Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-vl2kb Total loading time: 1.138 Render date: 2021-12-07T06:20:56.021Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

7 - History of Anemia and Related Nutritional Deficiencies

Evidence from Cranial Porosities

Published online by Cambridge University Press:  29 October 2018

Richard H. Steckel
Affiliation:
Ohio State University
Clark Spencer Larsen
Affiliation:
Ohio State University
Charlotte A. Roberts
Affiliation:
University of Durham
Joerg Baten
Affiliation:
Eberhard-Karls-Universität Tübingen, Germany
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
The Backbone of Europe
Health, Diet, Work and Violence over Two Millennia
, pp. 198 - 230
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angel, J. L. (1966). Porotic hyperostosis, anemias, malarias, and marshes in the prehistoric eastern Mediterranean, Science, 153: 760763.CrossRefGoogle ScholarPubMed
Angel, J. L. (1984). Health as a crucial factor in the changes from hunting to developed farming in the eastern Mediterranean. In: Cohen, M. N.; Armelagos, G. J. (eds.), Paleopathology at the Origins of Agriculture, Orlando: Academic Press, pp. 5173.Google Scholar
Bennike, P.; Lewis, M. E.; Schutkowski, H.; Valentin, F. (2005). Comparison of child morbidity in two contrasting medieval cemeteries from Denmark. American Journal of Physical Anthropology, 128: 734746.CrossRefGoogle Scholar
Benus, R.; Obertova, Z.; Masnicova, S. (2010). Demographic, temporal and environmental effects on the frequency of cribra orbitalia in three Early Medieval populations from western Slovakia. HOMO: Journal of Comparative Human Biology, 61: 178190.CrossRefGoogle ScholarPubMed
Bothwell, T. H. (1995). Overview and mechanisms of iron regulation, Nutrition Reviews, 53: 237245.CrossRefGoogle ScholarPubMed
Bowersock, G. W. (1988). The dissolution of the Roman Empire. In: Yoffee, N.; Cowgill, G.L. (eds.), The Collapse of Ancient States and Civilizations, Tucson: University of Arizona Press, pp. 165187.Google Scholar
Cohen, M. N.; Armelagos, G. J. (eds.) (1984). Paleopathology at the Origins of Agriculture, New York: Academic Press.Google Scholar
Cohen, M. N.; Armelagos, G. J. (eds.) (2013). Paleopathology at the Origins of Agriculture, Gainesville: University Press of Florida.Google Scholar
Cooley, T. B.; Lee, P. (1925). Series of cases of splenomegaly in children with anemia and peculiar bone changes, Transactions of the American Pediatric Society, 37: 2930.Google Scholar
De La Rua, C.; Izagirre, N.; Manzano, C. (1995). Environmental stress in a Medieval population of the Basque Country, HOMO: Journal of Comparative Human Biology, 45(3): 268289.Google Scholar
DeWitte, S. N. (2010). Sex differentials in frailty in medieval England, American Journal of Physical Anthropology, 143: 285297.CrossRefGoogle ScholarPubMed
Djuric, M.; Milovanovic, P.; Janovic, A.; et al. (2008). Porotic lesions in immature skeletons from Stara Torina, late medieval Serbia, International Journal of Osteoarchaeology, 18: 458475.CrossRefGoogle Scholar
El-Najjar, M. Y.; Robertson, A. (1976). Spongy bone in prehistoric America, Science, 93: 141143.CrossRefGoogle Scholar
Fleming, R. (2010). Britain after Rome: The Fall and Rise, 400–1070. London: Allen Lane.Google Scholar
Geber, J. (2014). Skeletal manifestations of stress in child victims of the Great Irish Famine (1845–1852): prevalence of enamel hypoplasia, Harris lines, and growth retardation. American Journal of Physical Anthropology, 155: 149151.CrossRefGoogle ScholarPubMed
Geber, J.; Murphy, E. (2012). Scurvy in the Great Irish Famine: evidence of vitamin C deficiency from a mid-19th century skeletal population, American Journal of Physical Anthropology, 148: 512524.CrossRefGoogle ScholarPubMed
Gowland, R. L.; Western, A. G. (2012). Morbidity in the marshes: using spatial epidemiology to investigate skeletal evidence for malaria in Anglo-Saxon England (AD 410–1050), American Journal of Physical Anthropology, 147: 301311.CrossRefGoogle Scholar
