Skip to main content Accessibility help
Hostname: page-component-55597f9d44-dfw9g Total loading time: 0.701 Render date: 2022-08-13T21:19:30.152Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

7 - LuxS-dependent regulation of Escherichia coli virulence

Published online by Cambridge University Press:  08 August 2009

Marcie B. Clarke
University of Texas Southwestern Medical Center Dallas, TX USA
Vanessa Sperandio
University of Texas Southwestern Medical Center Dallas, TX USA
Donald R. Demuth
University of Louisville, Kentucky
Richard Lamont
University of Florida
Get access



Escherichia coli is the most abundant facultative anaerobe found in the human intestinal microbial flora. This organism resides in the mucus layer of the mammalian colon, and typically colonizes the gastrointestinal tract of humans a few hours after birth. However, there are several clones of E. coli that have acquired virulence traits that allow them to cause a broad spectrum of disease. These virulence traits are usually encoded within mobile genetic elements, such as plasmids and pathogenicity islands, that have evolved to be stable within these clones. Three general clinical syndromes result from the infection with these pathotypes: diarrheal disease, urinary tract infections, and meningitis/sepsis. Among the intestinal pathogens there are six well-described categories: enterohemorrhagic E. coli (EHEC), enteropathogenic E. coli (EPEC), enterotoxigenic E. coli (ETEC), enteroaggregative E. coli (EAEC), enteroinvasive E. coli (EIEC), and diffusely adherent E. coli (DAEC) (59). This chapter will focus primarily on EHEC and EPEC, given that quorum sensing has been mostly described within these pathotypes.


Enterohemorrhagic E. coli (EHEC) O157:H7 is responsible for major outbreaks of bloody diarrhea and hemolytic uremic syndrome (HUS) throughout the world. EHEC causes an estimated 73,000 illnesses, 2,000 hospitalizations, and 60 deaths in the United States alone each year. EHEC has a very low infectious dose (as few as 50 cfu); this is one of the major contributing factors to EHEC outbreaks.

Bacterial Cell-to-Cell Communication
Role in Virulence and Pathogenesis
, pp. 151 - 174
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Adler, J. and Templeton, B. 1967. The effect of environmental conditions on the motility of Escherichia coli. J. Gen. Microbiol. 46: 175–84.CrossRefGoogle ScholarPubMed
Ahmer, B. M. 2004. Cell-to-cell signaling in Escherichia coli and Salmonella enterica. Molec. Microbiol. 52: 933–45.CrossRefGoogle ScholarPubMed
Bijlsma, J. J. and Groisman, E. A. 2003. Making informed decisions: regulatory interactions between two-component systems. Trends Microbiol. 11: 359–66.CrossRefGoogle ScholarPubMed
Burton, C. L., Chhabra, S. R., Swift, al. 2002. The growth response of Escherichia coli to neurotransmitters and related catecholamine drugs requires a functional enterobactin biosynthesis and uptake system. Infect. Immun. 70: 5913–23.CrossRefGoogle ScholarPubMed
Bustamante, V. H., Santana, F. J., Calva, E. and Puente, J. L. 2001. Transcriptional regulation of type III secretion genes in enteropathogenic Escherichia coli: Ler antagonizes H-NS-dependent repression. Molec. Microbiol. 39: 664–78.CrossRefGoogle ScholarPubMed
Chen, X., Schauder, S., Potier, al. 2002. Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415: 545–9.CrossRefGoogle ScholarPubMed
Chilcott, G. S. and Hughes, K. T. 2000. Coupling of flagellar gene expression to flagellar assembly in Salmonella enterica serovar typhimurium and Escherichia coli. Microbiol. Molec. Biol. Rev. 64: 694–708.CrossRefGoogle ScholarPubMed
Clarke, M. B. and V. Sperandio 2005. Transcriptional autoregulation by quorum sensing E. coli regulators B and C (QseBC) in enterohemorrhagic E. coli (EHEC). (in press.)
