Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-14T15:50:16.379Z Has data issue: false hasContentIssue false

Chapter 6 - The Neurobiology of Autism

Published online by Cambridge University Press:  18 January 2019

Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Autism Spectrum Disorders Working Group of the Psychiatric Genomics Consortium, 2017. Meta-analysis of GWAS of over 16,000 individuals with autism spectrum disorder highlights a novel locus at 10q24.32 and a significant overlap with schizophrenia. Mol Autism, 8, 21.CrossRefGoogle Scholar
Ahlsen, G., Rosengren, L., Belfrage, M., et al. 1993. Glial fibrillary acidic protein in the cerebrospinal fluid of children with autism and other neuropsychiatric disorders. Biol Psychiatry, 33, 734–43.Google Scholar
Ali, A., Cui, X. & Eyles, D. 2018. Developmental vitamin D deficiency and autism: putative pathogenic mechanisms. J Steroid Biochem Mol Biol, 175, 108–18.Google Scholar
Amaral, D. G., Schumann, C. M. & Nordahl, C. W. 2008. Neuroanatomy of autism. Trends Neurosci, 31, 137–45.CrossRefGoogle ScholarPubMed
Anderson, G. M. 1987. Monoamines in autism: an update of neurochemical research on a pervasive developmental disorder. Med Biol, 65, 6774.Google Scholar
Anderson, G. M. 2015. Autism biomarkers: challenges, pitfalls and possibilities. J Autism Dev Disord, 45, 1103–13.Google Scholar
Angelopoulou, R., Lavranos, G., & Manolakou, P. 2006. Establishing sexual dimorphism in human. Collegium Antropologicum, 30, 653–8.Google Scholar
Ansel, A., Rosenzweig, J. P., Zisman, P. D., Melamed, M. & Gesundheit, B. 2016. Variation in gene expression in autism spectrum disorders: an extensive review of transcriptomic studies. Front Neurosci, 10, 601.Google Scholar
Aoki, Y., Yoncheva, Y. N., Chen, B., et al. 2017. Association of white matter structure with autism spectrum disorder and attention-deficit/hyperactivity disorder. JAMA Psychiatry, 74, 1120–8.Google Scholar
Aronson, M., Hagberg, B. & Gillberg, C. 1997. Attention deficits and autistic spectrum problems in children exposed to alcohol during gestation: a follow-up study. Dev Med Child Neurol, 39, 583–7.Google Scholar
Arvidsson, O., Gillberg, C., Lichtenstein, P., & Lundstrom, S. (2018). Secular changes in the symptom level of clinically diagnosed autism. J Child Psychol Psychiatry. doi: 10.1111/jcpp.12864Google Scholar
Auyeung, B. & Baron-Cohen, S. 2013. Fetal testosterone in mind: Implications for autism. In: Pfaff, D. W. & Y. C. (eds.) Multiple Origins of Sex Differences in Brain, Berlin Heidelberg: Springer.Google Scholar
American Psychiatric Association. 1980. Diagnostic and Statistical Manual of Mental Disorders, Washington, DC: APA.Google Scholar
American Psychiatric Association. 2013. Diagnostic and Statistical Manual of Mental Disorders, Washington, DC: APA.Google Scholar
Badawi, N., Dixon, G., Felix, J. F., et al. 2006. Autism following a history of newborn encephalopathy: more than a coincidence? Dev Med Child Neurol, 48, 85–9.Google Scholar
Bailey, A., Luthert, P., Dean, A., et al. 1998. A clinicopathological study of autism. Brain, 121(Pt 5), 889905.CrossRefGoogle ScholarPubMed
Baird, G., Charman, T., Pickles, A., et al. 2008. Regression, developmental trajectory and associated problems in disorders in the autism spectrum: the SNAP study. J Autism Dev Disord, 38, 1827–36.Google Scholar
Bakhtiari, R., Zurcher, N. R., Rogier, O., et al. 2012. Differences in white matter reflect atypical developmental trajectory in autism: A Tract-based Spatial Statistics study. Neuroimage Clin, 1, 4856.Google Scholar
Barnes, K. A., Howard, J. H. Jr., Howard, D. V., et al. 2008. Intact implicit learning of spatial context and temporal sequences in childhood autism spectrum disorder. Neuropsychology, 22, 563–70.Google Scholar
Baron-Cohen, S. 2001. Theory of mind and autism. In: Glidden, M. L. (ed.) International Review of Mental Retardation. San Diego, CA: Academic Press.Google Scholar
Baron-Cohen, S. 2002. The extreme male brain theory of autism. Trends Cogn Sci, 6, 248–54.CrossRefGoogle ScholarPubMed
Baron-Cohen, S. 2005. Testing the extreme male brain (EMB) theory of autism: let the data speak for themselves. Cogn Neuropsychiatry, 10, 7781.CrossRefGoogle ScholarPubMed
Baron-Cohen, S., Leslie, A. M. & Frith, U. 1985. Does the autistic child have a “theory of mind”? Cognition, 21, 3746.Google Scholar
Barnevik-Olsson, M., Gillberg, C., & Fernell, E. (2008). Prevalence of autism in children born to Somali parents living in Sweden: a brief report. Dev Med Child Neurol, 50(8), 598601. doi: 10.1111/j.1469-8749.2008.03036.xCrossRefGoogle ScholarPubMed
Bauman, M. & Kemper, T. L. 1985. Histoanatomic observations of the brain in early infantile autism. Neurology, 35, 866–74.Google Scholar
Begeer, S., Howlin, P., Hoddenbach, E., et al. 2015. Effects and moderators of a short theory of mind intervention for children with autism spectrum disorder: a randomized controlled trial. Autism Res, 8, 738–48.Google Scholar
Bejerot, S. & Eriksson, J. M. 2014. Sexuality and gender role in autism spectrum disorder: a case control study. PLoS One, 9, e87961.Google Scholar
Berry-Kravis, E., Levin, R., Shah, H., et al. 2015. Cholesterol levels in fragile X syndrome. Am J Med Genet A, 167a, 379–84.Google Scholar
Bird, G., Catmur, C., Silani, G., Frith, C. & Frith, U. 2006. Attention does not modulate neural responses to social stimuli in autism spectrum disorders. Neuroimage, 31, 1614–24.Google Scholar
Bishop, S. L., Farmer, C., Bal, V., et al. 2017. Identification of developmental and behavioral markers associated with genetic abnormalities in autism spectrum disorder. Am J Psychiatry, 174, 576–85.Google Scholar
Bitsika, V., Sharpley, C. F., Sweeney, J. A. & Mcfarlane, J. R. 2014. HPA and SAM axis responses as correlates of self- vs parental ratings of anxiety in boys with an Autistic Disorder. Physiol Behav, 127, 17.Google Scholar
