Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-t7hbd Total loading time: 0.229 Render date: 2022-05-21T01:03:44.629Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

2 - Irreducible modular representations of the Borel subgroup of GL2(Qp)

Published online by Cambridge University Press:  05 October 2014

Laurent Berger
Affiliation:
UMPA, Ecole Normale Supérieure de Lyon
Mathieu Vienney
Affiliation:
UMPA, Ecole Normale Supérieure de Lyon
Fred Diamond
Affiliation:
King's College London
Payman L. Kassaei
Affiliation:
King's College London
Minhyong Kim
Affiliation:
University of Oxford
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[BC08] L., Berger & P., Colmez – “Familles de représentations de de Rham et monodromie p-adique”, Astérisque (2008), no. 319, 303–337, Représentations p-adiques de groupes p-adiques. I. Représentations galoisiennes et (φ, Γ)-modules.Google Scholar
[Ber10a] L., Berger – “On some modular representations of the Borel subgroup of GL2(Qp)”, Compos. Math. 146 (2010), no. 1, 58–80.Google Scholar
[Ber10b] L., Berger – “Représentations modulaires de GL2(Qp) et représentations galoisiennes de dimension 2”, Astérisque (2010), no. 330, 263–279.Google Scholar
[Ber12] L., Berger – “Central characters for smooth irreducible modular representations of GL2(Qp)”, Rend. Semin. Mat. Univ. Padova 128 (2012), 1–6.Google Scholar
[BH06] C. J., Bushnell & G., HenniartThe local Langlands conjecture for GL(2), Grundlehren der Mathematischen Wissenschaften, vol. 335, Springer-Verlag, Berlin, 2006.
[Col10a] P., Colmez – “(φ, Γ)-modules et représentations du mirabolique de GL2(Qp)”, Astérisque (2010), no. 330, 61–153.Google Scholar
[Col10b] P., Colmez – “Représentations de GL2(Qp) et (φ, Γ)-modules”, Astérisque (2010), no. 330, 281–509.Google Scholar
[Eme08] M., Emerton – “On a class of coherent rings, with applications to the smooth representation theory of GL2(Qp) in characteristic p”, preprint, 2008.
[Fon90] J.-M., Fontaine – “Représentations p-adiques des corps locaux. I”, in The Grothendieck Festschrift, Vol. II, Progr. Math., vol. 87, Birkhäuser Boston, Boston, MA, 1990, pp. 249–309.
[Ked08] K. S., Kedlaya – “Slope filtrations for relative Frobenius”, Astérisque (2008), no. 319, 259–301, Représentations p-adiques de groupes p-adiques. I. Représentations galoisiennes et (φ, Γ)-modules.Google Scholar
[Lef42] S., LefschetzAlgebraic topology, American Mathematical Society Colloquium Publications, v. 27, American Mathematical Society, New York, 1942.
[Ser72] J.-P., Serre – “Propriétés galoisiennes des points d'ordre fini des courbes elliptiques”, Invent. Math. 15 (1972), no. 4, 259–331.Google Scholar
[SV11] P., Schneider & M.-F., Vigneras – “A functor from smooth o-torsion representations to (φ, Γ)-modules”, in On certain L-functions, Clay Math. Proc., vol. 13, Amer. Math. Soc., Providence, RI, 2011, pp. 525–601.Google Scholar
[Vie12a] M., Vienney – “Construction de (φ, Γ)-modules en caractéristique p”, PhD, UMPA, ENS de Lyon, 2012.
[Vie12b] M., Vienney – “Représentations modulo p d'un sous-groupe de Borel de GL2(Qp)”, C. R. Math. Acad. Sci. Paris 350 (2012), no. 13–14, 651–654.Google Scholar
[Win83] J.-P., Wintenberger – “Le corps des normes de certaines extensions infinies de corps locaux; applications”, Ann. Sci. École Norm. Sup. (4) 16 (1983), no. 1, 59–89.Google Scholar
1
Cited by

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×