Danese, P. N., Pratt, L. A., Dove, S. L. and Kolter, R. 2000. The outer membrane protein, antigen 43, mediates cell-to-cell interactions within Escherichia coli biofilms. Molec. Microbiol. 37: 424–32.CrossRefGoogle ScholarPubMed
Day, W. A. Jr. and Maurelli, A. T. 2001. Shigella flexneri LuxS quorum-sensing system modulates virB expression but is not essential for virulence. Infect. Immun. 69: 15–23.CrossRefGoogle Scholar
Kievit, T. R. and Iglewski, B. H. 2000. Bacterial quorum sensing in pathogenic relationships. Infect. Immun. 68: 4839–49.CrossRefGoogle ScholarPubMed
DeLisa, M. P., Wu, C. F., Wang, L., Valdes, J. J. and Bentley, W. E. 2001. DNA microarray-based identification of genes controlled by autoinducer 2-stimulated quorum sensing in Escherichia coli. J. Bacteriol. 183: 5239–47.CrossRefGoogle ScholarPubMed
Deng, W., Puente, J. L., Gruenheid, al. 2004. Dissecting virulence: systematic and functional analyses of a pathogenicity island. Proc. Natn. Acad. Sci. USA 101: 3597–602.CrossRefGoogle ScholarPubMed
Eisenhofer, G., Aneman, A., Friberg, al. 1997. Substantial production of dopamine in the human gastrointestinal tract. J. Clin. Endocrinol. Metab. 82: 3864–71.CrossRefGoogle ScholarPubMed
Elliott, S. J., Sperandio, V., Giron, J. al. 2000. The locus of enterocyte effacement (LEE)-encoded regulator controls expression of both LEE- and non-LEE-encoded virulence factors in enteropathogenic and enterohemorrhagic Escherichia coli. Infect. Immun. 68: 6115–26.CrossRefGoogle Scholar
Elliott, S. J., Wainwright, L. A., McDaniel, T. al. 1998. The complete sequence of the locus of enterocyte effacement (LEE) from enteropathogenic Escherichia coli E2348/69. Molec. Microbiol. 28: 1–4.CrossRefGoogle ScholarPubMed
Fagundes Neto, U., Schmitz, L. G. and Scaletsky, I. 1995. Clinical and epidemiological characteristics of acute diarrhea by classical enteropathogenic Escherichia coli. Rev. Assoc. Med. Bras. 41: 259–65.Google ScholarPubMed
Fagundes-Neto, U. 1996. Enteropathogenic Escherichia coli infection in infants: clinical aspects and small bowel morphological alterations. Rev. Microbiol. 27: 117–19.Google Scholar
Freestone, P. P., Haigh, R. D., Williams, P. H. and Lyte, M. 1999. Stimulation of bacterial growth by heat-stable, norepinephrine-induced autoinducers. FEMS Microbiol. Lett. 172: 53–60.CrossRefGoogle ScholarPubMed
Freestone, P. P., Lyte, M., Neal, C. al. 2000. The mammalian neuroendocrine hormone norepinephrine supplies iron for bacterial growth in the presence of transferrin or lactoferrin. J. Bacteriol. 182: 6091–8.CrossRefGoogle ScholarPubMed
Friedberg, D., Umanski, T., Fang, Y. and Rosenshine, I. 1999. Hierarchy in the expression of the locus of enterocyte effacement genes of enteropathogenic Escherichia coli. Molec. Microbiol. 34: 941–52.CrossRefGoogle ScholarPubMed
Gillen, K. L. and Hughes, K. T. 1991. Molecular characterization of flgM, a gene encoding a negative regulator of flagellin synthesis in Salmonella typhimurium. J. Bacteriol. 173: 6453–9.CrossRefGoogle ScholarPubMed
Giron, J. A., Ho, A. S. and Schoolnik, G. K. 1991. An inducible bundle-forming pilus of enteropathogenic Escherichia coli. Science 254: 710–13.CrossRefGoogle ScholarPubMed
Giron, J. A., Torres, A. G., Freer, E. and Kaper, J. B. 2002. The flagella of enteropathogenic Escherichia coli mediate adherence to epithelial cells. Molec. Microbiol. 44: 361–79.CrossRefGoogle ScholarPubMed