Black, D. O., Wallace, G. L., Sokoloff, J. L. & Kenworthy, L. 2009. Brief report: IQ split predicts social symptoms and communication abilities in high-functioning children with autism spectrum disorders. J Autism Dev Disord, 39, 1613–19.Google Scholar
Blatt, G. J. 2012. The neuropathology of autism. Scientifica (Cairo), 2012, 703675.Google ScholarPubMed
Bookheimer, S. Y., Wang, A. T., Scott, A., Sigman, M. & Dapretto, M. 2008. Frontal contributions to face processing differences in autism: evidence from fMRI of inverted face processing. J Int Neuropsychol Soc, 14, 922–32.Google Scholar
Bourgeron, T. 2015. From the genetic architecture to synaptic plasticity in autism spectrum disorder. Nat Rev Neurosci, 16, 551–63.Google Scholar
Brandler, W. M., Antaki, D., Gujral, M., et al. 2016. Frequency and complexity of de novo structural mutation in autism. Am J Hum Genet, 98, 667–79.Google Scholar
Brown, J. & Prelock, P. A. 1995. Brief report: the impact of regression on language development in autism. J Autism Dev Disord, 25, 305–9.CrossRefGoogle ScholarPubMed
Cannell, J. J. & Grant, W. B. (2013). What is the role of vitamin D in autism? Dermatoendocrinol, 5(1), 199204. doi: 10.4161/derm.24356.Google Scholar
Cannell, J. J. & Hollis, B. W. (2008). Use of vitamin D in clinical practice. Altern Med Rev, 13(1), 620.Google Scholar
Casanova, M. F., Buxhoeveden, D. & Gomez, J. 2003. Disruption in the inhibitory architecture of the cell minicolumn: implications for autism. Neuroscientist, 9, 496507.CrossRefGoogle ScholarPubMed
Casanova, M. F., Van Kooten, I. A., Switala, A. E., et al. 2006. Minicolumnar abnormalities in autism. Acta Neuropathol, 112, 287303.Google Scholar
Cellot, G. & Cherubini, E. 2014. GABAergic signaling as therapeutic target for autism spectrum disorders. Front Pediatr, 2, 70.CrossRefGoogle ScholarPubMed
Cetin, I., Tezdig, I., Tarakcioglu, M. C., et al. 2016. Serum levels of glial fibrillary acidic protein and Nogo-A in children with autism spectrum disorders. Biomarkers, 21, 614–18.Google Scholar
Chess, S. 1971. Autism in children with congenital rubella. J Autism Child Schizophr, 1, 3347.CrossRefGoogle ScholarPubMed
Chevallier, C., Kohls, G., Troiani, V., Brodkin, E. S. & Schultz, R. T. 2012. The social motivation theory of autism. Trends Cogn Sci, 16, 231–9.CrossRefGoogle ScholarPubMed
Chiang, H. M., Tsai, L. Y., Cheung, Y. K., Brown, A. & Li, H. 2014. A meta-analysis of differences in IQ profiles between individuals with Asperger's disorder and high-functioning autism. J Autism Dev Disord, 44, 1577–96.Google Scholar
Christensen, D. L., Baio, J., Van Naarden Braun, K., et al. 2016. Prevalence and characteristics of autism spectrum disorder among children aged 8 years–autism and developmental disabilities monitoring network, 11 Sites, United States, 2012. MMWR Surveill Summ, 65, 123.CrossRefGoogle ScholarPubMed
Christianson, A. L., Chesler, N. & Kromberg, J. G. 1994. Fetal valproate syndrome: clinical and neuro-developmental features in two sibling pairs. Dev Med Child Neurol, 36, 361–9.Google Scholar
Coe, B. P., Girirajan, S. & Eichler, E. E. 2012. The genetic variability and commonality of neurodevelopmental disease. Am J Med Genet C Semin Med Genet, 160c, 118–29.Google Scholar
Coleman, M. & Gillberg, C. 2012. The Autisms, New York: Oxford University Press.Google Scholar
Constantino, J. N. & Todd, R. D. 2003. Autistic traits in the general population: a twin study. Arch Gen Psychiatry, 60, 524–30.CrossRefGoogle ScholarPubMed
Corbett, B. A., Mendoza, S., Abdullah, M., Wegelin, J. A., & Levine, S. (2006). Cortisol circadian rhythms and response to stress in children with autism. Psychoneuroendocrinology, 31(1), 5968. doi: 10.1016/j.psyneuen.2005.05.011Google Scholar
Corbett, B. A., Mendoza, S., Wegelin, J. A., Carmean, V., & Levine, S. (2008). Variable cortisol circadian rhythms in children with autism and anticipatory stress. J Psychiatry Neurosci, 33(3), 227234.Google Scholar
Corbett, B. A., & Schupp, C. W. (2014). The cortisol awakening response (CAR) in male children with autism spectrum disorder. Horm Behav, 65(4), 345350. doi: 10.1016/j.yhbeh.2014.01.012Google Scholar
Constantino, J. N., Kennon-Mcgill, S., Weichselbaum, C., et al. 2017. Infant viewing of social scenes is under genetic control and is atypical in autism. Nature, 547, 340–4.Google Scholar
Cook, E. H. 1990. Autism: review of neurochemical investigation. Synapse, 6, 292308.Google Scholar
Crawford, J. D., Chandley, M. J., Szebeni, K., et al. 2015. Elevated GFAP protein in anterior cingulate cortical white matter in males with autism spectrum disorder. Autism Res, 8, 649–57.CrossRefGoogle ScholarPubMed
Crider, A., Thakkar, R., Ahmed, A. O. & Pillai, A. 2014. Dysregulation of estrogen receptor beta (ERbeta), aromatase (CYP19A1), and ER co-activators in the middle frontal gyrus of autism spectrum disorder subjects. Mol Autism, 5, 46.Google Scholar
Dapretto, M., Davies, M. S., Pfeifer, J. H., et al. 2006. Understanding emotions in others: mirror neuron dysfunction in children with autism spectrum disorders. Nat Neurosci, 9, 2830.Google Scholar
Demetriou, E. A., Lampit, A., Quintana, D. S., et al. 2017. Autism spectrum disorders: a meta-analysis of executive function. Mol Psychiatry. doi: 10.1038/mp.2017.75Google Scholar
Donovan, A. P. & Basson, M. A. 2017. The neuroanatomy of autism – a developmental perspective. J Anat, 230, 415.Google Scholar
Durand, C. M., Betancur, C., Boeckers, T. M., et al. 2007. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat Genet, 39, 25–7.Google Scholar
Durukan, I., Kara, K., Almbaideen, M., Karaman, D. & Gul, H. 2017. Parental alexithymia, depression and anxiety levels of children with neurodevelopmental disorders: a comparative study with pervasive developmental disorders and ADHD. Pediatr Int. doi: 10.1111/ped.13510.Google Scholar
