Skip to main content Accessibility help
Hostname: page-component-6c8bd87754-qjg4w Total loading time: 2.105 Render date: 2022-01-16T18:58:28.662Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

8 - La série principale unitaire de GL2(Qp): vecteurs localement analytiques

Published online by Cambridge University Press:  05 October 2014

Pierre Colmez
Institute de Mathématiques de Jussieu
Fred Diamond
King's College London
Payman L. Kassaei
King's College London
Minhyong Kim
University of Oxford
Get access


Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


[1] L., Berger, Équations différentielles p-adiques et (φ, N)-modules filtrés. Astérisque 319 (2008), 13–38.Google Scholar
[2] L., Berger et C., Breuil, Sur quelques représentations potentiellement cristal-lines de GL2(Qp), Astérisque 330 (2010), 155–211.Google Scholar
[3] L., Berger et P., Colmez, Familles de représentations de de Rham et monodromie p-adique, Astérisque 319 (2008), 303–337.Google Scholar
[4] N., Bourbaki, Espace Vectoriels Topologiques, chap. I à V, Masson, Paris, 1981.
[5] C., Breuil, Invariant ℒ et série spéciale p-adique, Ann. E.N.S. 37 (2004) 559–610.Google Scholar
[6] C., Breuil, Série spéciale p-adique et cohomologie étale complétée, Astérisque 331 (2010), 65–115.Google Scholar
[7] H., Cartan, lettre du 4 mars 1940 et A. WEIL, lettre du 9 mars 1940, Correspondance entre Henri Cartan et André Weil (1928-1991), éditée par M. AUDIN, Documents Mathématiques 6, Société Mathématique de France, 2011.
[8] G., Chenevier, Sur la densité des représentations cristallines du groupe de Galois absolu de Qp, Math. Ann. 355 (2013), 1469–1525.Google Scholar
[9] F., Cherbonnier et P., Colmez, Représentations p-adiques surconvergentes, Invent. Math. 133 (1998), 581–611.Google Scholar
[10] P., Colmez, Représentations triangulines de dimension 2, Astérisque 319 (2008), 213–258.Google Scholar
[11] P., Colmez, Fonctions d'une variable p-adique, Astérisque 330 (2010), 13–59.Google Scholar
[12] P., Colmez, (φ, Γ)-modules et représentations du mirabolique de GL2(Qp), Astérisque 330 (2010), 61–153.Google Scholar
[13] P., Colmez, La série principale unitaire de GL2(Qp), Astérisque 330 (2010), 213–262.Google Scholar
[14] P., Colmez, Représentations de GL2(Qp) et (φ, Γ)-modules, Astérisque 330 (2010), 281–509.Google Scholar
[15] G., Dospinescu, Actions infinitésimales dans la correspondance de Langlands locale p-adique pour GL2(Qp), Math. Ann. 354 (2012), 627–657.Google Scholar
[16] G., Dospinescu, Équations différentielles p-adiques et foncteurs de Jacquet analytiques, ce volume.
[17] M., Emerton, p-adic L-functions and unitary completions of representations of p-adic reductive groups Duke Math. J. 130 (2005), 353-392.Google Scholar
[18] M., Emerton, Jacquet modules of locally analytic representations of p-adic reductive groups. I. Construction and first properties, Ann. E.N.S. 39 (2006), 775–839.Google Scholar
[19] M., Emerton, A local-global compatibility conjecture in the p-adic Langlands programme for GL2/ℚ, Pure Appl. Math. Q. 2 (2006), 279–393.Google Scholar
[20] J.-M., Fontaine, Représentations p-adiques des corps locaux, dans “The Grothendieck Festschrift”, vol 2, Prog. in Math. 87, 249–309, Birkhäuser 1991.
[21] H., Jacquet et R., Langlands, Automorphic forms on GL(2), Lect. Notes in Math. 114, Springer 1970.
[22] K., Kedlaya, A p-adic monodromy theorem, Ann. of Math. 160 (2004), 93–184.
[23] N., Koblitz, p-adic analysis : a short course on recent work, London Math. Soc. Lecture Note Series 46, Cambridge University Press, 1980.
[24] J., Kohlhaase, The cohomology of locally analytic representations, J. Reine Angew. Math. 651 (2011), 187–240.Google Scholar
[25] R., Liu, Locally Analytic Vectors of some crystabeline representations of GL2(Qp), Compos. Math. 148 (2012), 28–64.Google Scholar
[26] R., Liu, Cohomology and duality for (φ, Γ)-modules over the Robba ring, Int. Math. Res. Not. IMRN (3) (2008)Google Scholar
[27] R., Liu, B., Xie, Y., Zhang, Locally Analytic Vectors of Unitary Principal Series of GL2(Qp), Ann. E.N.S. 45 (2012), 167–190.Google Scholar
[28] V., Paskunas, On some crystalline representations of GL2(Qp), Algebra & Number Theory 3 (2009), 411–421.Google Scholar
[29] V., Paskunas, The image of Colmez' Montréal functor, Publ. Math. IHES (à paraître).
[30] P., Schneider et J., Teitelbaum, Locally analytic distributions and p-adic representation theory, with applications to GL2, J. Amer. Math.Soc. 15 (2002), 443–468.Google Scholar
Cited by

Send book to Kindle

To send this book to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats

Send book to Dropbox

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Dropbox.

Available formats

Send book to Google Drive

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Google Drive.

Available formats