Goldberg, M. D., Johnson, M., Hinton, J. C. and Williams, P. H. 2001. Role of the nucleoid-associated protein Fis in the regulation of virulence properties of enteropathogenic Escherichia coli. Molec. Microbiol. 41: 549–59.CrossRefGoogle ScholarPubMed
Gomez-Duarte, O. G. and Kaper, J. B. 1995. A plasmid-encoded regulatory region activates chromosomal eaeA expression in enteropathogenic Escherichia coli. Infect. Immun. 63: 1767–76.Google ScholarPubMed
Grant, A. J., Farris, M., Alefounder, al. 2003. Co-ordination of pathogenicity island expression by the BipA GTPase in enteropathogenic Escherichia coli (EPEC). Molec. Microbiol. 48: 507–21.CrossRefGoogle Scholar
Gunn, J. S. and Miller, S. I. 1996. PhoP-PhoQ activates transcription of pmrAB, encoding a two-component regulatory system involved in Salmonella typhimurium antimicrobial peptide resistance. J. Bacteriol. 178: 6857–64.CrossRefGoogle ScholarPubMed
Haack, K. R., Robinson, C. L., Miller, K. J., Fowlkes, J. W. and Mellies, J. L. 2003. Interaction of Ler at the LEE5 (tir) operon of enteropathogenic Escherichia coli. Infect. Immun. 71: 384–92.CrossRefGoogle ScholarPubMed
Henderson, B. W. M., R. McNab and A. J. Lax 2000. Prokaryotic and eukaryotic signaling mechanisms. In Henderson, B. W. M., McNab, R. and Lax, A. J. (eds), Cellular Microbiology: Bacteria-Host Interactions in Health and Disease, 1st edn., pp. 89–162, West Sussex, England: John Wiley and Sons.Google Scholar
Henke, J. M. and Bassler, B. L. 2004. Quorum sensing regulates type III secretion in Vibrio harveyi and Vibrio parahaemolyticus. J. Bacteriol. 186: 3794–805.CrossRefGoogle ScholarPubMed
Hicks, S., Frankel, G., Kaper, J. B., Dougan, G. and Phillips, A. D. 1998. Role of intimin and bundle-forming pili in enteropathogenic Escherichia coli adhesion to pediatric intestinal tissue in vitro. Infect. Immun. 66: 1570–8.Google ScholarPubMed
Hoffer, S. M., Westerhoff, H. V., Hellingwerf, K. J., Postma, P. W. and Tommassen, J. 2001. Autoamplification of a two-component regulatory system results in ‘learning’ behavior. J. Bacteriol. 183: 4914–17.CrossRefGoogle ScholarPubMed
Hooper, L. V. and Gordon, J. I. 2001. Commensal host-bacterial relationships in the gut. Science 292: 1115–18.CrossRefGoogle Scholar
Horger, S., Schultheiss, G. and Diener, M. 1998. Segment-specific effects of epinephrine on ion transport in the colon of the rat. Am. J. Physiol. 275: G1367–76.Google ScholarPubMed
Hughes, K. T., Gillen, K. L., Semon, M. J. and Karlinsey, J. E. 1993. Sensing structural intermediates in bacterial flagellar assembly by export of a negative regulator. Science 262: 1277–80.CrossRefGoogle ScholarPubMed
Jarvis, K. G., Giron, J. A., Jerse, A. al. 1995. Enteropathogenic Escherichia coli contains a putative type III secretion system necessary for the export of proteins involved in attaching and effacing lesion formation. Proc. Natn. Acad. Sci. USA 92: 7996–8000.CrossRefGoogle ScholarPubMed
Jones, K. and Bradshaw, S. B. 1996. Biofilm formation by the enterobacteriaceae: a comparison between Salmonella enteritidis, Escherichia coli and a nitrogen-fixing strain of Klebsiella pneumoniae. J. Appl. Bacteriol. 80: 458–64.CrossRefGoogle Scholar
