Skip to main content Accessibility help
×
Home
Hostname: page-component-dc8c957cd-4x6s7 Total loading time: 0.266 Render date: 2022-01-29T08:53:38.283Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

7 - The p-adic analytic space of pseudocharacters of a profinite group and pseudorepresentations over arbitrary rings

Published online by Cambridge University Press:  05 October 2014

Gaëtan Chenevier
Affiliation:
Centre de Mathématiques Laurent Schwartz
Fred Diamond
Affiliation:
King's College London
Payman L. Kassaei
Affiliation:
King's College London
Minhyong Kim
Affiliation:
University of Oxford
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[A] S. A., Amitsur, On the characteristic polynomial of a sum of matrices, J. Linear and Multilinear Algebra 8, 177–182 (1980).Google Scholar
[B] J., Bellaïche, Pseudodeformations, Math. Z. 270, 1163–1180 (2012).Google Scholar
[BC] J., Bellaïche & G., Chenevier, Families of Galois representations and Selmer groups, Astérisque 324, Soc. Math. France (2009).Google Scholar
[Ber] P., Berthelot, Cohomologie rigide et cohomologie rigide à supports propres, Première partie (version provisoire 1991), Prépublication de l'Inst. Rech. Math. Rennes (1996).
[BGR] S., Bosch, U., Güntzer & R., Remmert, Non-Archimedean Analysis, Springer Verlag, Grundlehren der math. wissenschaften 261 (1983).
[Bki] N., Bourbaki, Eléments de mathématiques, Algèbre Ch. III, Actualités Scientifiques et Industrielles, Hermann, Paris (1961).
[DCPRR] C. De, Concini, C., Procesi, N., Reshetikhin & M., Rosso, Hopf algebras with trace and representations, Invent. Math. 161, 1–44 (2005).Google Scholar
[DJ] A.J. De, Jong, Crystalline and module Dieudonné theory via formal and rigid geometry, Publ. Math. I.H.É.S. 82, 5–96 (1995).Google Scholar
[D] S., Donkin, Invariants of several matrices, Inv. Math. 110, 389–410 (1992).Google Scholar
[EGA] A., Grothendieck, Éléments de géométrie algébrique, I. Le language des schémas, Publ. Math. I.H.É.S. 4 (1960).Google Scholar
[Fe] D., Ferrand, Un foncteur norme, Bull. Soc. Math. France 126, 1–49 (1998).Google Scholar
[Fr] F. G., Frobenius, Über die Primfactoren der Gruppendeterminante, Ges. Abh. III (1968) (S'ber. Akad. Wiss. Berlin1343–1382).
[H] I.N., Herstein, Noncommuntative rings, The Carus Mathematical Monographs 15, Math. Assoc. of America (1968).
[Hi] G., Higman, On a conjecture of Nagata, Proc. Camb. Phil. Soc. 52, 1–4 (1956).Google Scholar
[Lo] M., Lothaire, Combinatorics on words, Encycl. of Math. and its applications, Addison Wesley (1983).
[M] B., Mazur, Deforming Galois representations, in Galois groups over ℚ, Y., Ihara, K., Ribet, J.-P., Serre, eds., MSRI Publ. 16, 385–437 (1987).
[N] L., Nyssen, Pseudo-représentations, Math. Annalen 306, 257–283 (1996).Google Scholar
[P1] C., Procesi, Finite dimensional representations of algebras, Israel J. Math. 19, 169–182 (1974).Google Scholar
[P2] C., Procesi, Invariant theory of n × n matrices, Adv. Math. 19, 306–381 (1976).Google Scholar
[P3] C., Procesi, A formal inverse to the Cayley Hamilton theorem, J. Algebra 107, 63–74 (1987).Google Scholar
[P4] C., Procesi, Deformations of representations, Methods in ring theory (Levico Terme, 1997), Lecture Notes in Pure and Appl. Math. 198, Dekker, New York, p. 247–276 (1998).
[RS] C., Reutenauer & M.-P., Schützenberger, A formula for the determinant of a sum of matrices, Lett. Math. Phys. 13, 299–302 (1987).Google Scholar
[Ro1] N., Roby, Lois polynômes et lois formelles en théorie des modules, Ann. Sc. É.N.S. 80, 213–348 (1963).Google Scholar
[Ro2] N., Roby, Lois polynômes multiplicatives universelles, C. R. Acad. Ac. Paris 290, 869–871 (1980).Google Scholar
[Rou] R., Rouquier, Caractérisation des caractères et pseudo-caractères, J. Algebra 180, 571–586 (1996).Google Scholar
[Ru] K., Rubin, Euler systems, Princeton University Press, Annals of math. studies 147 (2000).
[Sen] S., Sen, An infinite dimensional Hodge-Tate theory, Bull. Soc. Math. France 121, 13–34 (1993).Google Scholar
[S] C. S., Seshadri, Geometric reductivity over arbitrary bases, Adv. Math. 26, 225–274 (1977).Google Scholar
[Ta] J., Tate, The non-existence of certain Galois extensions of ℚ unramified outside 2, in Arithmetic geometry (Tempe, AZ, 1993), Contemp. Math. 174, p. 153–156.
[T] R., Taylor, Galois representations associated to Siegel modular forms of low weight, Duke Math. J. 63, 281–332 (1991).Google Scholar
[V1] F., Vaccarino, Generalized symmetric functions and invariants of matrices, Math. Z. 260, 509–526 (2008).Google Scholar
[V2] F., Vaccarino, Homogeneous multiplicative polynomial laws are determinant, J. Pure Appl. Algebra 213, 1283–1289 (2009).Google Scholar
[V3] F., Vaccarino, On the invariants of matrices and the embedding problem, preprint (2004), arXiv:math/0406203v1.
[W] A., Wiles, On ordinary λ-adic representations associated to modular forms, Invent. Math. 94, 529–573 (1988).Google Scholar
[Z1] D., Ziplies, A characterization of the norm of an Azumaya algebra of constant rank through the divided powers algebra of an algebra, Beiträge Algebra Geom. 22, 53–70 (1986).Google Scholar
[Z2] D., Ziplies, Generators for the divided powers algebra of an algebra and trace identities, Beiträge Algebra Geom. 24, p. 9–27 (1987).Google Scholar
21
Cited by

Send book to Kindle

To send this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Send book to Dropbox

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Dropbox.

Available formats
×

Send book to Google Drive

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Google Drive.

Available formats
×