–58.CrossRefGoogle ScholarPubMed
Youderian, P., Burke, N., White, D. and Hartzell, P. L. 2003. Identification of genes required for adventurous gliding motility in Myxococcus xanthus with the transposable element mariner. Molec. Microbiol. 49: 555–70.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×