Kanamaru, K., Tatsuno, I., Tobe, T. and Sasakawa, C. 2000. SdiA, an Escherichia coli homologue of quorum-sensing regulators, controls the expression of virulence factors in enterohaemorrhagic Escherichia coli O157:H7. Molec. Microbiol. 38: 805–16.CrossRefGoogle ScholarPubMed
Kenny, B., DeVinney, R., Stein, al. 1997. Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adherence into mammalian cells. Cell 91: 511–20.CrossRefGoogle ScholarPubMed
Kimmitt, P. T., Harwood, C. R. and Barer, M. R. 1999. Induction of type 2 Shiga toxin synthesis in Escherichia coli O157 by 4-quinolones. Lancet 353: 1588–9.CrossRefGoogle ScholarPubMed
Kimmitt, P. T., Harwood, C. R. and Barer, M. R. 2000. Toxin gene expression by Shiga toxin-producing Escherichia coli: the role of antibiotics and the bacterial SOS response. Emerg. Infect. Dis. 6: 458–65.CrossRefGoogle ScholarPubMed
Kinney, K. S., Austin, C. E., Morton, D. S. and Sonnenfeld, G. 2000. Norepinephrine as a growth stimulating factor in bacteria – mechanistic studies. Life Sci. 67: 3075–85.CrossRefGoogle ScholarPubMed
Kjaergaard, K., Schembri, M. A., Hasman, H. and Klemm, P. 2000. Antigen 43 from Escherichia coli induces inter- and intraspecies cell aggregation and changes in colony morphology of Pseudomonas fluorescens. J. Bacteriol. 182: 4789–96.CrossRefGoogle ScholarPubMed
Knutton, S., Rosenshine, I., Pallen, M. al. 1998. A novel EspA-associated surface organelle of enteropathogenic Escherichia coli involved in protein translocation into epithelial cells. EMBO J. 17: 2166–76.CrossRefGoogle ScholarPubMed
Kutsukake, K., Ohya, Y. and Iino, T. 1990. Transcriptional analysis of the flagellar regulon of Salmonella typhimurium. J. Bacteriol. 172: 741–7.CrossRefGoogle ScholarPubMed
Lamont, I. L., Beare, P. A., Ochsner, U., Vasil, A. I. and Vasil, M. L. 2002. Siderophore-mediated signaling regulates virulence factor production in Pseudomonas aeruginosa. Proc. Natn. Acad. Sci. USA 99: 7072–7.CrossRefGoogle Scholar
Liu, X. and Matsumura, P. 1994. The FlhD/FlhC complex, a transcriptional activator of the Escherichia coli flagellar class II operons. J. Bacteriol. 176: 7345–51.CrossRefGoogle ScholarPubMed
Lyon, W. R., Madden, J. C., Levin, J. C., Stein, J. L. and Caparon, M. G. 2001. Mutation of luxS affects growth and virulence factor expression in Streptococcus pyogenes. Molec. Microbiol. 42: 145–57.CrossRefGoogle ScholarPubMed
Lyte, M., Arulanandam, B. P. and Frank, C. D.. 1996. Production of Shiga-like toxins by Escherichia coli O157:H7 can be influenced by the neuroendocrine hormone norepinephrine. J. Lab. Clin. Med. 128: 392–8.CrossRefGoogle ScholarPubMed
Lyte, M., Erickson, A. K., Arulanandam, B. al. 1997. Norepinephrine-induced expression of the K99 pilus adhesin of enterotoxigenic Escherichia coli. Biochem. Biophys. Res. Commun. 232: 682–6.CrossRefGoogle ScholarPubMed
Lyte, M., Frank, C. D. and Green, B. T. 1996. Production of an autoinducer of growth by norepinephrine cultured Escherichia coli O157:H7. FEMS Microbiol. Lett. 139: 155–9.CrossRefGoogle ScholarPubMed
Martinez-Laguna, Y., Calve, E. and Puente, J. L. 1999. Autoactivation and environmental regulation of bfpT expression, the gene coding for the transcriptional activator of bfpA in enteropathogenic Escherichia coli. Molec. Microbiol. 33: 153–66.CrossRefGoogle ScholarPubMed
McNab, R. M., 1996. Flagella and motility. In Neidhardt, F. C. (ed.), Escherichia coli and Salmonella, 2nd edn, vol.1, pp. 123–45. Washington, DC: ASM Press.Google Scholar