El, H. 2004. Evaluating the theory of executive dysfunction in autism. Developmental Review, 24, 189233.Google Scholar
Engman, M. L., Lewensohn-Fuchs, I., Mosskin, M. & Malm, G. 2010. Congenital cytomegalovirus infection: the impact of cerebral cortical malformations. Acta Paediatr, 99, 1344–9.CrossRefGoogle ScholarPubMed
Engman, M. L., Sundin, M., Miniscalco, C., et al. 2015. Prenatal acquired cytomegalovirus infection should be considered in children with autism. Acta Paediatr, 104, 792–5.Google Scholar
Esnafoglu, E., Ayyildiz, S. N., Cirrik, S., et al. 2017. Evaluation of serum neuron-specific enolase, S100B, myelin basic protein and glial fibrilliary acidic protein as brain specific proteins in children with autism spectrum disorder. Int J Dev Neurosci, 61, 8691.Google Scholar
Eyles, D. W. (2010). Vitamin D and autism: does skin colour modify risk? Acta Paediatr, 99(5), 645647. doi: 10.1111/j.1651-2227.2010.01797.Google Scholar
Fernell, E., Bejerot, S., Westerlund, J., et al. 2015. Autism spectrum disorder and low vitamin D at birth: a sibling control study. Mol Autism, 6, 3.Google Scholar
Folstein, S. & Rutter, M. 1977. Infantile autism: a genetic study of 21 twin pairs. J Child Psychol Psychiatry, 18, 297321.Google Scholar
Foti, F., De Crescenzo, F., Vivanti, G., Menghini, D. & Vicari, S. 2015. Implicit learning in individuals with autism spectrum disorders: a meta-analysis. Psychol Med, 45, 897910.CrossRefGoogle ScholarPubMed
Fournier, K. A., Hass, C. J., Naik, S. K., Lodha, N. & Cauraugh, J. H. 2010. Motor coordination in autism spectrum disorders: a synthesis and meta-analysis. J Autism Dev Disord, 40, 1227–40.CrossRefGoogle ScholarPubMed
Frans, E. M., Lichtenstein, P., Hultman, C. M. & Kuja-Halkola, R. 2016. Age at fatherhood: heritability and associations with psychiatric disorders. Psychol Med, 46, 2981–8.Google Scholar
Frans, E. M., Sandin, S., Reichenberg, A., et al. 2013. Autism risk across generations: a population-based study of advancing grandpaternal and paternal age. JAMA Psychiatry, 70, 516–21.Google Scholar
Gallagher, H. L. & Frith, C. D. 2003. Functional imaging of “theory of mind.” Trends Cogn Sci, 7, 7783.CrossRefGoogle ScholarPubMed
Gao, R. & Penzes, P. 2015. Common mechanisms of excitatory and inhibitory imbalance in schizophrenia and autism spectrum disorders. Curr Mol Med, 15, 146–67.Google Scholar
Gardiner, E. & Iarocci, G. 2017. Everyday executive function predicts adaptive and internalizing behavior among children with and without autism spectrum disorder. Autism Res. doi: 10.1002/aur.1877.Google Scholar
Garnier, C., Comoy, E., Barthelemy, C., et al. 1986. Dopamine-beta-hydroxylase (DBH) and homovanillic acid (HVA) in autistic children. J Autism Dev Disord, 16, 23–9.Google Scholar
Gaugler, T., Klei, L., Sanders, S. J., et al. 2014. Most genetic risk for autism resides with common variation. Nat Genet, 46, 881–5.Google Scholar
Gillberg, C. 1991. Debate and argument: is autism a pervasive developmental disorder? J Child Psychol Psychiatry, 32, 1169–70.CrossRefGoogle ScholarPubMed
Gillberg, C. 1996. The psychopharmacology of autism and related disorders. J Psychopharmacol, 10, 5463.Google Scholar
Gillberg, C. & Coleman, M. 1992. The Biology of the Autistic Syndromes. London: Mac Keith Press.Google Scholar
Gillberg, C. & Fernell, E. 2014. Autism plus versus autism pure. J Autism Dev Disord, 44(12), 3274–6. doi: 10.1007/s10803-014-2163-1.CrossRefGoogle ScholarPubMed
Gillberg, C., Fernell, E., Kocovska, E., et al. 2017. The role of cholesterol metabolism and various steroid abnormalities in autism spectrum disorders: A hypothesis paper. Autism Res, 10, 1022–44.Google Scholar
Gillberg, C. & Schaumann, H. 1983. Epilepsy presenting as infantile autism? Two case studies. Neuropediatrics, 14, 206–12.Google Scholar
Gillberg, C., Schaumann, H., & Gillberg, I. C. (1995). Autism in immigrants: children born in Sweden to mothers born in Uganda. J Intellect Disabil Res, 39(Pt 2), 141144.Google Scholar
Gillberg, C. & Svennerholm, L. 1987. CSF monoamines in autistic syndromes and other pervasive developmental disorders of early childhood. Br J Psychiatry, 151, 8994.CrossRefGoogle ScholarPubMed
Gillberg, C., Svennerholm, L. & Hamilton-Hellberg, C. 1983. Childhood psychosis and monoamine metabolites in spinal fluid. J Autism Dev Disord, 13, 383–96.Google Scholar
Gillberg, C. & Wahlstrom, J. 1985. Chromosome abnormalities in infantile autism and other childhood psychoses: a population study of 66 cases. Dev Med Child Neurol, 27, 293304.Google Scholar
Gogolla, N., Leblanc, J. J., Quast, K. B., et al. 2009. Common circuit defect of excitatory-inhibitory balance in mouse models of autism. J Neurodev Disord, 1, 172–81.Google Scholar
Golding, J., Ellis, G., Gregory, S., et al. 2017. Grand-maternal smoking in pregnancy and grandchild's autistic traits and diagnosed autism. Sci Rep, 7, 46179.Google Scholar
Goldstein, M., Mahanand, D., Lee, J., & Coleman, M. 1976. Dopaminebeta-hydroxylase and endogenous total 5-hydroxindole levels in autistic patients and controls. In: Coleman, M. (ed.) The Autistic Syndromes. Amsterdam: North-Holland.Google Scholar
Goodman, R. & Richards, H. (1995). Child and adolescent psychiatric presentations of second-generation Afro-Caribbeans in Britain. Br J Psychiatry, 167(3), 362369.CrossRefGoogle ScholarPubMed
Hadjikhani, N., Asberg Johnels, J., Zurcher, N. R., et al. 2017. Look me in the eyes: constraining gaze in the eye-region provokes abnormally high subcortical activation in autism. Sci Rep, 7, 3163.Google Scholar
Hadjikhani, N., Joseph, R. M., Snyder, J., et al. 2004. Activation of the fusiform gyrus when individuals with autism spectrum disorder view faces. Neuroimage, 22, 1141–50.Google Scholar