Halstead, P. (2007). Carcasses and commensality: investigating the social context of meat consumption in Neolithic and Early Bronze Age Greece. In: Mee, C. B.; Renard, J. (eds.), Cooking up the Past: Food and Culinary Practices in the Neolithic and Early Bronze Age Aegean, Oxford: Oxbow Books, pp. 2548.Google Scholar
Halstead, P. (2014). Two Oxen Ahead: Pre-Mechanized Farming in the Mediterranean. Chichester: John Wiley & Sons.CrossRefGoogle Scholar
Hamerow, H. (2002). Early Medieval Settlements: The Archaeology of Rural Communities in Northwest Europe, 400–900, Oxford: Oxford University Press.Google Scholar
Hengen, O. P. (1971). Cribra orbitalia: pathogenesis and probable etiology, HOMO: Journal of Comparative Human Biology, 22: 5775.Google Scholar
Hershkovitz, I.; Rothschild, B. M.; Latimer, B.; et al. (1997). Recognition of sickle cell anemia in skeletal remains of children. American Journal of Physical Anthropology, 104: 213226.3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Hooton, E. A. (1930). Indians of Pecos Pueblo, New Haven: Yale University Press.Google Scholar
Hrdlička, A. (1914). Anthropological work in Peru in 1913, with notes on the pathology of the Ancient Peruvians, Smithsonian Miscellaneous Collections, 61(18).Google Scholar
Jatautis, S.; Mitokaite, I.; Jankauskas, R. (2011). Analysis of cribra orbitalia in the earliest inhabitants of medieval Vilnius, Anthropological Review, 74: 5768.CrossRefGoogle Scholar
Kozak, J.; Niedbala, K. (2002). The occurrence of cribra orbitalia and its association with enamel hypoplasia in a medieval population from Kolobrzeg, Poland. Variability and Evolution, 10: 7582.Google Scholar
Lagia, A.; Eliopoulos, C.; Manolis, S. (2007). Thalassemia: macroscopic and radiological study of a case, International Journal of Osteoarcheology, 17: 269285.CrossRefGoogle Scholar
Lallo, J. W.; Armelagos, G. J.; Mensforth, R. P. (1997). The role of diet, disease, and physiology in the origin of porotic hyperostosis, Human Biology, 49: 271.Google Scholar
Larsen, C. S. (2015). Bioarchaeology: Interpreting Behavior from the Human Skeleton, 2nd edition, Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Lewis, M. E. (2002). Impact of industrialization: comparative study of child health in four sites from medieval and postmedieval England (A.D. 850–1859), American Journal of Physical Anthropology, 119: 211223.CrossRefGoogle Scholar
Lewis, M. E. (2010). Life and death in a Civitas capital: metabolic disease and trauma in the children from late Roman Dorchester, Dorset, American Journal of Physical Anthropology, 142: 405416.CrossRefGoogle Scholar
Novak, M.; Howcroft, R.; Pinhasi, R. (2017). Child health in five early medieval Irish sites: a multidisciplinary approach, International Journal of Osteoarchaeology, 27: 398408.CrossRefGoogle Scholar
Obertova, Z.; Thurzo, M. (2008). Relationship between cribra orbitalia and enamel hypoplasia in the early medieval Slavic population at Borovce, Serbia, International Journal of Osteoarchaeology, 18: 280292.CrossRefGoogle Scholar
Ortner, D. J.; Putschar, W. G. J. (1985). Identification of Pathological Conditions in Human Skeletal Remains, Washington: Smithsonian Institution Press.Google Scholar
Papathanasiou, A. (2001). Bioarchaeological Analysis of Neolithic Alepotrypa Cave, Greece, Oxford: Archaeopress.CrossRefGoogle Scholar
Papathanasiou, A. (2005). Health status of the Neolithic population of Alepotrypa Cave, Greece, American Journal of Physical Anthropology, 126: 377390.CrossRefGoogle ScholarPubMed
Pitts, M.; Griffin, R. (2012). Exploring health and social well-being in late Roman Britain: an intercemetery approach, American Journal of Archaeology, 116: 253276.CrossRefGoogle Scholar