Mellies, J. L., Elliott, S. J., Sperandio, V., Donnenberg, M. S. and Kaper, J. B. 1999. The Per regulon of enteropathogenic Escherichia coli: identification of a regulatory cascade and a novel transcriptional activator, the locus of enterocyte effacement (LEE)-encoded regulator (Ler). Molec. Microbiol. 33: 296–306.CrossRefGoogle Scholar
Merkel, T. J., Barros, C. and Stibitz, S. 1998. Characterization of the bvgR locus of Bordetella pertussis. J. Bacteriol. 180: 1682–90.Google ScholarPubMed
Michael, B., Smith, J. N., Swift, S., Heffron, F. and Ahmer, B. M. 2001. SdiA of Salmonella enterica is a LuxR homolog that detects mixed microbial communities. J. Bacteriol. 183: 5733–42.CrossRefGoogle ScholarPubMed
Miller, S. T., Xavier, K. B., Campagna, S. al. 2004. Salmonella typhimurium recognizes a chemically distinct form of the bacterial quorum-sensing signal AI-2. Molec. Cell 15: 677–87CrossRefGoogle ScholarPubMed
Nataro, J. P. and Kaper, J. B. 1998. Diarrheagenic Escherichia coli. Clin. Microbiol. Rev. 11: 142–201.Google ScholarPubMed
Neely, M. N. and Friedman, D. I. 1998. Functional and genetic analysis of regulatory regions of coliphage H-19B: location of Shiga-like toxin and lysis genes suggest a role for phage functions in toxin release. Molec. Microbiol. 28: 1255–67.CrossRefGoogle ScholarPubMed
Nishimura, A. and Hirota, Y. 1989. A cell division regulatory mechanism controls the flagellar regulon in Escherichia coli. Molec. Gen. Genet. 216: 340–6.CrossRefGoogle ScholarPubMed
Perna, N. T., Plunkett, G. III, Butland, V. 2001. Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 409: 529–33.CrossRefGoogle ScholarPubMed
Pratt, L. A. and Kolter, R. 1998. Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Molec. Microbiol. 30: 285–93.CrossRefGoogle ScholarPubMed
Pruss, B. M., Campbell, J. W., Dyk, T. al. 2003. FlhD/FlhC is a regulator of anaerobic respiration and the Entner-Doudoroff pathway through induction of the methyl-accepting chemotaxis protein Aer. J. Bacteriol. 185: 534–43.CrossRefGoogle ScholarPubMed
Pruss, B. M., Markovic, D. and Matsumura, P. 1997. The Escherichia coli flagellar transcriptional activator flhD regulates cell division through induction of the acid response gene cadA. J. Bacteriol. 179: 3818–21.CrossRefGoogle ScholarPubMed
Pruss, B. M. and Matsumura, P. 1996. A regulator of the flagellar regulon of Escherichia coli, flhD, also affects cell division. J. Bacteriol. 178: 668–74.CrossRefGoogle ScholarPubMed
Raivio, T. L., Popkin, D. L. and Silhavy, T. J. 1999. The Cpx envelope stress response is controlled by amplification and feedback inhibition. J. Bacteriol. 181: 5263–72.Google ScholarPubMed
Rothbaum, R., McAdams, A. J., Giannella, R. and Partin, J. C. 1982. A clinicopathologic study of enterocyte-adherent Escherichia coli: a cause of protracted diarrhea in infants. Gastroenterology 83: 441–54.Google ScholarPubMed
Roy, C. R., Miller, J. F. and Falkow, S. 1990. Autogenous regulation of the Bordetella pertussis bvgABC operon. Proc. Natn. Acad. Sci. USA 87: 3763–7.CrossRefGoogle ScholarPubMed
Sanchez-SanMartin, C., Bustamante, V. H., Calva, E. and Puente, J. L. 2001. Transcriptional regulation of the orf19 gene and the tir-cesT-eae operon of enteropathogenic Escherichia coli. J. Bacteriol. 183: 2823–33.CrossRefGoogle ScholarPubMed