Hadjikhani, N., Joseph, R. M., Snyder, J. & Tager-Flusberg, H. 2007. Abnormal activation of the social brain during face perception in autism. Hum Brain Mapp, 28, 441–9.Google Scholar
Happe, F. & Frith, U. 2006. The weak coherence account: detail-focused cognitive style in autism spectrum disorders. J Autism Dev Disord, 36, 525.Google Scholar
Hediger, M. L., England, L. J., Molloy, C. A., et al. 2008. Reduced bone cortical thickness in boys with autism or autism spectrum disorder. J Autism Dev Disord, 38, 848–56.Google Scholar
Hérault, J., Martineau, J., Perrot-Beaugerie, A., et al. 1993. Investigation of whole blood and urine monoamines in autism. European Child and Adolescent Psychiatry, 2, 211–20.Google Scholar
Herbert, M. R. 2010. Contributions of the environment and environmentally vulnerable physiology to autism spectrum disorders. Curr Opin Neurol, 23, 103–10.CrossRefGoogle ScholarPubMed
Hill, E. L. (2004). Executive dysfunction in autism. Trends Cogn Sci, 8(1), 2632.Google Scholar
Hoche, F., Guell, X., Sherman, J. C., Vangel, M. G. & Schmahmann, J. D. 2016. Cerebellar contribution to social cognition. Cerebellum, 15, 732–43.Google Scholar
Hoogenhout, M. & Malcolm-Smith, S. 2017. Theory of mind predicts severity level in autism. Autism, 21, 242–52.Google Scholar
Hoyme, H. E., Kalberg, W. O., Elliott, A. J., et al. 2016. Updated clinical guidelines for diagnosing fetal alcohol spectrum disorders. Pediatrics, 138. doi: 10.1542/peds.2015-4256.Google Scholar
Hu, V. W. 2012. Subphenotype-dependent disease markers for diagnosis and personalized treatment of autism spectrum disorders. Dis Markers, 33, 277–88.Google Scholar
Hutsler, J. J., Love, T. & Zhang, H. 2007. Histological and magnetic resonance imaging assessment of cortical layering and thickness in autism spectrum disorders. Biol Psychiatry, 61, 449–57.Google Scholar
Hutton, J., Goode, S., Murphy, M., Le Couteur, A. & Rutter, M. 2008. New-onset psychiatric disorders in individuals with autism. Autism, 12, 373–90.Google Scholar
Iossifov, I., O'roak, B. J., Sanders, S. J., et al. 2014. The contribution of de novo coding mutations to autism spectrum disorder. Nature, 515, 216–21.Google Scholar
Jamain, S., Quach, H., Betancur, C., et al. 2003. Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat Genet, 34, 27–9.Google Scholar
Jiang, Y. H., Yuen, R. K., Jin, X., et al. 2013. Detection of clinically relevant genetic variants in autism spectrum disorder by whole-genome sequencing. Am J Hum Genet, 93, 249–63.Google Scholar
Johnson, S. & Marlow, N. 2014. Growing up after extremely preterm birth: lifespan mental health outcomes. Semin Fetal Neonatal Med, 19, 97104.Google Scholar
Jones, C. R. G., Simonoff, E., Baird, G., et al. 2017. The association between theory of mind, executive function, and the symptoms of autism spectrum disorder. Autism Res. doi: 10.1002/aur.1873.Google Scholar
Jones, K. L., Smith, D. W., Ulleland, C. N. & Streissguth, P. 1973. Pattern of malformation in offspring of chronic alcoholic mothers. Lancet, 1, 1267–71.Google ScholarPubMed
Jonsson, H., Sulem, P., Kehr, B., et al. 2017. Parental influence on human germline de novo mutations in 1,548 trios from Iceland. Nature, 549, 519–22.Google Scholar
Joseph, R. M. & Tager-Flusberg, H. 2004. The relationship of theory of mind and executive functions to symptom type and severity in children with autism. Dev Psychopathol, 16, 137–55.Google Scholar
Joseph, R. M., Tager-Flusberg, H. & Lord, C. 2002. Cognitive profiles and social-communicative functioning in children with autism spectrum disorder. J Child Psychol Psychiatry, 43, 807–21.Google Scholar
Kana, R. K., Maximo, J. O., Williams, D. L., et al. 2015. Aberrant functioning of the theory-of-mind network in children and adolescents with autism. Mol Autism, 6, 59.Google Scholar
Kanai, C., Tani, M., Hashimoto, R., et al. 2012. Cognitive profiles of adults with Asperger's disorder, high-functioning autism, and pervasive developmental disorder not otherwise specified based on the WAIS-III. Research in Autism Spectrum Disorders, 6, 5864.Google Scholar
Kanne, S. M., Gerber, A. J., Quirmbach, L. M., et al. 2011. The role of adaptive behavior in autism spectrum disorders: implications for functional outcome. J Autism Dev Disord, 41, 1007–18.Google Scholar
Keen, D. V., Reid, F. D., & Arnone, D. (2010). Autism, ethnicity and maternal immigration. Br J Psychiatry, 196(4), 274281. doi: 10.1192/bjp.bp.109.065490Google Scholar
Kemper, T. L. & Bauman, M. L. 1993. The contribution of neuropathologic studies to the understanding of autism. Neurol Clin, 11, 175–87.Google Scholar
Kim, Y. S., Leventhal, B. L., Koh, Y. J., et al. 2011. Prevalence of autism spectrum disorders in a total population sample. Am J Psychiatry, 168, 904–12.Google Scholar
Kirkman, N. J., Libbey, J. E., Sweeten, T. L., et al. 2008. How relevant are GFAP autoantibodies in autism and Tourette Syndrome? J Autism Dev Disord, 38, 333–41.Google Scholar
Kleinhans, N. M., Johnson, L. C., Richards, T., et al. 2009. Reduced neural habituation in the amygdala and social impairments in autism spectrum disorders. Am J Psychiatry, 166, 467–75.Google Scholar
Kleinhans, N. M., Richards, T., Sterling, L., et al. 2008. Abnormal functional connectivity in autism spectrum disorders during face processing. Brain, 131, 1000–12.Google Scholar
Kocovska, E., Andorsdottir, G., Weihe, P., et al. 2014. Vitamin D in the general population of young adults with autism in the Faroe Islands. J Autism Dev Disord, 44, 29963005.Google Scholar
Kocovska, E., Fernell, E., Billstedt, E., Minnis, H. & Gillberg, C. 2012. Vitamin D and autism: clinical review. Res Dev Disabil, 33, 1541–50.Google Scholar
Koenigs, M. & Grafman, J. 2009. The functional neuroanatomy of depression: distinct roles for ventromedial and dorsolateral prefrontal cortex. Behav Brain Res, 201, 239–43.CrossRefGoogle ScholarPubMed