Redfern, R. C.; DeWitte, S. (2011). A new approach to the study of Romanization in Britain: a regional perspective of cultural change in late Iron Age and Roman Dorset using the Siler and Gompertz-Makeham models of mortality, American Journal of Physical Anthropology, 144: 269285.CrossRefGoogle Scholar
Redfern, R. C.; DeWitte, S. N.; Pearce, J.; Hamlin, C.; Egging Dinwiddy, K. (2015). Urban–rural differences in Roman Dorset, England: a bioarchaeological perspective on Roman settlements, American Journal of Physical Anthropology, 157: 107120.CrossRefGoogle ScholarPubMed
Resnick, D.; Niwayama, G. (1988). Diagnosis of Bone and Joint Disorders, Philadelphia: Saunders.Google Scholar
Salvadei, L.; Ricci, F.; Manzi, G. (2001). Porotic hyperostosis as a marker of health and nutritional conditions during childhood: studies at the transition between Imperial Rome and the Early Middle Ages, American Journal of Human Biology, 13: 709717.CrossRefGoogle ScholarPubMed
Scheiermann, C.; Frenette, P. S.; Hidalgo, A. (2015). Regulation of leucocyte homeostasis in the circulation, Cardiovascular Research, 107: 340351.CrossRefGoogle ScholarPubMed
Sebes, J. I; Diggs, L. W. (1979). Radiographic changes of the skull in sickle cell anemia, American Journal of Roentgenology, 132: 373377.CrossRefGoogle ScholarPubMed
Shahidi, N. T.; Diamond, L. K. (1960). Skull changes in infants with chronic iron-deficiency anemia, New England Journal of Medicine, 262: 137139.CrossRefGoogle ScholarPubMed
Singman, J. L. (1999). Daily Life in Medieval Europe, Westport: Greenwood Press.Google Scholar
Šlaus, M. (1996). Demography and disease in the Early Medieval site of Privlaka, Izvorni Znanstveni rad Antropologija, 20: 141149.Google Scholar
Šlaus, M. (2000). Biocultural analysis of sex differences in mortality profiles and stress levels in the late medieval population from Nova Raca, Croatia, American Journal of Physical Anthropology, 111: 193209.3.0.CO;2-0>CrossRefGoogle ScholarPubMed
Somers, J.; Cooper, C.; Alterauge, A.; Losch, S. (2017). A medieval/early modern alpine population from Zweisimmen, Switzerland: a comparative study of anthropology and paleopathology, International Journal of Osteoarchaeology. DOI: 10.1002/oa.2607.CrossRefGoogle Scholar
Steckel, R. H.; Sciulli, P. W.; Rose, J. C. (2002). A health index from skeletal remains. In: Steckel, R. H.; Rose, J. C. (eds.), The Backbone of History: Health and Nutrition in the Western Hemisphere, Cambridge: Cambridge University Press, pp. 6193.CrossRefGoogle Scholar
Stuart-Macadam, P. (1985). Porotic hyperostosis: representative of a childhood condition, American Journal of Physical Anthropology, 66: 391398.CrossRefGoogle ScholarPubMed
Stuart-Macadam, P. (1989). Nutritional deficiency diseases: a survey of scurvy, rickets, and iron deficiency anemia. In: İşcan, M. Y.; Kennedy, K. A. R. (eds.), Reconstruction of Life from the Skeleton, New York: Wiley-Liss, pp. 201222.Google Scholar
Stuart-Macadam, P. (1992). Anemia in past human populations. In: Stuart-Macadam, P.; Kent, S. (eds.), Diet, Demography, and Disease: Changing Perspectives on Anemia, New York: Walter de Gruyter, pp. 151170.Google Scholar
Walker, P. L. (1986). Porotic hyperostosis in a marine-dependent California Indian population, American Journal of Physical Anthropology, 69(3): 345354CrossRefGoogle Scholar
Walker, P. L.; Bathurst, R. R.; Richman, R.; et al. (2009). The causes of porotic hyperostosis and cribra orbitalia: a reappraisal of the iron-deficiency-anemia hypothesis, American Journal of Physical Anthropology, 139: 109125.CrossRefGoogle ScholarPubMed
Weatherall, D. J. (2001). Phenotype–genotype relationships in monogenic disease: lessons from the thalassaemias, Nature Reviews Genetics, 2: 245255.CrossRefGoogle ScholarPubMed
2
Cited by

Send book to Kindle

To send this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Send book to Dropbox

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Dropbox.

Available formats
×

Send book to Google Drive

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Google Drive.

Available formats
×