Scaletsky, I. C., Silva, M. L. and Trabulsi, L. R. 1984. Distinctive patterns of adherence of enteropathogenic Escherichia coli to HeLa cells. Infect. Immun. 45: 534–6.Google ScholarPubMed
Schauder, S. and Bassler, B. L. 2001. The languages of bacteria. Genes Dev. 15: 1468–80.CrossRefGoogle Scholar
Schauder, S., Shokat, K., Surette, M. G. and Bassler, B. L. 2001. The LuxS family of bacterial autoinducers: biosynthesis of a novel quorum-sensing signal molecule. Molec. Microbiol. 41: 463–76.CrossRefGoogle ScholarPubMed
Schembri, M. A., Kjaergaard, K. and Klemm, P. 2003. Global gene expression in Escherichia coli biofilms. Molec. Microbiol. 48: 253–67.CrossRefGoogle ScholarPubMed
Schembri, M. A. and Klemm, P. 2001. Biofilm formation in a hydrodynamic environment by novel fimH variants and ramifications for virulence. Infect. Immun. 69: 1322–8.CrossRefGoogle Scholar
Shin, S., Castanie-Cornet, M. P., Foster, J. al. 2001. An activator of glutamate decarboxylase genes regulates the expression of enteropathogenic Escherichia coli virulence genes through control of the plasmid-encoded regulator, Per. Molec. Microbiol. 41: 1133–50.CrossRefGoogle ScholarPubMed
Shin, S. and Park, C. 1995. Modulation of flagellar expression in Escherichia coli by acetyl phosphate and the osmoregulator OmpR. J. Bacteriol. 177: 4696–702.CrossRefGoogle ScholarPubMed
Silverman, M. and Simon, M. 1974. Characterization of Escherichia coli flagellar mutants that are insensitive to catabolite repression. J. Bacteriol. 120: 1196–203.Google ScholarPubMed
Sircili, M. P., Walters, M., Trabulsi, L. and Sperandio, V. 2004. Modulation of enteropathogenic E. coli (EPEC) virulence by quorum sensing. Infect. Immun. 72: 2329–37.CrossRefGoogle ScholarPubMed
Soncini, F. C. and Groisman, E. A. 1996. Two-component regulatory systems can interact to process multiple environmental signals. J. Bacteriol. 178: 6796–801.CrossRefGoogle ScholarPubMed
Soncini, F. C., Vescovi, E. G. and Groisman, E. A. 1995. Transcriptional autoregulation of the Salmonella typhimurium phoPQ operon. J. Bacteriol. 177: 4364–71.CrossRefGoogle ScholarPubMed
Sperandio, V., Li, C. C. and Kaper, J. B. 2002. Quorum-sensing Escherichia coli regulator A (QseA): a regulator of the LysR family involved in the regulation of the LEE pathogenicity island in enterohemorrhagic Escherichia coli. Infect. Immun. 70: 3085–93.CrossRefGoogle Scholar
Sperandio, V., Mellies, J. L., Delahay, R. al. 2000. Activation of enteropathogenic Escherichia coli (EPEC) LEE2 and LEE3 operons by Ler. Molec. Microbiol. 38: 781–93.CrossRefGoogle ScholarPubMed
Sperandio, V., Mellies, J. L., Nguyen, W., Shin, S. and Kaper, J. B. 1999. Quorum sensing controls expression of the type III secretion gene transcription and protein secretion in enterohemorrhagic and enteropathogenic Escherichia coli. Proc. Natn. Acad. Sci. USA 96: 15196–201.CrossRefGoogle ScholarPubMed
Sperandio, V., Torres, A. G., Giron, J. A. and Kaper, J. B. 2001. Quorum sensing is a global regulatory mechanism in enterohemorrhagic Escherichia coli O157:H7. J. Bacteriol. 183: 5187–97.CrossRefGoogle ScholarPubMed
Sperandio, V., Torres, A. G., Jarvis, B., Nataro, J. P. and Kaper, J. B. 2003. Bacteria-host communication: the language of hormones. Proc. Natn. Acad. Sci. USA 100: 8951–6.CrossRefGoogle ScholarPubMed