Koyano, S., Araki, A., Hirano, Y., et al. 2004. Retrospective diagnosis of congenital cytomegalovirus infection using dried umbilical cords. Pediatr Infect Dis J, 23, 481–2.Google Scholar
Krajmer, P., Jánošíková, D., Špajdel, M. & Ostatníková, D. 2010. Empathizing, systemizing, intuitive physics and folk psychology in boys with Asperger syndrome. Activitas Nervosa Superior Rediviva, 52, 5761.Google Scholar
Krishnan, A., Zhang, R., Yao, V., et al. 2016. Genome-wide prediction and functional characterization of the genetic basis of autism spectrum disorder. Nat Neurosci, 19, 1454–62.Google Scholar
Krumm, N., Turner, T. N., Baker, C., et al. 2015. Excess of rare, inherited truncating mutations in autism. Nat Genet, 47, 582–8.Google Scholar
Krupp, D. R., Barnard, R. A., Duffourd, Y., et al. 2017. Exonic mosaic mutations contribute risk for autism spectrum disorder. Am J Hum Genet, 101, 369–90.Google Scholar
Kulesza, R. J. Jr., Lukose, R. & Stevens, L. V. 2011. Malformation of the human superior olive in autistic spectrum disorders. Brain Res, 1367, 360–71.CrossRefGoogle ScholarPubMed
Kurita, H. 1985. Infantile autism with speech loss before the age of thirty months. J Am Acad Child Psychiatry, 24, 191–6.Google Scholar
Lake, C. R., Ziegler, M. G. & Murphy, D. L. 1977. Increased norepinephrine levels and decreased dopamine-β-hydroxylase activity in primary autism. Archives of General Psychiatry, 34, 553–6.Google Scholar
Lambert, G. W., Eisenhofer, G., Jennings, G. L. & Esler, M. D. 1993. Regional homovanillic acid production in humans. Life Sci, 53, 6375.Google Scholar
Landgren, M., Svensson, L., Stromland, K. & Andersson Gronlund, M. 2010. Prenatal alcohol exposure and neurodevelopmental disorders in children adopted from eastern Europe. Pediatrics, 125, e117885.Google Scholar
Lassalle, A., Asberg Johnels, J., Zurcher, N. R., et al. 2017. Hypersensitivity to low intensity fearful faces in autism when fixation is constrained to the eyes. Hum Brain Mapp, 38, 5943–57.Google Scholar
Laurence, J. A. & Fatemi, S. H. 2005. Glial fibrillary acidic protein is elevated in superior frontal, parietal and cerebellar cortices of autistic subjects. Cerebellum, 4, 206–10.Google Scholar
Lawson, R. A., Papadakis, A. A., Higginson, C. I., et al. 2015. Everyday executive function impairments predict comorbid psychopathology in autism spectrum and attention deficit hyperactivity disorders. Neuropsychology, 29, 445–53.Google Scholar
Lee, R. W. & Tierney, E. 2011. Hypothesis: the role of sterols in autism spectrum disorder. Autism Res Treat, 2011, 653570.Google Scholar
Lemoine, P., Harousseau, H., Borteyru, J. P. & Menuet, J. C. 2003. Children of alcoholic parents–observed anomalies: discussion of 127 cases. Ther Drug Monit, 25, 132–6.Google Scholar
Lemola, S., Oser, N., Urfer-Maurer, N., et al. 2017. Effects of gestational age on brain volume and cognitive functions in generally healthy very preterm born children during school-age: A voxel-based morphometry study. PLoS One, 12, e0183519.Google Scholar
Leppa, V. M., Kravitz, S. N., Martin, C. L., et al. 2016. Rare inherited and De Novo CNVs reveal complex contributions to ASD risk in multiplex families. Am J Hum Genet, 99, 540–54.Google Scholar
Lim, E. T., Uddin, M., De Rubeis, S., et al. 2017. Rates, distribution and implications of postzygotic mosaic mutations in autism spectrum disorder. Nat Neurosci, 20, 1217–24.Google Scholar
Lin, H. C., Gean, P. W., Wang, C. C., Chan, Y. H. & Chen, P. S. 2013. The amygdala excitatory/inhibitory balance in a valproate-induced rat autism model. PLoS One, 8, e55248.Google Scholar
Lindstrom, K., Lagerroos, P., Gillberg, C. & Fernell, E. 2006. Teenage outcome after being born at term with moderate neonatal encephalopathy. Pediatr Neurol, 35, 268–74.Google Scholar
Lopez, B., Leekam, S. R. & Arts, G. R. 2008. How central is central coherence? Preliminary evidence on the link between conceptual and perceptual processing in children with autism. Autism, 12, 159–71.Google Scholar
Lord, C., Shulman, C. & Dilavore, P. 2004. Regression and word loss in autistic spectrum disorders. J Child Psychol Psychiatry, 45, 936–55.CrossRefGoogle ScholarPubMed
Lundstrom, S., Reichenberg, A., Anckarsater, H., Lichtenstein, P., & Gillberg, C. (2015). Autism phenotype versus registered diagnosis in Swedish children: prevalence trends over 10 years in general population samples. Bmj, 350, h1961. doi: 10.1136/bmj.h1961Google Scholar
Lynn, A. C., Padmanabhan, A., Simmonds, D., et al. 2018. Functional connectivity differences in autism during face and car recognition: underconnectivity and atypical age-related changes. Dev Sci, 21. doi: 10.1111/desc.12508.Google Scholar
Madipakkam, A. R., Rothkirch, M., Dziobek, I. & Sterzer, P. 2017. Unconscious avoidance of eye contact in autism spectrum disorder. Sci Rep, 7, 13378.Google Scholar
Magnusson, C., Lundberg, M., Lee, B. K., et al. 2016. Maternal vitamin D deficiency and the risk of autism spectrum disorders: population-based study. BJPsych Open, 2, 170–2.Google Scholar
Marin, O. 2012. Interneuron dysfunction in psychiatric disorders. Nat Rev Neurosci, 13, 107–20.Google Scholar
Marrosu, F., Marrosu, G., Rachel, M. G. & Biggio, G. 1987. Paradoxical reactions elicited by diazepam in children with classic autism. Funct Neurol, 2, 355–61.Google Scholar
Martineau, J., Barthelemy, C., Jouve, J., Muh, J. P. & Lelord, G. 1992. Monoamines (serotonin and catecholamines) and their derivatives in infantile autism: age-related changes and drug effects. Dev Med Child Neurol, 34, 593603.Google Scholar
Martineau, J., Barthelemy, C., Jouve, J., Muh, J. P. & Lelord, G. 1992. Monoamines (serotonin and catecholamines) and their derivatives in infantile autism: age-related changes and drug effects. Dev Med Child Neurol, 34, 593603.Google Scholar
Mcglensey, E. 2016. 16 People with Autism Describe Why Eye Contact Can Be Difficult [Online]. The Mighty. Available: http://themighty.com/2016/02/why-eye-contact-can-be-difficult-for-people-with-autism/ (Accessed August 8, 2016).Google Scholar
Meilleur, A. A. & Fombonne, E. 2009. Regression of language and non-language skills in pervasive developmental disorders. J Intellect Disabil Res, 53, 115–24.Google Scholar
Miranda, A., Lopez-Cardona, A. P., Laguna-Barraza, R., et al. 2014. Transcriptome profiling of liver of non-genetic low birth weight and long term health consequences. BMC Genomics, 15, 327.Google Scholar
Mizuno, A., Villalobos, M. E., Davies, M. M., Dahl, B. C. & Muller, R. A. 2006. Partially enhanced thalamocortical functional connectivity in autism. Brain Res, 1104, 160–74.Google Scholar
Monk, C. S., Weng, S. J., Wiggins, J. L., et al. 2010. Neural circuitry of emotional face processing in autism spectrum disorders. J Psychiatry Neurosci, 35, 105–14.CrossRefGoogle ScholarPubMed
Moosa, A., Shu, H., Sarachana, T. & Hu, V. W. 2017. Are endocrine disrupting compounds environmental risk factors for autism spectrum disorder? Horm Behav. doi: 10.1016/j.yhbeh.2017.10.003.Google Scholar
Moreno-De-Luca, A., Myers, S. M., Challman, T. D., et al. 2013. Developmental brain dysfunction: revival and expansion of old concepts based on new genetic evidence. Lancet Neurol, 12, 406–14.Google Scholar
Mostofsky, S. H., Powell, S. K., Simmonds, D. J., et al. 2009. Decreased connectivity and cerebellar activity in autism during motor task performance. Brain, 132, 2413–25.Google Scholar
Mountcastle, V. B. 1997. The columnar organization of the neocortex. Brain, 120(Pt 4), 701–22.Google Scholar
Mullins, C., Fishell, G. & Tsien, R. W. 2016. Unifying views of autism spectrum disorders: a consideration of autoregulatory feedback loops. Neuron, 89, 1131–56.Google Scholar
Nagar Shimoni, H., Weizman, A., Yoran, R. H. & Raviv, A. 2012. Theory of mind, severity of autistic symptoms and parental correlates in children and adolescents with Asperger syndrome. Psychiatry Res, 197, 85–9.Google Scholar
Narayan, M., Srinath, S., Anderson, G. M. & Meundi, D. B. 1993. Cerebrospinal fluid levels of homovanillic acid and 5-hydroxyindoleacetic acid in autism. Biol Psychiatry, 33, 630–5.Google Scholar
Nelson, S. B. & Valakh, V. 2015. Excitatory/inhibitory balance and circuit homeostasis in autism spectrum disorders. Neuron, 87, 684–98.Google Scholar
Orekhova, E. V., Stroganova, T. A., Nygren, G., et al. 2007. Excess of high frequency electroencephalogram oscillations in boys with autism. Biol Psychiatry, 62, 1022–9.Google Scholar
Ornoy, A., Weinstein-Fudim, L. & Ergaz, Z. 2015. Prenatal factors associated with autism spectrum disorder (ASD). Reprod Toxicol, 56, 155–69.Google Scholar
Pallett, P. M., Cohen, S. J. & Dobkins, K. R. 2014. Face and object discrimination in autism, and relationship to IQ and age. J Autism Dev Disord, 44, 1039–54.Google Scholar
Palmen, S. J., Van Engeland, H., Hof, P. R. & Schmitz, C. 2004. Neuropathological findings in autism. Brain, 127, 2572–83.Google Scholar
Palmer, N., Beam, A., Agniel, D., et al. 2017. Association of sex with recurrence of autism spectrum disorder among siblings. JAMA Pediatr, 171, 1107–12.Google Scholar
Pape, K. & Js, W. 1979. Haemorrhage, Ischaemia and the Perinatal Brain. Clinics in Developmental Medicine. London: Spastics International Medical Publications.Google Scholar
Paredes, M. F., James, D., Gil-Perotin, S., et al. 2016. Extensive migration of young neurons into the infant human frontal lobe. Science, 354.Google Scholar
Parikshak, N. N., Luo, R., Zhang, A., et al. 2013. Integrative functional genomic analyses implicate specific molecular pathways and circuits in autism. Cell, 155, 1008–21.Google Scholar
Parikshak, N. N., Swarup, V., Belgard, T. G., et al. 2016. Genome-wide changes in lncRNA, splicing, and regional gene expression patterns in autism. Nature, 540, 423–7.Google Scholar
Payne, A. H. & Hales, D. B. 2004. Overview of steroidogenic enzymes in the pathway from cholesterol to active steroid hormones. Endocr Rev, 25, 947–70.Google Scholar
Paynter, J. M., Keen, D. & Rose, V. J. 2016. Systematic review documents limited empirical support for the practical application of the Theory of Mind model of ASD. Evidence-Based Communication Assessment and Intervention, 10, 131–9.Google Scholar
Perrone-Mcgovern, K., Simon-Dack, S. & Niccolai, L. 2015. Prenatal and perinatal factors related to autism, IQ, and adaptive functioning. J Genet Psychol, 176, 110.Google Scholar
Perry, A., Flanagan, H. E., Dunn Geier, J. & Freeman, N. L. 2009. Brief report: the Vineland Adaptive Behavior Scales in young children with autism spectrum disorders at different cognitive levels. J Autism Dev Disord, 39, 1066–78.Google Scholar
Peterson, C. C., Slaughter, V. P. & Paynter, J. 2007. Social maturity and theory of mind in typically developing children and those on the autism spectrum. J Child Psychol Psychiatry, 48, 1243–50.Google Scholar
Petropoulos, H., Friedman, S. D., Shaw, D. W., et al. 2006. Gray matter abnormalities in autism spectrum disorder revealed by T2 relaxation. Neurology, 67, 632–6.Google Scholar
Pfaff, D. W., Rapin, I. & Goldman, S. 2011. Male predominance in autism: neuroendocrine influences on arousal and social anxiety. Autism Res, 4, 163–76.Google Scholar
Pierce, K., Haist, F., Sedaghat, F. & Courchesne, E. 2004. The brain response to personally familiar faces in autism: findings of fusiform activity and beyond. Brain, 127, 2703–16.Google Scholar
Piggot, J., Kwon, H., Mobbs, D., et al. 2004. Emotional attribution in high-functioning individuals with autistic spectrum disorder: a functional imaging study. J Am Acad Child Adolesc Psychiatry, 43, 473–80.Google Scholar
Pinkham, A. E., Hopfinger, J. B., Pelphrey, K. A., Piven, J. & Penn, D. L. 2008. Neural bases for impaired social cognition in schizophrenia and autism spectrum disorders. Schizophr Res, 99, 164–75.Google Scholar
Pinto, D., Delaby, E., Merico, D., et al. 2014. Convergence of genes and cellular pathways dysregulated in autism spectrum disorders. Am J Hum Genet, 94, 677–94.Google Scholar
Pizzarelli, R. & Cherubini, E. 2011. Alterations of GABAergic signaling in autism spectrum disorders. Neural Plast, 2011, 297153.Google Scholar
Posserud, M. B., Lundervold, A. J. & Gillberg, C. 2006. Autistic features in a total population of 7–9-year-old children assessed by the ASSQ (Autism Spectrum Screening Questionnaire). J Child Psychol Psychiatry, 47, 167–75.Google Scholar
Rasalam, A. D., Hailey, H., Williams, J. H., et al. 2005. Characteristics of fetal anticonvulsant syndrome associated autistic disorder. Dev Med Child Neurol, 47, 551–5.Google Scholar
Ratajczak, H. V. 2011. Theoretical aspects of autism: biomarkers – a review. J Immunotoxicol, 8, 8094.Google Scholar
Richler, J., Luyster, R., Risi, S., et al. 2006. Is there a “regressive phenotype” of Autism Spectrum Disorder associated with the measles-mumps-rubella vaccine? A CPEA Study. J Autism Dev Disord, 36, 299316.Google Scholar
RK, C. Y., Merico, D., Bookman, M., et al. 2017. Whole genome sequencing resource identifies 18 new candidate genes for autism spectrum disorder. Nat Neurosci, 20, 602–11.Google Scholar
Ronald, A., Larsson, H., Anckarsater, H. & Lichtenstein, P. 2011. A twin study of autism symptoms in Sweden. Mol Psychiatry, 16, 1039–47.Google Scholar
Rosa, M., Puig, O., Lazaro, L. & Calvo, R. 2016. Socioeconomic status and intelligence quotient as predictors of psychiatric disorders in children and adolescents with high-functioning autism spectrum disorder and in their siblings. Autism, 20, 963–72.Google Scholar
Rosenberg, R. E., Law, J. K., Yenokyan, G., et al. 2009. Characteristics and concordance of autism spectrum disorders among 277 twin pairs. Arch Pediatr Adolesc Med, 163, 907–14.Google Scholar
Rubenstein, J. L. & Merzenich, M. M. 2003. Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes Brain Behav, 2, 255–67.Google Scholar
Ruggeri, B., Sarkans, U., Schumann, G. & Persico, A. M. 2014. Biomarkers in autism spectrum disorder: the old and the new. Psychopharmacology (Berl), 231, 1201–16.Google Scholar
Rutherford, M. D. & Troje, N. F. 2012. IQ predicts biological motion perception in autism spectrum disorders. J Autism Dev Disord, 42, 557–65.Google Scholar
Sanders, S. J., Ercan-Sencicek, A. G., Hus, V., et al. 2011. Multiple recurrent de novo CNVs, including duplications of the 7q11.23 Williams syndrome region, are strongly associated with autism. Neuron, 70, 863–85.Google Scholar
Sandin, S., Lichtenstein, P., Kuja-Halkola, R., et al. 2017. The heritability of autism spectrum disorder. Jama, 318, 1182–4.Google Scholar
Sandin, S., Schendel, D., Magnusson, P., et al. 2016. Autism risk associated with parental age and with increasing difference in age between the parents. Mol Psychiatry, 21, 693700.Google Scholar
Sato, W., Toichi, M., Uono, S. & Kochiyama, T. 2012. Impaired social brain network for processing dynamic facial expressions in autism spectrum disorders. BMC Neurosci, 13, 99.Google Scholar
Schengrund, C. L., Ali-Rahmani, F. & Ramer, J. C. 2012. Cholesterol, GM1, and autism. Neurochem Res, 37, 1201–7.Google Scholar
Schmidt, R. J., Tancredi, D. J., Ozonoff, S., et al. 2012. Maternal periconceptional folic acid intake and risk of autism spectrum disorders and developmental delay in the CHARGE (Childhood Autism Risks from Genetics and Environment) case-control study. Am J Clin Nutr, 96, 80–9.Google Scholar
Schuetze, M., Park, M. T., Cho, I. Y., et al. 2016. Morphological alterations in the thalamus, striatum, and pallidum in autism spectrum disorder. Neuropsychopharmacology, 41, 2627–37.Google Scholar
Schumann, C. M. & Amaral, D. G. 2006. Stereological analysis of amygdala neuron number in autism. J Neurosci, 26, 7674–9.Google Scholar
Singh, V. K., Warren, R., Averett, R. & Ghaziuddin, M. 1997. Circulating autoantibodies to neuronal and glial filament proteins in autism. Pediatr Neurol, 17, 8890.Google Scholar
Snijders, T. M., Milivojevic, B. & Kemner, C. 2013. Atypical excitation-inhibition balance in autism captured by the gamma response to contextual modulation. Neuroimage Clin, 3, 6572.Google Scholar
St Pourcain, B., Robinson, E. B., Anttila, V., et al. 2017. ASD and schizophrenia show distinct developmental profiles in common genetic overlap with population-based social communication difficulties. Mol Psychiatry. doi: 10.1038/mp.2016.198.Google Scholar
Steffenburg, S., Gillberg, C., Hellgren, L., et al. 1989. A twin study of autism in Denmark, Finland, Iceland, Norway and Sweden. J Child Psychol Psychiatry, 30, 405–16.Google Scholar
Stevens, S. A., Nash, K., Koren, G. & Rovet, J. 2013. Autism characteristics in children with fetal alcohol spectrum disorders. Child Neuropsychol, 19, 579–87.Google Scholar
Stoner, R., Chow, M. L., Boyle, M. P., et al. 2014. Patches of disorganization in the neocortex of children with autism. N Engl J Med, 370, 1209–19.Google Scholar
Strifert, K. 2014. The link between oral contraceptive use and prevalence in autism spectrum disorder. Med Hypotheses, 83, 718–25.Google Scholar
Stromland, K., Nordin, V., Miller, M., Akerstrom, B. & Gillberg, C. 1994. Autism in thalidomide embryopathy: a population study. Dev Med Child Neurol, 36, 351–6.Google Scholar
Sun, L., Grutzner, C., Bolte, S., et al. 2012. Impaired gamma-band activity during perceptual organization in adults with autism spectrum disorders: evidence for dysfunctional network activity in frontal-posterior cortices. J Neurosci, 32, 9563–73.Google Scholar
Takano, T. 2015. Role of microglia in autism: recent advances. Dev Neurosci, 37, 195202.Google Scholar
Tam, F. I., King, J. A., Geisler, D., et al. 2017. Altered behavioral and amygdala habituation in high-functioning adults with autism spectrum disorder: an fMRI study. Sci Rep, 7, 13611.Google Scholar
Tick, B., Bolton, P., Happe, F., Rutter, M. & Rijsdijk, F. 2016. Heritability of autism spectrum disorders: a meta-analysis of twin studies. J Child Psychol Psychiatry, 57, 585–95.Google Scholar
Torske, T., Nærland, T., Øie, M. G., Stenberg, N. & Andreassen, O. A. 2017. Metacognitive aspects of executive function are highly associated with social functioning on parent-rated measures in children with Autism Spectrum Disorder. Frontiers in Behavioral Neuroscience, 11, 258. doi: 10.3389/fnbeh.2017.00258.Google Scholar
Travers, B. G., Kana, R. K., Klinger, L. G., Klein, C. L. & Klinger, M. R. 2015. Motor learning in individuals with autism spectrum disorder: activation in superior parietal lobule related to learning and repetitive behaviors. Autism Res, 8, 3851.Google Scholar
Van Diessen, E., Senders, J., Jansen, F. E., Boersma, M. & Bruining, H. 2015. Increased power of resting-state gamma oscillations in autism spectrum disorder detected by routine electroencephalography. Eur Arch Psychiatry Clin Neurosci, 265, 537–40.Google Scholar
Van Rooij, D., Anagnostou, E., Arango, C., et al. 2017. Cortical and subcortical brain morphometry differences between patients with autism spectrum disorder and healthy individuals across the lifespan: results from the ENIGMA ASD Working Group. Am J Psychiatry, appiajp201717010100. doi: 10.1176/appi.ajp.2017.17010100.Google Scholar
Vinkhuyzen, A. a. E., Eyles, D. W., Burne, T. H. J., et al. 2017. Gestational vitamin D deficiency and autism spectrum disorder. BJPsych Open, 3, 8590.Google Scholar
Virag, M., Janacsek, K., Balogh-Szabo, V., Chezan, J. & Nemeth, D. 2017. Procedural learning and its consolidation in autism spectrum disorder. Ideggyogyaszati Szemle-Clinical Neuroscience, 70, 7987. doi: 10.18071/isz.70.0079.Google Scholar
Voineagu, I., Wang, X., Johnston, P., et al. 2011. Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature, 474, 380–4.Google Scholar
Wallace, G. L., Kenworthy, L., Pugliese, C. E., et al. 2016. Real-world executive functions in adults with autism spectrum disorder: profiles of impairment and associations with adaptive functioning and co-morbid anxiety and depression. J Autism Dev Disord, 46, 1071–83.Google Scholar
Wang, A. T., Dapretto, M., Hariri, A. R., Sigman, M. & Bookheimer, S. Y. 2004. Neural correlates of facial affect processing in children and adolescents with autism spectrum disorder. J Am Acad Child Adolesc Psychiatry, 43, 481–90.Google Scholar
Wang, J., Zou, Q., Han, R., Li, Y. & Wang, Y. 2017. Serum levels of Glial fibrillary acidic protein in Chinese children with autism spectrum disorders. Int J Dev Neurosci, 57, 41–5.Google Scholar
Wang, S. S., Kloth, A. D. & Badura, A. 2014. The cerebellum, sensitive periods, and autism. Neuron, 83, 518–32.Google Scholar
Warrier, V., Grasby, K. L., Uzefovsky, F., et al. 2017. Genome-wide meta-analysis of cognitive empathy: heritability, and correlates with sex, neuropsychiatric conditions and cognition. Mol Psychiatry. doi: 10.1038/mp.2017.122.Google Scholar
Wegiel, J., Flory, M., Kuchna, I., et al. 2014. Stereological study of the neuronal number and volume of 38 brain subdivisions of subjects diagnosed with autism reveals significant alterations restricted to the striatum, amygdala and cerebellum. Acta Neuropathol Commun, 2, 141.Google Scholar
Wegiel, J., Kuchna, I., Nowicki, K., et al. 2010. The neuropathology of autism: defects of neurogenesis and neuronal migration, and dysplastic changes. Acta Neuropathol, 119, 755–70.Google Scholar
Weiner, D. J., Wigdor, E. M., Ripke, S., et al. 2017. Polygenic transmission disequilibrium confirms that common and rare variation act additively to create risk for autism spectrum disorders. Nat Genet, 49, 978–85.Google Scholar
Weir, R. K., Bauman, M. D., Jacobs, B. & Schumann, C. M. 2018. Protracted dendritic growth in the typically developing human amygdala and increased spine density in young ASD brains. J Comp Neurol, 526, 262–74.Google Scholar
Wicker, B., Fonlupt, P., Hubert, B., et al. 2008. Abnormal cerebral effective connectivity during explicit emotional processing in adults with autism spectrum disorder. Soc Cogn Affect Neurosci, 3, 135–43.Google Scholar
Wilkerson, D. S., Volpe, A. G., Dean, R. S. & Titus, J. B. 2002. Perinatal complications as predictors of infantile autism. Int J Neurosci, 112, 1085–98.Google Scholar
Wing, L. 1981. Sex ratios in early childhood autism and related conditions. Psychiatry Res, 5, 129–37.Google Scholar
Wing, L. & Shah, A. 2000. Catatonia in autistic spectrum disorders. Br J Psychiatry, 176, 357–62.Google Scholar
Woods, A. G., Wormwood, K. L., Wetie, A. G. N., Ryan, J. P. & Darie, C. C. 2013. Proteomics and cholesterol in autism. Autism 3, 2.Google Scholar
Yuen, R. K., Thiruvahindrapuram, B., Merico, D., et al. 2015. Whole-genome sequencing of quartet families with autism spectrum disorder. Nat Med, 21, 185–91.Google Scholar
Yuwiler, A., Geller, A. & Ritvo, E. 1985. Biochemical studies of autism. In: Lajtha, A. (ed.) Handbook of Neurochemistry. New York: Plenum.Google Scholar
Zimmerman, D., Ownsworth, T., O'donovan, A., Roberts, J. & Gullo, M. J. 2017. Associations between executive functions and mental health outcomes for adults with autism spectrum disorder. Psychiatry Res, 253, 360–3.Google Scholar
Zurcher, N. R., Donnelly, N., Rogier, O., et al. 2013. It's all in the eyes: subcortical and cortical activation during grotesqueness perception in autism. PLoS One, 8, e54313.Google Scholar
Zurcher, N. R., Rogier, O., Boshyan, J., et al. 2013. Perception of social cues of danger in autism spectrum disorders. PLoS One, 8, e81206.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×