Sperandio, V., Torres, A. G. and Kaper, J. B. 2002. Quorum sensing Escherichia coli regulators B and C (QseBC): a novel two-component regulatory system involved in the regulation of flagella and motility by quorum sensing in E. coli. Molec. Microbiol. 43: 809–21.CrossRefGoogle Scholar
Surette, M. G. and Bassler, B. L. 1998. Quorum sensing in Escherichia coli and Salmonella typhimurium. Proc. Natn. Acad. Sci. USA 95 : 7046–50.CrossRefGoogle ScholarPubMed
Surette, M. G., Miller, M. B. and Bassler, B. L. 1999. Quorum sensing in Escherichia coli, Salmonella typhimurium, and Vibrio harveyi: a new family of genes responsible for autoinducer production. Proc. Natn. Acad. Sci. USA 96: 1639–44.CrossRefGoogle ScholarPubMed
Swift, S., Lynch, M. J., Fish, al. 1999. Quorum sensing-dependent regulation and blockade of exoprotease production in Aeromonas hydrophila. Infect. Immun. 67: 5192–9.Google ScholarPubMed
Taga, M. E., Miller, S. T. and Bassler, B. L. 2003. Lsr-mediated transport and processing of AI-2 in Salmonella typhimurium. Molec. Microbiol. 50: 1411–27.CrossRefGoogle ScholarPubMed
Taga, M. E., Semmelhack, J. L. and Bassler, B. L. 2001. The LuxS-dependent autoinducer AI-2 controls the expression of an ABC transporter that functions in AI-2 uptake in Salmonella typhimurium. Molec. Microbiol. 42: 777–93.CrossRefGoogle ScholarPubMed
Tischler, A. D. and Camilli, A. 2004. Cyclic diguanylate (c-di-GMP) regulates Vibrio cholerae biofilm formation. Molec. Microbiol. 53: 857–69.CrossRefGoogle ScholarPubMed
Tobe, T., Schoolnik, G. K., Sohel, I., Bustamante, V. H. and Puente, J. L. 1996. Cloning and characterization of bfpTVW, genes required for the transcriptional activation of bfpA in enteropathogenic Escherichia coli. Molec. Microbiol. 21: 963–75.CrossRefGoogle ScholarPubMed
Wang, X. D., Boer, P. A. and Rothfield, L. I. 1991. A factor that positively regulates cell division by activating transcription of the major cluster of essential cell division genes of Escherichia coli. EMBO J. 10: 3363–72.Google ScholarPubMed
Watnick, P. I., Lauriano, C. M., Klose, K. E., Croal, L. and Kolter, R. 2001. The absence of a flagellum leads to altered colony morphology, biofilm development and virulence in Vibrio cholerae O139. Molec. Microbiol. 39: 223–35.CrossRefGoogle ScholarPubMed
Winzer, K., Hardie, K. R., Burgess, al. 2002. LuxS: its role in central metabolism and the in vitro synthesis of 4-hydroxy-5-methyl-3(2H)-furanone. Microbiology 148: 909–22.CrossRefGoogle ScholarPubMed
Wosten, M. M., Kox, L. F., Chamnongpol, S., Soncini, F. C. and Groisman, E. A. 2000. A signal transduction system that responds to extracellular iron. Cell 103: 113–25.CrossRefGoogle ScholarPubMed
Xavier, K. B. and Bassler, B. L. 2003. LuxS quorum sensing: more than just a numbers game. Curr. Opin. Microbiol. 6: 191–7.CrossRefGoogle ScholarPubMed
Yanagihara, S., Iyoda, S., Ohnishi, K., Iino, T. and Kutsukake, K. 1999. Structure and transcriptional control of the flagellar master operon of Salmonella typhimurium. Genes. Genet. Syst. 74: 105–11.CrossRefGoogle ScholarPubMed
Yokota, T. and Gots, J. S. 1970. Requirement of adenosine 3', 5'-cyclic phosphate for flagella formation in Escherichia coli and Salmonella typhimurium. J. Bacteriol. 103: 513–16.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats