Skip to main content Accessibility help
×
Hostname: page-component-5db6c4db9b-5lzww Total loading time: 0 Render date: 2023-03-25T23:53:29.170Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

References

Published online by Cambridge University Press:  25 November 2016

Wayne K. Hocking
Affiliation:
University of Western Ontario
Jürgen Röttger
Affiliation:
Max Planck Institut für Aeronomie, Germany
Robert D. Palmer
Affiliation:
University of Oklahoma
Toru Sato
Affiliation:
Kyoto University, Japan
Phillip B. Chilson
Affiliation:
University of Oklahoma
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Atmospheric Radar
Application and Science of MST Radars in the Earth's Mesosphere, Stratosphere, Troposphere, and Weakly Ionized Regions
, pp. 764 - 816
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackerman, M, In-situ measurements of middle atmosphere composition, J. Atmos. Terr. Phys., 41, 723–733, 1979.Google Scholar
Adachi, T, T, Tsuda, Y, Masuda, T, Takami, S, Kato, and S, Fukao, Effects of the acoustic and radar pulse length ratio on the accuracy of radio acoustic sounding system (RASS) temperature measurements with monochromatic acoustic pulses, Radio Sci., 28, 571–583, 1993.Google Scholar
Adams, G. W, J. W, Brosnahan, and D. P, Edwards, The imaging Doppler interferometer: Data analysis, Radio Sci., 20, 1481–1492, 1985.Google Scholar
Adams, G. W, J. W, Brosnahan, D, Walden, and S, Nerney, Mesospheric Observations using a 2.66-MHz radar as an imaging Doppler interferometer: Description and first results, J. Geophys. Res, 91(A2), 1671–1683, 1986.Google Scholar
AFC-Laboratories, Handbook of Geophysics and Space Environments, U. S. Air Force, Cambridge Research Laboratories, Cambridge, Mass., 1965.
Ahrens, C. D, Meteorology Today: an Introduction to Weather, Climate and the Environment, Brooks/Cole, Pacific Grove, CA, USA, 1999.
Aikin, A. C, R. A, Goldberg, W, Jones, and J. A, Kane, Observations of the mid-latitude lower ionosphere in winter, J. Geophys. Res., 82, 1869–1875, 1977.Google Scholar
Alexander, M. J, A simulated spectrum of convectively generated gravity waves: propagation from the tropopause to the mesopause and effects on the middle atmosphere, J. Geophys. Res., 101, 1571–1588, 1996.Google Scholar
Alexander, M. J, and J, Holton, Gravity waves generated by a transient localized heat source, Atmos. Chem. Phys., 4, 923–932, 2004.Google Scholar
Alexander, M. J, and K. H, Rosenlof, Nonstationary gravity wave forcing of the stratospheric zonal mean wind, J. Geophys. Res., 101, 23 465–23, 1996.Google Scholar
Alexander, M. J, J. H, Beres, and L, Pfister, Tropical stratospheric gravity wave activity and relationships to clouds, J. Geophys. Res., 105D17, 22 299–22 309, 2000.Google Scholar
Alexander, M. J, P. T, May, and J. H, Beres, Gravity waves generated by convection in the Darwin area during the Darwin Area Wave Experiment, J. Geophys. Res., 109, D20S04, doi:10.1029/2004JD004 729, 2004.Google Scholar
Alexander, M. J, J, Holton, and D, Durran, The gravity wave response above deep convection in a squall line simulation, J. Atmos. Sci., 52, 2212–2226, 1995.Google Scholar
Alexander, M. J, et al., Recent developments in gravity-wave effects in climate models and the global distribution of gravity-wave momentum flux from observations and models, Q. J. R. Meteorol. Soc., 136(650A), 1103–1124, doi:10.1002/qj.637, 2010.Google Scholar
Alexander, S, and T, Tsuda, High-resolution radio acoustic sounding system (RASS) observations and analysis up to 20 km, J. Atmos. and Oceanic Tech., 25, 1383–1396 doi:10.1175/2007JTECHA983.1, 2008.CrossRefGoogle Scholar
Allen, D. C, J. D, Haigh, J. T., Houghton, and C. J. S. M., Simpson, Radiative cooling near the mesopause, Nature, 281, 660–661, 1979.Google Scholar
Allen, K. R, and R. I, Joseph, A canonical statistical theory of oceanic internal waves, J. Fluid Mechs., 204, 185–228, 1989.Google Scholar
Alvarez, H, J, Aparici, J., May, and F., Olmos, A 45-MHz continuum survey of the southern hemisphere, Astron. Astrophys. Suppl. Ser., 124, 315–328, 1997.Google Scholar
Amayenc, P, J, Fontanari, and D, Alcayde, Simultaneous neutral wind and temperature oscillations near tidal periods in the F-region over ST Santin, J. Atmos. Terr. Phys., 35, 1499–1505, 1973.Google Scholar
Amidon, , Iron-Powder and Ferrite Coil Forms, Amidon Associates Inc., Torrance, California, USA, 1992.
Anandan, V. K, P, Balamuralidhar, P. B, Rao, A. R., Jain, and C. J., Pan, An adaptive moments estimation technique applied to MST radar echoes, J. Atmos. Oceanic Technol., 22, 396–408, 2005.Google Scholar
Anandarao, B. G, R, Raghavarao, J. N, Desai, and G, Haerendel, Vertical winds and turbulence over Thumba, J. Atmos. Terr. Phys., 40, 157–163, 1978.Google Scholar
Andreassen, O, C.-E., Wasberg, D. C., Fritts, and J. R., Isler, Gravity wave breaking in two and three dimensions: 1. Model description and comparison of two-dimensional evolutions, J. Geophys. Res., 99, 8095–8108, 1994.Google Scholar
Andreassen, O, P. O, Hvidsten, D. C., Fritts, and S., Arendt, Vorticity dynamics in a breaking gravity wave. Part 1. Initial instability evolution, J. Fluid Mech., 367, 27–46, 1998.Google Scholar
Andrews, D. G, and M. E, McIntyre, Planetary waves in horizontal and vertical shear: The generalized Eliassen–Palm relation and the mean zonal acceleration, J. Atmos. Sci., 33, 2031–2048, 1976.Google Scholar
Andrews, D. G, and M. E, McIntyre, Generalized Eliassen–Palm and Charney–Drazin theorems for waves on axisymmetric mean flows in compressible atmospheres, J. Atmos. Sci., 35, 175–185, 1978.Google Scholar
Andrews, D.G., J. R., Holton, and C. B., Leovy, Middle Atmospheric Dynamics, Academic Press, 1987.
Andrioli, V. F, D. C, Fritts, P. P., Batista, and B. R., Clemesha, Improved analysis of all-sky meteor radar measurements of gravity wave variances and momentum fluxes, Ann. Geophys., 31, 889–908, doi:10.5194/angeo–31–889–2013, 2010.Google Scholar
Angevine, W. M, Errors in mean vertical velocities measured by boundary layer wind profilers, J. Atmos. Oceanic Technol., 14, 565–569, 1997.Google Scholar
Angevine, W. M, S. K, Avery, W. L., Ecklund, and D. A., Carter, Fluxes of heat and momentum measured with a boundary-layer wind profiler radar-radio acoustic sounding system, J. Appl. Meteorol., 32, 73–80, 1993.Google Scholar
Angevine, W. M, W. L., Ecklund, D. A., Carter, K. S., Gage, and K. P., Moran, Improved radio acoustic sounding techniques, J. Atmos. Oceanic Technol., 11, 42–49, 1994.Google Scholar
Appleton, E, On some measurements of the equivalent height of the atmospheric ionized layer, Proc. Roy. Soc., A126, 542–569, 1930.Google Scholar
Appleton, E, Wireless studies of the ionosphere, Proc. Inst. Elec. Engnrs (Wireless Section), 7(21), 257–265, 1932.Google Scholar
Appleton, E. V, and M. A. F., Barnett, Local reflections of wireless waves from the upper atmosphere, Nature, 115, 333–334, 1925.Google Scholar
Astin, I, Confidence interval estimation for VHF Doppler radar measurements of wind velocities, Radio Sci., 32(6), 2221–2231, 1997.Google Scholar
Atlas, D, Advances in Geophysics, vol. 10, Academic Press, New York, 1964.
Atlas, D, Tribute to Professor Louis J., Battan, in Radar in Meteorology, edited by D., Atlas, pp. xiii–xvii, American Met. Soc., 1990.
Atlas, D, R. C, Srevastava, and P. W, Sloss, Wind shear and reflectivity gradient effects on Doppler radar spectra: II, J. Appl. Meteorol., 8, 384–388, 1969.Google Scholar
Austin, G. L, and A. H, Manson, On the nature of the irregularities that produce partial reflections of radio waves from the lower ionosphere (70–100 km), Radio Sci., 4, 35, 1969.Google Scholar
Austin, G. L, R. G. T. Bennett, and M. R. Thorpe, The phase of waves partially reflected from the lower ionosphere, J. Atmos. Terr. Phys., 31, 1099–1106, 1969.Google Scholar
Avery, S. K, A. C, Riddle, and B. B, Balsley, The Poker Flat, Alaska, MST radar as a meteor radar, Radio Sci., 18, 1021–1027, 1983.Google Scholar
Baggaley, W. J, R. G. T., Bennett, D. I., Steel, and A. D., Taylor, The advanced meteor orbit radar facility: Amor, Q. J. R. Astron. Soc., 35, 293–320, 1994.Google Scholar
Bahnsen, A, Recent techniques of observation and results from the magnetopause region, J. Atmos. Terr. Phys., 40, 235–256, 1978.Google Scholar
Balanis, C. A, Antenna Theory: Analysis and Design, 2nd ed., John Wiley and Sons, Chichester, 1997.
Ball, S. M, Atmospheric gravity wave production for the Australian total solar eclipse of 23 October 1976, Australian J. Phys., 32, 287–288, 1979.Google Scholar
Balsley, B. B, Electric fields in the equatorial ionosphere; a review of techniques and measurements, J. Atmos. Terr. Phys, 35, 1035, 1973.CrossRefGoogle Scholar
Balsley, B. B, and K. S, Gage, On the use of radars for operational windprofiling, Bull. Amer. Meteorol. Soc., 63, 1009–1018, 1982.Google Scholar
Balsley, B. B, and T. J, Judasz, Improved theoretical and experimental models for the coaxial colinear antenna, IEEE Trans. Antennas Propagat., 37, 289–296, 1989.Google Scholar
Balsley, B. B, W. L, Ecklund, D. A., Carter, and P. E., Johnston, The Poker Flat MST radar: First Results, Geophys. Res. Lett., 6, 921–924, 1979.Google Scholar
Balsley, B. B, W. L., Ecklund, D. A., Carter, and P. E., Johnston, The MST radar at Poker Flat, Alaska, Radio Sci., 15, 213–223, 1980.Google Scholar
Balsley, B. B, R. G, Frehlich, M. L., Jensen, Y., Meillier, and A., Muschinski, Extreme gradients in the nocturnal boundary layer: Structure, evolution, and potential causes, J. Atmos. Sci., 60, 2496–2508, 2003.Google Scholar
Barabash, V, S, Kirkwood, and P. B, Chilson, Are variations in PMSE intensity affected by energetic particle precipitation?, Ann. Geophys., 20, 539–545, 2002.Google Scholar
Barabash, V, S, Kirkwood, A, Feofilov, and A, Kutepov, Polar mesosphere summer echoes during the July 2000 solar proton event, J. Geophys. Res., 22, 759–771, 2002.Google Scholar
Barat, J, Some characteristics of clear air turbulence in the middle stratosphere, J. Atmos. Sci., 39, 2553–2564, 1982.Google Scholar
Barratt, P, and I. C, Browne, A new method of measuring vertical currents, Q. J. R. Meteorol. Soc., 79, 550, 1953.Google Scholar
Bartlett, M. S, Periodogram analysis and continuous spectra, Biometrika, 37, 1–16, 1950.Google Scholar
Barton, B. D, Modern Radar System Analysis, Artech House, Norwood, MA, 1988.
Barton, D. K, Radar System Analysis and Modeling, Artech House, Norwood, MA, 2005.
Batchelor, G. K, The Theory of Homogeneous Turbulence, Cambridge University Press, New York, 1953.
Batchelor, G. K, An Introduction to Fluid Dynamics, Cambridge University Press, Cambridge, U. K., 1977.
Becker, E, Dynamical control of the middle atmosphere, Space Sci. Rev., 168, 283–314, doi10.1007/s11,214–011–9841–5, 2012.Google Scholar
Belova, E, S, Kirkwood, J, Ekeberg, et al., The dynamic background of polar mesosphere winter echoes from simultaneous EISCAT and ESRAD observation, Ann. Geophys., 23, 1239–1247, 2005.Google Scholar
Belova, E, M, Smirnova, M. T, Rietveld, et al., First observation of the overshoot effect for polar mesosphere winter echoes during radiowave electron temperature modulation, Geophys. Res. Lett., 35, L03, 110 doi:10.1029/2007GL032,457, 2008.Google Scholar
Belrose, J. S, Radio wave probing of the ionosphere by the partial reflection of radiowaves (from heights below 100 km), J. Atmos. Terr. Phys., 32, 567, 1970.Google Scholar
Belrose, J. S, and M. J, Burke, Study of the lower ionosphere using partial reflection. 1. Experimental technique and method of analysis, J. Geophys. Res, 69, 2799, 1964.Google Scholar
Belu, R, and W. K, Hocking, Gravity wave generation by frontal systems as seen in long-term multi-instrument observations (CLOVAR windprofiler, microbarograph and radiosondes), in STEP Handbook, Proceedings of the ninth International Workshop on Technical and Scientific Aspects of MST Radar combined with COST76 Final Profiler Workshop, edited by B., Edwards, pp. 194–197, Toulouse, France, 2000.
Belu, R, W. K, Hocking, N, Donaldson, and T, Thayaparan, Comparisons of CLOVAR windprofiler horizontal winds with radiosondes and CMC Regional Analyses, Atmosphere-Ocean, 39, 107–126, 2001.Google Scholar
Belu, R. G, Ray-tracing of gravity waves through the standard atmosphere: effects of fluctuations and perturbations in the background temperature and wind profiles, in STEP Handbook, Proceedings of the Eighth Workshop on Technical and Scientific Aspects of MST Radar, edited by B., Edwards, pp. 167–170, Bangalore, India, 1998.
Belu, R. G, Gravity waves sources and propagation characteristics in the lower and middle atmosphere determined by CLOVAR radar and other ground-based methods, Ph. D. Thesis, University of Western Ontario, Canada, 1999.
Belu, R. G, Sensitivity of ray-tracing models to the fluctuations of the background atmospheric wind and temperature fields, in STEP Handbook, Proceedings of the ninth International Workshop on Technical and Scientific Aspects of MST Radar combined with COST76 Final Profiler Workshop, edited by B., Edwards, pp. 206–209, Toulouse, France, 2000.
Benjamin, S. G, B. E, Schwartz, E. J., Szoke, and S. E., Koch, The value of wind profiler data in U. S. weather forecasting, Bull. Amer. Meteorol. Soc., 85, 1871–1886, 2004.Google Scholar
Benson, R. F, The quasi-longitudinal approximation in the generalized theory of radio wave absorption, Radio Sci., 68, 219–223, 1964.Google Scholar
Beres, I, W. K, Hocking, and R, Thomas, Discrimination between lightning-generated RF and radar reflections from lightning, in Proceedings of the Twelfth International Workshop on Technical and Scientific Aspects of MST Radar, edited by N., Swarnalingam and W. K., Hocking, pp. 73–76, Publ. by Canadian Assoc. of Physicists, 2010.
Beres, J, M. J, Alexander, and J. R, Holton, Effects of tropospheric wind shear on the spectrum of convectively generated gravity waves, J. Atmos. Sci., 59, 1805–1824, 2002.Google Scholar
Beres, J, M. J, Alexander, and J. R, Holton, A method of specifying the gravity wave spectrum above convection based on latent heating properties and background wind, J. Atmos. Sci., 61, 324–337, 2004.Google Scholar
Bianco, L, D, Cimini, F. S, Marzano, and R, Ware, Combining microwave radiometer and wind profiler radar measurements for high-resolution atmospheric humidity profiling, J. Atmos. Oceanic Technol., 22, 949–965, 2005.Google Scholar
Birner, T, and H, Bönish, Residual circulation trajectories and transit times into the extratropical lowermost stratosphere, Atmos. Chem. Phys., 11, 817–827, 2011.Google Scholar
Blackman, R. B, and J. W, Tukey, The Measurement of Power Spectra From the Point of View of Communication Engineering, Dover, New York, 1959.
Blamont, J. E, and J, Barat, Dynamical structure of the atmosphere between 80 and 120 km, in Aurora and Airglow, edited by B. M., McCormac, pp. 156–159, Reinhold Pub. Co., 1967.
Blix, T. A, E. V, Thrane, and O, Andreassen, In-situ measurements of the fine-scale structure and turbulence in the mesosphere and lower thermosphere by means of electrostatic positive ion probes, J. Geophys. Res., 95, 5533–5548, 1990.Google Scholar
Bohne, A. R, Radar detection of turbulence in thunderstorms, in Report # AFGL-TR- 81-0102 (ADA 108679), Air Force Geophys. Lab., Hanscom Air Force Base, Mass., USA., 1981.
Bohne, A. R, Radar detection of turbulence in precipitation environments, J. Atmos. Sci., 39, 1819–1837, 1982.Google Scholar
Bolgiano, R. J, The general theory of turbulence – turbulence in the atmosphere, in Winds and Turbulence in the Stratosphere, Mesopshere and Ionosphere, edited by K., Rawer, pp. 371–400, North Holland, Amsterdam, 1968.
Bonino, G, P. P, Lombardini, and P, Trivero, A metric wave radio-acoustic tropospheric sounder, IEEE Trans. Geosci. Electron., GE-17, 179–181, 1979.Google Scholar
Booker, H. G, A theory of scattering by nonisotropic irregularities with application to radar reflections from the aurora, J. Atmos. Terr. Phys., 8, 204–221, 1956.Google Scholar
Booker, H. G, Radio scattering in the lower ionosphere, J. Geophys. Res., 64, 2164, 1959.Google Scholar
Booker, H. G, and R, Cohen, A theory of long-duration meteor-echoes based on atmospheric turbulence with experimental confirmation, J. Geophys. Res., 61, 707–733, 1956.Google Scholar
Borkowski, M. T, Chapter 11 in Radar Handbook, in Solid-state Transmitters, edited by M. I., Skolnik, pp. 111–1136, McGraw- Hill, New York, 2008.
Born, M, and E, Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th edition, Cambridge University Press, 1999.
Bourdillon, A, C, Haldoupis, C, Hanuise, Y. Le, Roux, and J., Menard, Long durationmeteor echoes characterized by Doppler spectrum bifurcation, Geophys. Res. Lett., 32, L05, 805, doi: 10.1029/2004GL021,685, 2005.Google Scholar
Bowles, K. L, Observations of vertical incidence scatter from the ionosphere at 41 Mc/s, Phys. Rev. Letters, 1, 454, 1958.Google Scholar
Bracewell, R. N, The Fourier Transform and its Applications, McGraw-Hill, New York, 1978.
Bradshaw, P, An Introduction to Turbulence and its Measurement, Pergamon Press, 1975.
Brasseur, G. P, J. J, Orlando, and G. S, Tyndall, Atmospheric chemistry and global change, in Topics in Environmental Chemistry Series, pp. 1–654, Oxford University Press (New York, Oxford), 1990.
Breit, G, and M. A, Tuve, A radio method of estimating the height of the conducting layer, Nature, 116, 357, 1926.Google Scholar
Bremer, J, P, Hoffmann, and T, Hansen, Geomagnetic control of polar mesosphere summer echoes, Ann. Geophys., 18, 202–208, 2000.Google Scholar
Bremer, J, P, Hoffmann, R, Latteck, and W, Singer, Seasonal and long-term variations of PMSE from VHF radar observations at Andenes, Norway, J. Geophys. Res., 108, doi:10.1029/2002JD002,369, 2003.Google Scholar
Bremer, J, P, Hoffmann, J, Hoeffner, et al., Long-term changes of mesospheric summer echoes at polar and middle latitudes, J. Atmos. Solar-Terr. Phys, 68, 1940–1951, 2006.Google Scholar
Briggs, B. H, Radar observations of atmospheric winds and turbulence: A comparison of techniques, J. Atmos. Terr. Phys., 42, 823–833, 1980.Google Scholar
Briggs, B. H, The analysis of spaced sensor records by correlation techniques, in Handbook for MAP, Ground Based Techniques, edited by R. A., Vincent, vol. 13, pp. 166– 186, SCOSTEP Secretariat, Dept. of Electr. Computer Eng., Univ. of Illinois, Urbana, IL 61801, USA, 1984.
Briggs, B. H, Radar measurements of aspect sensitivity of atmospheric scatterers using spaced-antenna correlation techniques, J. Atmos. Terr. Phys., 54, 153–165, 1992.Google Scholar
Briggs, B. H., On radar interferometric techniques in the situation of volume scatter, Radio Sci., 30, 109–114, 1995.Google Scholar
Briggs, B. H, and N, Holmes, Ionospheric observations using ultrasonic image forming technique, Nature Physical Science, 243, 111–112, 1973.Google Scholar
Briggs, B. H, and M, Spencer, The variability of time shifts in measurements of ionospheric movements, in Report of the Physical Society Conference on Physics of the Ionosphere, p. 123, Cambridge, 1954.
Briggs, B. H, and R. A, Vincent, Some theoretical considerations on remote probing of weakly scattering irregularities, Aust. J. Phys., 26, 805–814, 1973.Google Scholar
Briggs, B. H, and R. A, Vincent, Spacedantenna analysis in the frequency domain, Radio Sci., 27, 117–129, 1992.Google Scholar
Briggs, B. H, G. J, Phillips, and D. H, Shinn, The analysis of observations on spaced receivers of the fading of radio signals, Proc. Phys. Soc., 63, 106–121, 1950.Google Scholar
Briggs, B. H, W. G, Elford, D. G., Felgate, et al., Buckland Park aerial array, Nature, 223, 1321, 1969.Google Scholar
Bringi, V. N, G. J, Huang, V, Chandrasekar, and E, Gorgucci, A methodology for estimating the parameters of a gamma raindrop size distribution model from polarimetric radar data: Application to a squall-line event from the TRMM/Brazil field campaign, J. Atmos. Terr. Phys., 19, 633–645, 2002.Google Scholar
Brosnahan, J.W, and G.W., Adams, The MAPSTAR imaging Doppler interferometer (IDI) radar: description and first results, J. Atmos. Terr. Phys., 55, 203–228, 1993.Google Scholar
Brown, P. G, R. J, Weryk, D. K., Wong, and J., Jones, A meteoroid stream survey using the Canadian meteor orbit radar. I: Methodology and radiant catalogue, Icarus, 195, 317–339, doi:10.1016/j.icarus.2007.12.002, 2008.Google Scholar
Browning, K. A, D, Jerrett, J, Nash, T, Oakley, and N. M, Roberts, Cold frontal structure derived from radar wind profiles, Meteorol. Apps., 5, 67–74, 1998.Google Scholar
Budden, K. G, Effect of electron collisions on the formulas of magnetoionic theory, Radio Sci., 69, 191–211, 1965.Google Scholar
Buehler, W. E, and C. D, Lunden, A note on VHF backscatter from turbulence in the upper troposphere, J. Applied Meteorology, 4, 151–152, 1964.Google Scholar
Caccia, J. L, B, Benech, and V, Klaus, Spacetime description of non-stationary trapped lee waves using ST radars, aircraft, and constant volume balloons during the PYREX experiment, J. Atmos. Sci., 54, 1821–1832, 1997.Google Scholar
Caccia, J. L, M, Crochet, and K, Saada, ST radar evaluation of the standard deviation of the air vertical velocity perturbed by the local orography, J. Atmos. Solar-Terr. Phys., 59, 1127–1131, 1997.Google Scholar
Campistron, B, G, Despaux, M, Lothon, et al., A partial 45 MHz sky temperature map obtained from the observations of five ST radars, Ann. Geophys., 19, 863–871, 2001.Google Scholar
Campos, E. F, W. K, Hocking, and F, Fabry, Precipitation measurement using VHF wind profiler radars: A multifaceted approach to calibrate radar antenna and receiver chain, Radio Sci., 42, RS4008, doi:10.1029/2006RS003 508, 2007a.Google Scholar
Campos, E. F, F, Fabry, and W. K, Hocking, Precipitation measurements using VHF wind profiler radars: Measuring rainfall and vertical air velocities using only observations with a VHF radar, Radio Sci., 42, RS3003, doi:10.1029/2006RS003 540, 2007b.Google Scholar
Cane, H. V, A 30 MHz map of the whole sky, Aust. J. Phys., 31, 561–565, 1978.Google Scholar
Capon, J, High-resolution frequencywavenumber spectrum analysis, Proc. IEEE, 57, 1408–1419, 1969.Google Scholar
Carey-Smith, T. K, A. J, McDonald, W. J., Baggaley, et al., Antenna beam verification using cosmic noise, in Handbook for STEP, Proceedings of the tenth InternationalWorkshop on Technical and Scientific Aspects of MST Radar, edited by J. L., Chau, J., Lau, and J. R, öttger, pp. 391–394, Piura, Peru, 2003.
Carlson, H. C, and N, Sundararaman, Realtime jet-stream tracking: national benefit from an ST radar network for measuring atmospheric motions, Bull. Amer. Meteorol. Soc., 63, 1019–1026, 1982.Google Scholar
Caughey, S. J, B. A, Crease, D. N., Asimakopoulos, and R. S., Cole, Quantitative bistatic acoustic sounding of the atmospheric boundary layer, Q. J. R. Meteorol. Soc., 104, 147–161, 1978.Google Scholar
Cervera, M.A., W. G. Elford, and D. I. Steel, A new method for the measurement of meteor speeds: The pre-t0 phase technique, Radio Sci., 32, 805–816, 1997.
Chadwick, R. B, and E. E, Gossard, Radar remote sensing of the clear atmosphere – review and applications, Proc IEEE, 71, 738–753, 1983.Google Scholar
Chadwick, R. B, A. S, Frisch, and R. G, Strauch, A feasibility study on the use of wind profilers to support space shuttle launches, NASA Contractor Rep., 3861, 1984.Google Scholar
Chakrabarty, D. K, P, Chakrabarty, and G, Witt, An attempt to identify the obscured paths of water cluster ions build-up in the Dregion, J. Atmos. Terr. Phys., 40, 437–442, 1978.Google Scholar
Chakrabarty, D. K, P, Chakrabarty, and G, Witt, The effect of variations in temperature and nitric oxide density on ionclustering in the mesopause region during winter anomaly, J. Atmos. Terr. Phys., 40, 1147–1152, 1978.Google Scholar
Champeney, D. C, Fourier Transforms and their Physical Applications, Academic Press, London and New York, 1973.
Chandra, S, Energetics and thermal structure of the middle atmosphere, Planet. Space Sci., 28, 585–593, 1980.Google Scholar
Chandra, S, and R. A, Vincent, Remote probing of D-region irregularities, in Proc. Indian Acad. Sci., A88, 57, 1979.Google Scholar
Chanin, M. L, and A, Hauchecorne, Lidar observation of gravity and tidal waves in the stratosphere and mesosphere, J. Geophys. Res., 86, 9715–9721, 1981.Google Scholar
Chao, J. K, F. S, Kuo, I. J., Fu, J., Röttger, and C. H., Liu, The first operation and results of Chung Li VHF radar, in Handbook for MAP, edited by S. A., Bowhill and B., Edwards, vol. 20, pp. 359–363, Scostep Secretariat, University of Illinois, USA, 1986.
Chau, J. L, Unexpected spectral characteristics of VHF radar signals from 150Km region over Jicamarca, Geophys. Res. Lett., 31, L23, 803, doi:10.1029/2004GL021,620, 2004.CrossRefGoogle Scholar
Chau, J. L, and B. B, Balsley, Interpretation of angle-of-arrival measurements in the lower atmosphere using spaced antenna radar systems, Radio Sci., 33, 517–533, 1998.Google Scholar
Chau, J. L, and E, Kudeki, Statistics of 150 km echoes over Jicamarca based on low-power VHF observations, Ann. Geophys., 24, 1305–1310, 2006.Google Scholar
Chau, J. L, and E, Kudeki, First E- and Dregion incoherent scatter spectra observed over Jicamarca, Ann. Geophys., 24, 1295– 1303, 2006b.Google Scholar
Chau, J. L, and E, Kudeki, Discovery of two distinct types of equatorial 150 km radar echoes, Geophys. Res. Lett., 40, 4509–4514, doi:10.1002/grl.50,893, 2013.CrossRefGoogle Scholar
Chau, J. L, and R. F, Woodman, Threedimensional coherent radar imaging at Jicamarca: Comparison of different inversion techniques, J. Atmos. Terr. Phys., 63, 253–261, 2001.Google Scholar
Chau, J. L, D. L, Hysell, K. M., Kuyeng, and F. R., Galindo, Phase calibration approaches for radar interferometry and imaging configurations: equatorial spread F results, Ann. Geophys., 26, 2333–2343, 2008.Google Scholar
Chau, J. L, R. F, Woodman, M. A., Milla, and E., Kudeki, Naturally enhanced ion-line spectra around the equatorial 150 km region, Ann. Geophys., 27, 933–942, 2009.Google Scholar
Chau, T, J. L, Renkwitz, G, Stober, and R, Latteck, MAARSY multiple receiver phase calibration using radio sources, J. Atmos. Solar- Terr. Phys., 118(A), 55–63, 2014.Google Scholar
Chen, F. F, Introduction to Plasma Physics and Controlled Fusion, Plenum Press, New York, 1984.
Chen, W, Energy dissipation rates of free atmospheric turbulence, J. Atmos. Sci., 31, 2222–2225, 1974.Google Scholar
Cheong, B. L, M. W, Hoffman, R. D., Palmer, S. J., Frasier, and F. J., López-Dekker, Pulse pair beamforming and the effects of reflectivity field variations on imaging radars, Radio Sci., 39, RS3014, doi:10.1029/2002RS002,843, 2004.CrossRefGoogle Scholar
Cheong, B. L, M. W, Hoffman, R. D., Palmer, S. J., Frasier, and F. J., López-Dekker, Phase-array design for biological clutter rejection: Simulation and experimental validation, J. Atmos. Oceanic Technol., 23, 585–598, doi:10.1175/JTECH1867.1, 2006.CrossRefGoogle Scholar
Cheong, B. L, T.-Y., Yu, R. D., Palmer, et al., Effects of wind field inhomogeneities on Doppler beam swinging revealed by an imaging radar, J. Atmos. Oceanic Technol., 25, 1414–1422, 2008.Google Scholar
Cherniakov, M. (Ed.), Bistatic Radar, Principles and Practice, John Wiley and Sons, Chichester, 2007.
Cherniakov, M. (Ed.), Bistatic Radar, Emerging Technology, John Wiley and Sons, Chichester, 2008.
Chilson, P. B, and G, Schmidt, Implementation of frequency domain interferometry at the SOUSY VHF radar: First results, Radio Sci., 31, 263–272, 1996.Google Scholar
Chilson, P. B, C. W, Ulbrich, M. F., Larsen, P., Perillat, and J. E., Keener, Observations of a tropical thunderstorm using a vertically pointing, dual-frequency, collinear beam Doppler radar, J. Atmos. Oceanic Technol., 10, 663–673, 1993.Google Scholar
Chilson, P. B, P, Czechowsky, and G, Schmidt, A comparison of ambipolar diffusion coefficients in meteor trains using VHF radar and UV lidar, Geophys. Res. Lett., 23, 2745–2748, 1996.Google Scholar
Chilson, P. B, A, Muschinski, and G, Schmidt, First observations of Kelvin–Helmholtz billows in an upper level jet using VHF frequency domain interferometry, Radio Sci., 32(3), 1149–1160, 1997.Google Scholar
Chilson, P. B, E, Belova, M, Rietveld, S, Kirkwood, and U. P, Hoppe, First artificially induced modulation of PMSE using the EISCAT heating facility, Geophys. Res. Lett., 27, 3801–3804, 2000.Google Scholar
Chilson, P. B, S, Kirkwood, and I, Häggström, Frequency-domain interferometry mode observations of PMSE using the EISCAT VHF radar, Ann. Geophys., 18, 1599– 1612, 2001a.Google Scholar
Chilson, P. B, R. D, Palmer, A, Muschinski, et al., SOMARE-99: A demonstrational field campaign for ultra-high resolution VHF atmospheric profiling using frequency diversity, Radio Sci., 36, 695–707, 2001.Google Scholar
Chilson, P. B, T.-Y., Yu, R. G., Strauch, A., Muschinski, and R. D., Palmer, Implementation and validation of range imaging on a UHF radar wind profiler, J. Atmos. Ocean. Tech., 20, 987–996, 2003.Google Scholar
Cho, J. Y. N., Inertio-gravity wave parameter estimation from cross-spectral analysis, J. Geophys. Res., 100, 18 727–18, 737 1995.Google Scholar
Cho, J. Y. N., and M. C., Kelley, Polar mesosphere summer radar echoes: Observations and current theories, Rev. Geophys., 31, 243–265, 1993.Google Scholar
Cho, J. Y. N., and J., Röttger, An updated review of polar mesosphere summer echoes: Observation, theory, and their relationship to noctilucent clouds and subvisible aerosols, J. Geophys. Res., 102, 2001–2020, 1997.Google Scholar
Cho, J. Y. N., T. M., Hall, and M. C., Kelley, On the role of charged aerosols in the polar mesosphere summer echoes, J. Geophys. Res., 97, 875–886, 1992.Google Scholar
Cho, J. Y. N., C. M., Alcala, M. C., Kelley, and W. E., Swartz, Further effect of charged aerosols on summer mesospheric radar scatter, J. Atmos. Terr. Phys., 58, 661–672, 1996.Google Scholar
Choudhary, R. K, J. P. St., Maurice, and K. K., Mahajan, Observations of coherent echoes with narrow spectra near 150 km altitude during daytime a way from the dip equator, Geophys. Res. Lett., 31, L19, 801, doi:10.1029/2004GL020, 299, 2004.CrossRefGoogle Scholar
Chu, Y.-H., Beam broadening effect on oblique MST radar Doppler spectra, J. Atmos. Oceanic Technol., 19, 1955–1967, 2002.Google Scholar
Chu, Y. H, and T. Y, Chen, Theoretical study of two-frequency coherence of MST radar returns, Radio Sci., 30, 1803–1815, 1995.Google Scholar
Chunchuzov, I. P, On the high wavenumber form of the Eulerian internal wave spectrum in the atmosphere, J. Atmos Sci., 59, 1753–1774, 2002.Google Scholar
Ciesielski, P. E, L. M, Hartten, and R. H, Johnson, Impacts of merging profiler and rawsinsonde winds on TOGA COARE analysis, J. Atmos. Oceanic Technol., 14, 1264–1279, 1997.Google Scholar
Cohn, M, and A, Lempel, On fast M-sequence transforms, IEEE Trans. Information Theory, IT-23, 135–137, 1977.Google Scholar
Cohn, S. A, Investigations of the wavelength dependence of radar backscatter from atmospheric turbulence, J. Atmos. Oceanic Technol., 11, 225–238, 1994.Google Scholar
Cohn, S. A, Radar measurements of turbulent eddy dissipation rate in the troposphere: A comparison of techniques, J. Atmos. Ocean. Tech., 12, 85–95, 1995.Google Scholar
Cooley, J. W, and J. W, Tukey, An algorithm for the machine calculation of the complex Fourier series, Math. Comp., 19, 297–301, 1965.Google Scholar
Cornish, C. R, and M. F, Larsen, Observations of low-frequency gravity waves in the lower stratosphere over Arecibo, J. Atmos. Sci., 46, 2428–2439, 1989.Google Scholar
Coy, L, D. C, Fritts, and J, Weinstock, The Stokes drift due to vertically propagating internal gravity waves in a compressible atmosphere, J. Atmos. Sci., 43, 2636–2643, 1986.Google Scholar
Craig, R. A, The Upper Atmosphere: Meteorology and Physics, International Geophysics Series, Academic Press, NY and London, 1965.
Crane, R. K, Radar measurements of wind at Kwajalein, Radio Sci., 15, 383–394, 1980a.Google Scholar
Crane, R. K., A review of radar observations of turbulence in the lower stratosphere, Radio Sci., 15, 177–194, 1980.Google Scholar
Crochet, M, J, Tabbagh, and N, Makiese, Simultaneous ionospheric drift observations by different techniques at low and midlatitudes, J. Atmos. Terr. Phys., 39, 463, 1977.Google Scholar
Croft, T. A, Sky-wave backscatter: a means for observing our environment at great distances, Revs. Geophys. Space Phys., 10, 73–155, 1972.Google Scholar
Cunnold, D. M, Vertical transport coefficients in the mesosphere obtained from radar observations, J. Atmos. Sci., 32, 2191, 1978.2.0.CO;2>CrossRefGoogle Scholar
Czechowsky, P, and R, Rüster, VHF radar observations of turbulent structures in the polar mesopause region, Ann. Geophys., 15, 1028–1036, 1997.Google Scholar
Czechowsky, P, J, Klostermeyer, J, Röttger, et al., The SOUSY-VHF-radar for tropo-, strato- and mesospheric sounding, in 17th Conference on Radar Meteorology of the American Meteorological Society (AMS, Oct. 26–29), pp. 349–353, Seattle, USA, 1976.
Czechowsky, P, R, Ruster, and G, Schmidt, Variations of mesospheric structures in different seasons, Geophys. Res, Lett., 6, 459–462, 1979.Google Scholar
Czechowsky, P, I. M, Reid, and R, Rüster, VHF radar measurements of the aspect sensitivity of the summer polar mesopause echoes over Andenes (69 ◦ N, 16 ◦ E), Norway, Geophys. Res. Lett., 15, 1259–1262, 1988.Google Scholar
Czechowsky, P, B, Inhester, J, Klostermeyer, et al., Recent progress with the SOUSY VHF radars, in Handbook for MAP, vol. 28, pp. 459–466, Scostep Secretariat, University of Illinois, USA, 1989.
Dalaudier, F, and A. S, Gurvich, A scalar three-dimensional spectral model with variable anisotropy, J. Geophys. Res., 102, 19 449–19, 460 1997.Google Scholar
Dalaudier, F, C, Sidi, M, Crochet, and J, Vernin, Direct evidence of sheets in the atmospheric temperature field, J. Atmos. Sci., 51, 237–248, 1994.Google Scholar
Danilov, A. D, Direct and indirect estimates of turbulence around the turbopause, Adv. Space Res., 4(4), 67–78, 1984.Google Scholar
Davies, K, and G. A. M., King, On the validity of some approximations to the Appleton–Hartree formula, J. Research of the National Bureau of Standards - D, Radio Propagation, 65(4), 323–332, 1961.Google Scholar
de Wolfe, D. A., A random-motion model of fluctuations in a nearly transparent medium, Radio Sci., 18, 138–142, 1983.Google Scholar
Defant, F, and H, Taba, The threefold structure of the atmosphere and the characteristics of the tropopause, Tellus, 9, 259–274, 1957.Google Scholar
Dehghan, A, and W. K, Hocking, Instrumental errors in spectral-width turbulence measurements by radars, J. Atmos. Solar-Terr. Phys., 73(9), 1052–1068, doi:10.1016/j.jastp.2010.11.011, 2011.Google Scholar
Dehghan, A, W. K, Hocking, and R, Srinivasan, Comparisons between multiple in-situ aircraft turbulence measurements and radar in the troposphere, J. Atmos. Solar-Terr. Phys., 118, 64–77, doi:10.1016/j.jastp.2013.10.009, 2014.CrossRefGoogle Scholar
de Paula, E. R., and D. L., Hysell, The São Luís 30MHz coherent scatter ionospheric radar: System description and initial results, Radio Sci., 39, RS1014, doi:10.1029/2003RS002, 914, 2004.Google Scholar
Desaubies, Y, and W. K, Smith, Statistics of Richardson number and instability in oceanic internal waves, J. Phys. Oceanography, 12, 1245–1259, 1982.Google Scholar
Dewan, E. M, Turbulent vertical transport due to thin intermittent mixing layers in the stratosphere and other stable fluids, Science, 211, 1041–1042, 1981.Google Scholar
Dewan, E. M, and R. E, Good, Saturation and the “Universal” spectrum for vertical profiles of horizontal scalar winds in the atmosphere, J. Geophys. Res., 91, 2742–2748, 1986.Google Scholar
Dewan, E. M, and R. H, Picard, Mesospheric bores, J. Geophys. Res., 103, 6295–6305, 1998.Google Scholar
Dewan, E. M, and R. H, Picard, The origin of mesospheric bores, J. Geophys. Res., 106, 2921–2927, 2001.Google Scholar
Dewan, E. M, N, Grossbard, A. F, Quesada, and R. E, Good, Spectral analysis of 10m resolution scalar velocity profiles in the stratosphere, [with correction in Geophys. Res. Lett., 11, 624, 1984], Geophys. Res. Lett., 11, 80–83, 1984.Google Scholar
Dewan, E. M, R. H, Picard, R. R., O'Neil, et al., MSX satellite observations of thunderstorm-generated gravity waves in mid-wave infrared images of the upper stratsphere, Geophys. Res. Lett., 25, 939–942, 1998.Google Scholar
Dhaka, S. K, P. K, Devarajan, Y, Shibagaki, R. K., Choudhary, and S., Fukao, Indian MST radar observations of gravity wave activities associated with tropical convection, J. Atmos. Solar-Terr. Phys., 63, 1631–1642, 2001.Google Scholar
Dibbern, J, D, Engelbart, U, Goersdorf, et al., Operational aspects of wind profiler radars, in Instruments and Observing Methods Report No. 79, WMO/TD 1196, edited by WMO, World Meteorological Organization, 2003.
Dieminger, W, On the causes of excessive absorption in the ionosphere on winter days, J. Atmos. Terr. Phys., 2, 340, 1952.Google Scholar
Dieminger, W, G. K, Hartmann, and R, Leitinger, The Upper Atmosphere, Springer-Verlag, Berlin, Heidelberg and New York, 1996.
Dole, J, R, Wilson, F, Dalaudier, and C, Sidi, Energetics of small scale turbulence in the lower stratosphere from high resolution radar measurements, Ann. Geophys., 19, 945–952, 2001.Google Scholar
Dong, B, and K. C, Yeh, Resonant and nonresonant wave–wave interactions in an isothermal atmosphere, J. Geophys. Res., 93, 3729–3744, 1988.Google Scholar
Doviak, R. J, and D. S, Zrnić, Reflection and scatter formula for anisotropically turbulent air, Radio Sci., 19, 325–336, 1984.Google Scholar
Doviak, R. J, and D. S, Zrnić, Doppler Radar and Weather Observations, 2nd ed., Dover Publications, New York, 1993.
Doviak, R. J, R. J, Lataitis, and C. L, Holloway, Cross correlation and cross spectra for spaced antenna wind profilers: 1. Theoretical analysis, Radio Sci., 31, 157–180, 1996.Google Scholar
Doviak, R. J, G, Zhang, S. A, Cohn, and W. O. J., Brown, Comparison of spacedantenna cross-beam wind estimators: Theoretical and simulated results, Radio Sci., 39, Art. No.1006, 2004.Google Scholar
Drabowitch, S, A, Papiernik, H. D, Griffiths, J, Encinias, and B. L, Smith, Modern Antennas, 2nd ed., Springer, Dordrecht, 2005.
Driscoll, R. J, and L. A, Kennedy, A model for the spectrum of passive scalars in an isotropic turbulence field, Phys. Fluids, 28, 72–80, 1985.Google Scholar
Drob, D. P, J. T, Emmert, G, Crowley, et al., An empirical model of the Earth's horizontal wind fields: HWM07, J. Geophys. Res., 113, A12 304, doi:10.1029/2008JA013, 668, 2008.CrossRefGoogle Scholar
Dunkerton, T. J, Wave transience in a compressible atmosphere. Part I: Transient internal wave, mean-flow interaction, J. Atmos. Sci., 38, 281–297, 1981.Google Scholar
Dutta, G, P. V, Kumar, P. V., Rao, et al., On the optimum radar beam angle to minimize statistical estimation error of momentum flux using conjugate beam technique, Geophys. Res. Lett., 34, L22, 802 doi:10.1029/2007GL030, 652, 2007.Google Scholar
Eaton, F. D, S. A, McLaughlin, and J. R, Hines, A new frequency-modulated continuous wave radar for studying planetary boundary layer morphology, Radio Sci., 30, 75–88, 1995.Google Scholar
Ebel, A, Eddy diffusion models for the mesosphere and lower thermosphere, J. Atmos. Terr. Phys., 42, 617–628, 1980.Google Scholar
Ebel, A, A. H, Manson, and C. E, Meek, Short period fluctuations of the horizontal wind measured in the upper middle atmosphere and possible relationships to internal gravity waves, J. Atmos. Terr. Phys., 49, 385–401, 1987.Google Scholar
Eckermann, S. D, Ray-tracing simulation of the global propagation of inertia gravity waves through the zonal averaged middle atmosphere, J. Geophys. Res., 97, 15 849–15, 866 1992.Google Scholar
Eckermann, S. D, and W. K, Hocking, The effect of superposition on measurements of atmospheric gravity waves : A cautionary note and some re-interpretations, J. Geophys. Res., 94, 6333–6339, 1989.Google Scholar
Eckermann, S. D, and P, Preusse, Global measurements of stratospheric mountain waves from space, Science, 286, 1534–1537, 1999.Google Scholar
Eckermann, S. D, and R. A, Vincent, Falling sphere observations of anisotropic gravity wave motions in the upper stratosphere over southern Australia, Pure Appl. Geophys., 130, 509–532, 1989.Google Scholar
Eckermann, S. D, I, Hirota, and W. K, Hocking, Gravity wave and equatorial morphology of the stratosphere derived from long-term rocket soundings, Q. J. R. Meteorol. Soc., 121, 149–186, 1995.Google Scholar
Ecklund, W. L, and B. B, Balsley, Long-term observations of the arctic mesosphere with the MST radar at Poker Flat, Alaska, J. Geophys. Res., 86, 7775–7780, 1981.Google Scholar
Ecklund, W. L, B. B, Balsley, D. A., Carter, et al., Observations of vertical motions in the troposphere and lower stratosphere using three closely spaced ST radars, Radio Sci., 20, 1196–1206, 1985.Google Scholar
Edmon, H. J. J., B. J., Hoskins, and M. E., McIntyre, Eliassen–Palm cross sections for the troposphere, J. Atmos. Sci., 37, 2600–2616, 1980.Google Scholar
Elford, W. G, A study of winds between 80 and 100 km in medium latitudes, Planet. Space Sci., 1, 94–101, 1959.Google Scholar
Elford, W. G, Novel applications of MST radars in meteor studies, J. Atmos. Solar-Terr. Phys., 63, 143–153, 2001.Google Scholar
Elford, W. G, and D. S, Robertson, Measurements of winds in the upper atmosphere by means of drifting meteor trails II, J. Atmos. Terr. Phys., 4, 271–284, 1953.Google Scholar
Elford, W. G., and A. D., Taylor, Measurements of Faraday rotation of radar meteor echoes for the modelling of electron densities in the lower ionosphere, J. Atmos. Solar-Terr. Phys., 59, 1021–1024, 1997.Google Scholar
Eliassen, A, and E, Palm, On the transfer of energy in stationary mountain waves, Geophys. Publ, 22, 1–23, 1960.Google Scholar
Ellyett, C. D, and J. M, Watts, Stratification in the lower ionosphere, J. Res. Nat. Bur. Stand., 63DN2, 117–134, 1959.Google Scholar
Espy, P. J, R. E, Hibbins, G. R., Swenson, et al., Regional variations of mesospheric gravitywave momentum flux over Antarctica, Ann. Geophys., 24, 81–88, 2006.Google Scholar
Evans, J, Theory and practice of ionospheric study by Thomson scatter radar, Proc IEEE, 57, 496–500, 1969.Google Scholar
Fairall, C. W, A. B, White, and D. W, Thomson, A stochastic model of gravitywave- induced clear-air turbulence, J. Atmos. Sci., 48, 1771–1790, 1991.Google Scholar
Fan, Y, J, Klostermeyer, and R, Rüster, VHF radar observation of gravity wave critical levels in the mid-latitude summer mesopause region, Geophys. Res. Lett., 18, 697–700, 1991.Google Scholar
Farley, D. T, Faraday rotation measurements using incoherent scatter, Radio Sci., 4, 143–152, 1969.Google Scholar
Farley, D. T, On-line data processing techniques for MST radars, Radio Sci., 20, 1177–1184, 1985.Google Scholar
Farley, D. T, B. B, Balsley, W. E., Swartz, and C., La Hoz, Tropical winds measured by the Arecibo radar, J. Appl. Meteorol., 18, 227–230, 1979.Google Scholar
Farley, D. T, H, Ierkic, and B, Fejer, Radar interferometry: A new technique for studying plasma turbulence in the ionosphere, J. Geophys. Res., 86, 1467–1472, 1981.Google Scholar
Fejer, J. A, Causality and the Lorentz polarization term, J. Atmos. Solar-Terr. Phys., 47, 513–516, 1985.Google Scholar
Fenn, A. J, Adaptive Antenna and Phased Arrays for Radar and Communications, Artec House, Boston, 2008.
Ferraz-Mello, S, Estimation of periods from unequally spaced observations, Astronomical J., 86.4, 619–624, 1981.Google Scholar
Flock, W. L, and B. B, Balsley, VHF radar returns from the D region of the equatorial ionosphere, J. Geophys. Res., 72, 5537, 1967.Google Scholar
Flood, W. A, Revised theory for partial reflection D-region measurements, J. Geophys. Res., 73, 5585–5598, 1968.Google Scholar
Flood, W. A, Reply (to comments by Holt regarding “Revised theory for partial reflection D-region measurements”), J. Geophys. Res., 74, 5183–5186, 1969.Google Scholar
Fooks, G. F, Ionospheric drift measurements using correlation analysis; methods of computation and interpretation of results, J. Atmos. Terr. Phys., 27, 979, 1965.CrossRefGoogle Scholar
Forbes, J. M, S. E, Palo, X, Zhang, Y. I., Portnyagin, M. N. A., and E. G., Merzlyakov, Lamb waves in the lower thermosphere: Observational evidence and global consequences, Geophys. Res. Lett., 104, 17 107–17, 115 1999.Google Scholar
Frank, J, and J. D, Richards, Chapter 13 in Radar Handbook, in Phased Array Radar Antennas, edited by M. I., Skolnik, pp. 13.1–13.74, McGraw-Hill, New York, 2008.
Franke, P. M, D, Thorsen, M, Champion, S. J, Franke, and E, Kudeki, Comparisons of time and frequency domain techniques for wind velocity estimation using multiple receiver MF radar data, Geophys. Res. Lett., 17, 2193–2196, 1990.Google Scholar
Franke, P. M, S, Mahmoud, K, Raizada, et al., Computation of clear-air radar backscatter from numerical simulations of turbulence: 1. Numerical methods and evaluation of biases, J. Geophys. Res. (Atmospheres), 116, 2156–2202, doi:10.1029/2011JD015,895, 2011.Google Scholar
Franke, S. J, Pulse compression and frequency domain interferometry with a frequency-hopped MST radar, Radio Sci., 25, 565–574, 1990.Google Scholar
Franke, S. J, J, Röttger, and C, LaHoz, Frequency domain interferometry of polar mesosphere summer echoes with the EISCAT VHF radar: A case study, Radio Sci., 27, 417–428, 1992.Google Scholar
Franke, S. J, X, Chu, A, Liu, and W. K, Hocking, Comparison of meteor radar and Na Doppler lidar measurements of winds in the mesopause region above Maui, Hawaii, J. Geophys. Res., 110, D09S02, doi:10.1029/2003JD004, 486, 2005.CrossRefGoogle Scholar
Fraser, G. J, The measurement of atmospheric winds at altitudes of 64–100 km using ground-based radio equipment, J. Atmos. Sci., 22, 217, 1965.Google Scholar
Fraser, G. J, Seasonal variation of southern hemisphere mid-latitude winds at altitudes of 70–100 km, J. Atmos. Terr. Phys., 30, 707, 1968.CrossRefGoogle Scholar
Fraser, G. J, Partial reflection spaced antenna wind measurements, in Handbook for MAP, Ground Based Techniques, edited by R. A., Vincent, vol. 13, pp. 233–247, SCOSTEP Secretariat, Dept. of Electr. Computer Eng., Univ. of Illinois, Urbana, IL 61801, USA, 1984.
Fraser, G. J, and R. A, Vincent, A study of D-region irregularities, J. Atmos. Terr. Phys., 32, 1591, 1970.CrossRefGoogle Scholar
Friend, A., Continuous determination of air-mass boundaries by radio, Bull. Amer. Meteorol. Soc., 20, 202–205, 1939.Google Scholar
Friend, A., Theory and practice of troposphere sounding by radar, Proc. Inst. Rad. Engnrs, 37, 116–138, 1949.Google Scholar
Frierson, D. M. W., J., Lu, and G., Chen, Width of the Hadley cell in simple and comprehensive general circulation models, Geophys. Res. Lett., 34, L18,804, doi:10.1029/2007GL031, 115, 2007.CrossRefGoogle Scholar
Frisch, A. S, and S. F, Clifford, A study of convection capped by a stable layer using Doppler radar and acoustic sounders, J. Atmos. Sci., 31, 1622–1628, 1974.Google Scholar
Fritts, D. C, and M. J, Alexander, Gravity wave dynamics and effects in the middle atmosphere, Rev. Geophys., 41, 1003, doi:10.1029/2001RG000 106, 2003.Google Scholar
Fritts, D. C, and H.-G., Chou, An investigation of the vertical wavenumber and frequency spectra of gravity wave motions in the lower stratosphere, J. Atmos. Sci., 44, 3610–3624, 1987.Google Scholar
Fritts, D. C, and T. J, Dunkerton, Fluxes of heat and constituents due to convectively unstable gravity waves, J. Atmos. Sci., 42, 549–556, 1985.Google Scholar
Fritts, D. C, and D, Janches, Dual-beam measurements of gravity wave momentum fluxes over Arecibo: Re-evaluation of wave structure, dynamics, and momentum fluxes, J. Geophys. Res., 113, D05,112 doi:10.1029/2007JD008, 896, 2008.Google Scholar
Fritts, D. C, and Z, Luo, Gravity wave excitation by geostrophic adjustment of the Jet Stream. Part I: Two-dimensional forcing, J. Atmos. Sci., 49, 681–697, 1992.Google Scholar
Fritts, D. C, and G. D, Nastrom, Sources of mesoscale variability of gravity waves. Part II: Frontal, convective, and jet stream excitation, J. Atmos. Sci., 49(2), 111–127, 1992.Google Scholar
Fritts, D. C, and P. K, Rastogi, Convective and dynamical instabilities due to gravity wave motions in the lower and middle atmosphere: Theory and observations, Radio Sci., 20, 1247–1277, 1985.Google Scholar
Fritts, D. C, and R. A, Vincent, Mesospheric momentum flux studies at Adelaide, Australia: Observations and a gravity wave-tidal interaction model, J. Atmos. Sci., 44, 605–619, 1987.Google Scholar
Fritts, D. C, and L, Yuan, Measurement of momentum fluxes near the summer mesopause at Poker Flat, Alaska, J. Atmos. Sci., 46, 2569–2579, 1989.Google Scholar
Fritts, D. C, R. C, Blanchard, and L, Coy, Gravity-wave structure between 60 and 90 km inferred from space-shuttle reentry data, J. Atmos. Sci., 46, 423–434, 1989.Google Scholar
Fritts, D. C, T, Tsuda, T. E. Van, Zandt, et al., Studies of velocity fluctuations in the lower atmosphere using the MU radar. Part II: Momentum fluxes and energy densities, J. Atmos. Sci., 47, 51–66, 1990.Google Scholar
Fritts, D. C, J. R, Isler, G. E., Thomas, and O., Andreassen, Wave breaking signatures in noctilucent clouds, Geophys. Res. Lett., 20, 2039–2042, 1993.Google Scholar
Fritts, D. C, J. R, Isler, and O, Andreassen, Gravity wave breaking in two and three dimensions. 2, Three-dimensional evolution and instability structure, J. Geophys. Res., 99, 8109–8123, 1994.Google Scholar
Fritts, D. C, J. F, Garten, and O, Andreassen, Wave breaking and transition to turbulence in stratified shear flows, J. Atmos. Sci., 53, 1057–1085, 1996.Google Scholar
Fritts, D. C, T. L, Palmer, O, Andreassen, and I, Lie, Evolution and breakdown of Kelvin-Helmholtz billows in stratified compressible flows, Part I: Comparison of two- and three-dimensional flows, J. Atmos. Sci., 53, 3173–3191, 1996.Google Scholar
Fritts, D. C, D, Janches, D. M, Riggin, et al., Gravity waves and momentum fluxes in the mesosphere and lower thermosphere using 430 MHz dual-beam measurements at Arecibo: 2. Frequency spectra, momentum fluxes, and variability, J. Geophys. Res., 111, D18, 108 doi:10.1029/2005JD006, 883, 2006.CrossRefGoogle Scholar
Fritts, D. C, D, Janches, and W. K, Hocking, Southern Argentina agile meteor radar (SAAMER): Initial assessment of gravity wave momentum fluxes, J. Geophys. Res., 115, D19,123, doi:10.1029/2010JD013, 891, 2010.CrossRefGoogle Scholar
Fritts, D. C, D, Janches, W. K, Hocking, N. J., Mitchell, and M. J., Taylor, Assessment of gravity wave momentum flux measurement capabilities by meteor radars having different transmitter power and antenna configurations, J. Geophys. Res., 117, D10, 108, doi:10.1029/2011JD017, 174, 2012.Google Scholar
Fritts, D. C, L, Wang, and J. A, Werne, Gravity wave–fine structure interactions. Part I: Influences of fine structure form and orientation on flow evolution and instability, J. Atmos. Sci., 70, 3710–3734, doi:10.1175/JAS–D–13–055.1, 2013.Google Scholar
Frolov, V. L, L. M, Kagan, and E. N, Sergeev, Review of features of stimulated electromagnetic emission (SEE): Recent results obtained at the “SURA” facility, Radiophysics and Quantum Electronics, 42, 557–561, 1999.Google Scholar
From, W. R, and J. D, Whitehead, The calibration of an HF radar used for ionospheric research, Radio Sci., 19, 423–428, 1984.Google Scholar
Fujiwara, H., S., Maeda, M., Suzuki, S., Nozawa, and H., Fukunishi, Estimates of electromagnetic and turbulent energy dissipation rates under the existence of strong wind shears in the polar lower thermosphere from the European Incoherent Scatter (EISCAT) Svalbard radar observations, J. Geophys. Res., 109, A07, 306, doi:10.1029/2003JA010,046, 2004.CrossRefGoogle Scholar
Fujiwara, M., M. K., Yamamoto, H., Hashiguchi, T., Horinouchi, and S., Fukao, Turbulence at the tropopause due to breaking Kelvin waves observed by the Equatorial Atmosphere Radar, Geophys. Res. Lett., 30(4), 1171, doi:10.1029/2002GL016 278, 2003.CrossRefGoogle Scholar
Fukao, S., and K., Hamazu, Radar for Meteorological and Atmospheric Observations, Springer, Japan, 2014.
Fukao, S., T., Sato, S., Kato, et al., Mesospheric winds and waves over Jicamarca on May 23–24, 1974, J. Geophys. Res., 84, 4379–4386, 1979.Google Scholar
Fukao, S., K., Wakasugi, and S., Kato, Radar measurement of short-period atmospheric waves and related scattering properties at the altitude of 13–25 km over Jicamarca, Radio Sci., 15, 431–438, 1980a.Google Scholar
Fukao, S., T., Sato, R. M., Harper, and S., Kato, Radio wave scattering from the tropical mesosphere observed with the Jicamarca radar, Radio Sci., 15, 447–457, 1980.Google Scholar
Fukao, S, N, Yamasaki, R. M, Harper, and S, Kato, Winds measured by a UHF radar and rawinsondes: Comparisons made on 26 days (August–September 1977) at Arecibo, Puerto Rico, J. App. Meteorol., 21, 1357–1363, 1982.Google Scholar
Fukao, S., T., Sato, T., Tsuda, et al., The MU radar with an active phased array system: 1. Antenna and power amplifiers, Radio Sci., 20, 1155–1168, 1985a.Google Scholar
Fukao, S., T., Sato, T., Tsuda, et al., The MU radar with an active phased array system: 2. In-house equipment, Radio Sci., 20, 1169–1176, 1985b.Google Scholar
Fukao, S., K., Wakasugi, T., Sato, et al., Direct measurement of air and precipitation particle motion by very high frequency Doppler radar, Nature, 316, 712–714, 1985c.Google Scholar
Fukao, S., T., Sato, H., Hojo, I., Kimura, and S., Kato, A numerical consideration on edge effect of planar dipole phased arrays, Radio Sci., 21, 1–12, 1986a.Google Scholar
Fukao, S., T., Sato, H., Hojo, I., Kimura, and S., Kato, Effects of antenna element structure on element properties and array pattern of a planar phased array, Radio Sci., 21, 56–64, 1986b.Google Scholar
Fukao, S., M., Inaba, I., Kimura, et al., A systemic error in MST/ST radar wind measurement induced by a finite range volume effect: 2. Numerical considerations, Radio Sci., 23, 74–82, 1988b.Google Scholar
Fukao, S., T., Sato, T., Tsuda, et al., MU radar: New capabilities and system calibrations, Radio Sci., 25, 477–485, 1990.Google Scholar
Fukao, S., M. D., Yamanaka, N., Ao, et al., Seasonal variability of vertical eddy diffusivity in the middle atmosphere: 1. Three-year observations by the middle and upper atmosphere radar, J. Geophys. Res, 99, 18 973–18 987, 1994.Google Scholar
Fukao, S., H., Hashiguchi, M. K., Yamamoto, et al., Equatorial atmosphere radar (EAR): System description and first results, Radio Sci., 38, doi:10.1029/2002RS002, 767, 2003.Google Scholar
Fukao, S., T., Sato, P.T., May, et al., A systematic error in MST/ST radar wind measurement induced by a finite range volume effect: 1. Observational results, Radio Sci., 23, 59–73, 1988a.Google Scholar
Furumoto, J., and T., Tsuda, Characteristics of energy dissipation rate and effect of humidity on turbulence echo power revealed by MU radar-RASS measurements, J. Atmos. Solar-Terr. Phys., 63, 285–294, 2001.Google Scholar
Furumoto, J., K., Kurimoto, and T., Tsuda, Continuous observations of humidity profiles with the MU radar-RASS combined with GPS and radiosonde measurements, J. Atmos. Oceanic Technol., 20, 23–41, 2003.Google Scholar
Furumoto, J., S., Iwai, H., Fujii, et al., Estimation of humidity profiles with the L-band boundary layer radar-RASS measurements, J. Meteor. Soc. Japan, 83(5), 895–908, 2005.Google Scholar
Furumoto, J., T., Tsuda, S., Iwai, and T., Kozu, Continuous humidity monitoring in a tropical region with the Equatorial Atmosphere Radar, J. Atmos. Oceanic. Tech., 23, 538–551, 2006.Google Scholar
Furumoto, J., S., Imura, T., Tsuda, et al., The variational assimilation method for the retrieval of humidity profiles with the windprofiling radar, J. Atmos. Ocean. Technol., 24, 1525–1545 doi:10.1175/JTECH2074.1, 2007.CrossRefGoogle Scholar
Gage, K. S, Radar observations of the free atmosphere: Structure and dynamics, in Radar in Meteorology, edited by D., Atlas, pp. 534–565, American Met. Soc., 1990.Google Scholar
Gage, K. S, and B. B, Balsley, Doppler radar probing of the clear atmosphere, Bull. Am. Meteorol. Soc., 59, 1074–1093, 1978.Google Scholar
Gage, K. S, and J. L, Green, Evidence for specular reflection from monostatic VHF radar observations of the stratosphere, Radio Sci., 13, 991–1001, 1978.Google Scholar
Gage, K. S, and J. L, Green, Tropopause detection by partial specular reflection using VHF radar, Science, 203, 1238–1240, 1979.Google Scholar
Gage, K. S, and J. L, Green, A technique for determining the temperature profile from VHF radar observations, J. Appl. Meteorol., 21, 1146–1149, 1982.Google Scholar
Gage, K. S, and J. L, Green, An objective technique for the determination of tropopause height from VHF radar observations, J. Appl. Meteorol., 21, 1150–1154, 1982.Google Scholar
Gage, K. S, J. L, Green, and T.E.Van, Zandt, Use of Doppler radar for the measurement of atmospheric turbulence parameters from the intensity of clear air echoes, Radio Sci., 15, 407–416, 1980.Google Scholar
Gage, K. S, B. B, Balsley, and J. L, Green, Fresnel scattering model for the specular echoes observed by VHF radars, Radio Sci., 16, 1447–1453, 1981.Google Scholar
Gage, K. S, W. L, Ecklund, and B. B, Balsley, A modified Fresnel scattering model for the parameterization of Fresnel returns, Radio Sci., 20, 1493–1502, 1985.Google Scholar
Gage, K. S, J. R, McAfee, W.G., Collins, et al., A comparison of winds observed at Christmas Island using wind-profiling Doppler radar with NMC and ECMWF analyses, Bull. Am. Meteorol. Soc., 69, 1041–1047, 1988.Google Scholar
Gage, K. S, B. B, Balsley, W.L., Ecklund, D.A., Carter, and J.R., McAfee, Windprofiler related research in the tropical Pacific, J. Geophys. Res., 96, 3209–3220, 1991.Google Scholar
Gage, K. S, J. R, McAfee, D.A., Carter, et al., Long-term mean vertical motion over the tropical Pacific: Wind-profiling Doppler radar measurements, Science, 254, 1771–1773, 1991b.Google Scholar
Garbanzo-Salas, M., and W.K., Hocking, Spectral analysis comparisons of Fouriertheory- based methods and minimum variance (Capon) methods, J. Atmos. Terr. Phys., 32, 92–100, doi:10.1016/j.jastp.2015 .07.003, 2015.Google Scholar
Garcia, R. R, and S, Solomon, A numerical model of the zonally averaged dynamical and chemical structure of the middle atmosphere, J. Geophys. Res., 88, 1379–1400, 1983.Google Scholar
Garcia, R. R, and S, Solomon, The effect of breaking gravity waves on the dynamics and chemical composition of the mesosphere and lower thermosphere, J. Geophys. Res., 90, 3850–3868, 1985.Google Scholar
Gardner, C. S, Diffusive filtering theory of gravity wave spectra in the atmosphere, J. Geophys. Res., 99, 20 601–20, 622 1994.Google Scholar
Gardner, C. S, Testing theories of atmospheric gravity wave saturation and dissipation, J. Atmos. Terr. Phys., 58, 1575–1589, 1996.Google Scholar
Gardner, C. S, Theoretical models for gravity wave horizontal wave number spectra: Effects of wave field anisotropies, J. Geophys. Res., 103, 6417–6425, 1998.Google Scholar
Gardner, C. S, and M. J, Taylor, Observational limits for lidar, radar and airglow imager measurements of gravity wave parameters, J. Geophys. Res., 103, 6427–6437, 1998.Google Scholar
Gardner, C. S, C. A, Hostetler, and S. J, Franke, Gravity wave models for the horizontal wave number spectra of atmospheric velocity and density fluctuations, J. Geophys. Res., 98, 1035–1049, 1993.Google Scholar
Gardner, C. S, C. A, Hostetler, and S, Lintelman, Influence of the mean wind field on the separability of atmospheric perturbation spectra, J. Geophys. Res., 98, 8859–8872, 1993.Google Scholar
Gardner, F. F, and J. L, Pawsey, Study of the ionospheric D-region using partial reflections, J. Atmos. Terr. Phys., 3, 321, 1953.Google Scholar
Garrett, C., and W., Munk, Space time scales of internal waves, Geophys. Fluid Dynamics, 2, 225–264, 1972.Google Scholar
Garrett, C., and W., Munk, Space time scales of internal waves: A progress report, J. Geophys. Res., 80, 291–297, 1975.Google Scholar
Garrett, H. B, and J. M, Forbes, Tidal structure of the thermosphere at equinox, J. Atmos. Terr. Phys., 40, 657–668, 1978.Google Scholar
Gavrilov, N. M, S, Fukao, T, Nakamura, et al., Comparative study of interannual changes of the mean winds and gravity wave activity in the middle atmosphere over Japan, Central Europe and Canada, J. Atmos. Solar-Terr. Phys., 64, 1003–1010, 2002.Google Scholar
Geller, M. A, Dynamics of the middle atmosphere, J. Atmos. Terr. Phys., 41, 683–705, 1979.Google Scholar
Gibson-Wilde, D. E, J. A, Werne, D.C., Fritts, and R.J., Hill, Direct numerical simulation of VHF radar measurements of turbulence in the mesosphere, Radio Sci., 35, 783–798, 2000.Google Scholar
Gnanalingam, S., and K., Weekes, Weak echoes from the ionosphere with radiowaves of frequency 1.42 Mc/s, Nature, 170, 113–114, 1952.Google Scholar
Golay, M.J.E., Complementary series, IEEE Trans. Inform. Theory, IT-7, 82–87, 1961.Google Scholar
Goldstein, H., D.E., Kerr, and A.E., Bent, Meteorological echoes, in Propagation of Short Radio Waves, edited by D.E., Kerr, pp. 588–636, McGraw-Hill, New York, (republished 1990 by Peter Peregrinus Ltd, London), 1951.
Golomb, S., Shift Register Sequences, rev. ed., Aegean Park, Walnut Creek, CA, 1981.
Gordiets, B. F, Y. N, Kulikov, M.N., Markov, M., Marov, and J., Ya, Numerical modeling of thermospheric heat budget, J. Geophys. Res., 87, 4504–4514, 1982.Google Scholar
Gordon, W. E, Incoherent scattering of radio waves by free electrons with applications to space exploration by radar, Proc.I. R. E., 46, 1824–1829, 1958.Google Scholar
Gossard, E. D, and W. H, Hooke, Waves in the Atmosphere, Elsevier Scientific Publ. Co., Amsterdam, 1975.
Gossard, E. E, Measuring drop-size distributions in clouds with a clear-air-sensing Doppler radar, J. Atmos. Oceanic Technol., 5, 640–649, 1988.Google Scholar
Gossard, E. E, Radar research on the atmospheric boundary layer, in Radar in Meteorology, edited by D., Atlas, pp. 477–527, Am. Meteorol. Soc., Boston, Mass., 1990.Google Scholar
Gossard, E. E, and K. C, Yeh, Foreword to a special issue of Radio Science on Radar, Radio Sci., 15, 147–150, 1980.Google Scholar
Gossard, E. E, J. H, Richter, and D, Atlas, Internal waves in the atmosphere from high-resolution radar measurements, J. Geophys. Res., 75, 3523–3536, 1970.Google Scholar
Gossard, E. E, R. B, Chadwick, W.D., Neff, and K.P., Moran, The use of ground-based Doppler radars to measure gradients, fluxes and structure parameters in elevated layers, J. Appl. Meteorol., 21, 211–226, 1982.Google Scholar
Gossard, E. E, R. B, Chadwick, T.R., Detman, and J., Gaynor, Capability of surface-based clear-air Doppler radar for monitoring meteorological structure of elevated layers, J. Climate and Appl. Meteorol., 23, 474–485, 1984.Google Scholar
Green, J. L, and K. S, Gage, A re-examination of the range resolution dependence of backscattered power observed by VHF radars at vertical incidence, Radio Sci., 20, 1001–1005, 1985.Google Scholar
Green, J. L, K. S, Gage, and T.E., VanZandt, Atmospheric measurements by VHF pulsed Doppler radar, IEEE Trans. Geosci. Electron., GE-17, 262–280, 1979.Google Scholar
Green, J. L, W. L, Clark, J.M., Warnock, and K.J., Ruth, Absolute calibration of MST/ST radars, preprint volume, in 21st Conference on Radar Meteorology, The American Meteorol. Soc., Edmonton, Alberta, Ca., 1983.
Greenhow, J. S, Systematic wind measurements at altitudes of 80–100 km using radio echoes from meteor trails, Philosophical Magazine, 45, 471–490, 1954.Google Scholar
Greenhow, J. S, and E. I, Neufeld, Diurnal and seasonal wind variations in the upper atmosphere, Philosophical Magazine, 46, 549–562, 1955.Google Scholar
Gregory, J. B, Atmospheric reflections from heights below the E region, Aust.J. Phys., 9, 324–342, 1956.Google Scholar
Gregory, J. B, Radio wave reflections from the mesosphere: 1. Heights of occurrence, J. Geophys. Res., 55, 429–445, 1961.Google Scholar
Gregory, J. B, The influence of atmospheric circulation on mesospheric electron densities in winter, J. Atmos. Sci., 22, 18–23, 1965.Google Scholar
Gregory, J. B, and A. H, Manson, Mesospheric electron number densities at 35 ◦S latitude, J. Geophys. Res, 72, 1073–1080, 1967.Google Scholar
Gregory, J. B, and R. A, Vincent, Structure of partially reflecting regions in the lower ionosphere, J. Geophys. Res, 75, 6387–6389, 1970.Google Scholar
Groves, G. V, Wind models from 60–130 km altitude for different months and latitudes, J. Br. Interplan. Soc., 22, 285–307, 1969.Google Scholar
Guest, F., M., Reeder, C., Marks, and D., Karoly, Inertia-gravity waves observed in the lower stratosphere over Macquarie Island, J. Atmos. Sci., 57, 737–752, 2000.Google Scholar
Gurvich, A. S, A model of three-dimensional spectrum of locally axisymmetric temperature inhomogeneities in a stably stratified atmosphere, Izv. Atmos. Ocean Phys., 30, 149, 1994.Google Scholar
Gurvich, A. S, A heuristic model of threedimensional spectra of temperature inhomogeneities in the stably stratified atmosphere, Ann. Geophys, 15, 856–869, 1997.Google Scholar
Gurvich, A. S, and A. I, Kon, Aspect sensitivity of radar returns from anisotropic turbulent irregularities, J. Electromagn. Waves Appl., 7, 1343–1353, 1993.Google Scholar
Guzmán, A. E, J, May, H, Alvarez, and K, Maeda, All-sky Galactic radiation at 45 MHz and spectral index between 45 and 408 MHz, Astronomy and Astrophysics, 525, A138, 2011.Google Scholar
Hafgors, T., Incoherent scatter radar observations of the ionosphere, in Handbook for MAP, International School on Atmospheric Radar, edited by S., Fukao, vol. 30, pp. 333–364, SCOSTEP Secretariat, Dept. of Electr. Computer Eng., Univ. of Illinois, Urbana, IL 61801, USA, 1989a.
Hagfors, T., The scattering of E.M. waves from density fluctuations in a plasma, in Proc. of the EISCAT Summer School, Tromso, Norway,June 5-13, 1975, edited by A., Brekke, pp. 15–28, Scandanavian Univ. Books, 1975.
Hall, C. M, T, Aso, M, Tsutsumi, J, Hoeffner, and F, Sigernes, Multi-instrument derivation of 90 km temperatures over Svalbard (78 ◦N 16 ◦ E), Radio Sci., 39, RS6001, doi:10.1029/2004RS003, 069, 2004.Google Scholar
Hall, T. J, J.Y.N., Cho, M.C., Kelley, andW.K., Hocking, A re-evaluation of the Stokes drift in the polar summer mesosphere, J. Geophys. Res., 97, 887–897, 1992.Google Scholar
Hamazu, K., H., Hashiguchi, T., Wakayama, et al., A 35-GHz scanning Doppler radar for fog observations, J. Atmos. Oceanic Tech., 20, 972–986, 2003.Google Scholar
Hamilton, K., High resolution global modeling of the atmospheric circulation, Adv. Atmos. Sci., 23, 842–856, 2006.Google Scholar
Hamsen, A. R, G. D, Nastrom, and J. A, Otkin, MST radar observations of gravity waves and turbulence near thunderstorms, J. Appl. Meteorol., 41(3), 298–305, 2002.Google Scholar
Harper, R. M, and R. F, Woodman, Preliminary multiheight radar observations of waves and winds in the mesosphere over Jicamarca, J. Atmos. Terr. Phys., 39, 959, 1977.CrossRefGoogle Scholar
Hauchecorne, A., M.-L., Chanin, and R., Wilson, Mesospheric temperature inversions and gravity wave breaking, Geophys. Res. Lett., 14, 933–936, 1987.Google Scholar
Havnes, O., F., Melandsø, C.L., Hoz, T., Aslaksen, and T., Hartquist, Charged dust in the Earth's mesopause; effects on radar backscatter, Phys. Scr., 45, 535–544, 1992.Google Scholar
Havnes, O., J., Trøim, T., Blix, et al., First detection of charged dust particles in the Earth's atmosphere, J. Geophys. Res., 101, 10 829–10 847, 1996.Google Scholar
Hawkes, R., I., Mann, and P., Brown, Modern Meteor Science: An Interdisciplinary View, Springer, Dordrecht, 2005.
Haynes, P. H, C. J, Marks, M.E., McIntyre, T.G., Shepherd, and K.P., Shine, On the “downward control” of extratropical diabatic circulations by eddy-induced mean zonal forces, J. Atmos. Sci., 48, 651–678, 1991.Google Scholar
Hecht, E., and A., Zajac, Optics, Addison- Wesley, Reading, MA, 1974.
H'elal, D., M., Crochet, H., Luce, and E., Spano, Radar imaging and high-resolution array processing applied to a classical VHF-ST profiler, J. Atmos. Solar-Terr. Phys., 63, 263–274, 2001.Google Scholar
Held, I., and A., Hou, Nonlinear axially symmetric circulations in a nearly inviscid atmosphere, J. Atmos. Sci., 37, 515–533, 1980.Google Scholar
Held, I. M, The general circulation of the atmosphere, paper presented at 2000 Woods Hole Oceanographic Institute Geophysical Fluid Dynamics Program (Available at http://gfd.whoi.edu/proceedings/2000/PDF vol2000.html), Woods Hole Oceanographic Institute, Woods Hole, Mass., USA, 2000.
Hertzog, A., C., Souprayen, and A., Hauchecorne, Observation and backward trajectory of an inertia-gravity wave in the lower stratosphere, Ann. Geophys., 19, 1141–1155, 2001.Google Scholar
Hertzog, A., G., Boccara, R.A., Vincent, F., Vial, and P., Cocquerez, Estimation of gravity wave momentum flux and phase speeds from quasi-Lagrangian stratospheric balloon flights. Part II: Results from the Vorcore campaign in Antarctica, J. Atmos. Sci., 65, 3056–3070, 2008.Google Scholar
Hildebrand, P. H, and R. S, Sekhon, Objective determination of the noise level in Doppler spectra, J. Appl. Meteorol., 13, 808–811, 1974.Google Scholar
Hill, R. J, Nonneutral and quasi-neutral diffusion of weakly ionized multiconstituent plasma, J. Geophys. Res., 83, 989–998, 1978.Google Scholar
Hill, R. J, and S. F, Clifford, Modified spectrum of atmospheric temperature fluctuations and its application to optical propagation, J. Opt. Soc. Am., 68, 892–899, 1978.Google Scholar
Hines, C. O, Internal atmospheric gravity waves of ionospheric heights, Canadian J. Phys., 38, 1441–1481, 1960.Google Scholar
Hines, C. O, Generation of turbulence by atmospheric gravity waves, J. Atmos. Sci., 45, 1269–1278, 1988.Google Scholar
Hines, C. O, The saturation of gravity waves in the middle atmosphere. Part I: Critique of linear instability theory, J. Atmos. Sci., 48, 1348–1359, 1991.Google Scholar
Hines, C. O, The saturation of gravity waves in the middle atmosphere. Part II: Development of Doppler-spread theory, J. Atmos. Sci., 48, 1360–1379, 1991.Google Scholar
Hines, C. O, The saturation of gravity waves in the middle atmosphere. Part III: Formation of the turbopause and the turbulence layers beneath it, J. Atmos. Sci., 48, 1380–1385, 1991.Google Scholar
Hines, C. O, The saturation of gravity waves in the middle atmosphere. Part IV: Cutoff of the incident wave spectrum, J. Atmos. Sci., 50, 3045–3060, 1993.Google Scholar
Hines, C. O, Modulated mountain waves, J. Atmos. Sci., 52, 602–606, 1995.Google Scholar
Hines, C. O, Comments on “Observations of low-frequency gravity waves in the lower stratosphere over Arecibo,” J. Atmos. Sci., 52, 607–610, 1995.Google Scholar
Hines, C. O, Reply, J. Atmos. Sci., 52, 613, 1995c.Google Scholar
Hines, C. O, Nonlinearity of gravity wave saturated spectra in the middle atmosphere, Geophys. Res. Lett., 23, 3309–3312, 1996.Google Scholar
Hines, C. O, Theory of the Eulerian tail in the spectra of atmospheric and oceanic internal gravity waves, J. Fluid Mech., 448, 289–313, 2001.Google Scholar
Hines, C. O, G. W, Adams, J.W., Brosnahan, et al., Multi-instrument observations of mesospheric motions over Arecibo: Comparisons and interpretations, J. Atmos. Terr. Phys., 55, 241, 1993.Google Scholar
Hirota, I., Climatology of gravity waves in the middle atmosphere, J. Atmos. Terr. Phys., 46, 767–773, 1984.Google Scholar
Hirota, I., Gravity waves, in Middle Atmosphere Handbook, vol. 16, pp. 144–148, Scostep Secretariat, University of Illinois, U.S. A., 1985.
Hitschfeld, W., and A.S., Dennis, Measurement and Calculation of Fluctuations in Radar Echoes from Snow, Sci. Rep. MW-23, McGill University, Montreal, Canada, 1956.
Hocking, A., and W.K., Hocking, Turbulence anisotropy determined by windprofiler radar and its correlation with rain events in Montreal, Canada, J. Atmos. Oceanic Technol., 24, 40–51, 2007.Google Scholar
Hocking, W. K, Angular and temporal characteristics of partial reflections from the D-region of the ionosphere, J. Geophys. Res., 84, 845–851, 1979.Google Scholar
Hocking, W. K, Investigations of the movement and structure of D-region ionospheric irregularities, PhD thesis, University of Adelaide, Adelaide, Australia, 1981.
Hocking, W. K, On the extraction of atmospheric turbulence parameters from radar backscatter Doppler spectra - I. Theory, J. Atmos. Terr. Phys., 45, 89–102, 1983a.Google Scholar
Hocking, W. K., Mesospheric turbulence intensities measured with a HF radar at 35 ◦S - II, J. Atmos. Terr. Phys., 45, 103–114, 1983.Google Scholar
Hocking, W. K, The spaced antenna drift method, in Handbook for MAP, vol. 9, pp. 171–186, Univ. of Illinois, Urbana, 1983c.
Hocking, W. K, Measurement of turbulent energy dissipation rates in the middle atmosphere by radar techniques: A review, Radio Sci., 20, 1403–1422, 1985.Google Scholar
Hocking, W. K., Observation and measurement of turbulence in the middle atmosphere with a VHF radar, J. Atmos. Terr. Phys, 48, 655–670, 1986.Google Scholar
Hocking, W. K, Radar studies of small scale structure in the upper middle atmosphere and lower ionosphere, Adv. Space Res., 7, 327–338, 1987.Google Scholar
Hocking, W. K, Reduction of the effects of non-stationarity in studies of amplitude statistics of radio wave backscatter, J. Atmos. Terr. Phys., 49, 1119–1131, 1987b.Google Scholar
Hocking, W. K., Two years of continuous measurements of turbulence parameters in the upper mesosphere and lower thermosphere made with a 2-MHz radar, J. Geophys. Res., 93, 2475–2491, 1988.Google Scholar
Hocking, W. K, Turbulence in the region 80–120 km, Adv. Space Res., 10, 153–161, 1990.Google Scholar
Hocking, W. K, The effects of middle atmosphere turbulence on coupling between atmospheric regions, J. Geomag. Geoelectr., 43, Suppl., 621–636, 1991.Google Scholar
Hocking, W. K, On the relationship between the strength of atmospheric radar backscatter and the intensity of atmospheric turbulence, Adv. Space Res., 12, 207–213, 1992.Google Scholar
Hocking, W. K, An assessment of the capabilities and limitations of radars in measurements of upper atmosphere turbulence, Adv. Space Res., 17, 37–47, 1996.Google Scholar
Hocking, W. K, Some new perspectives on viscosity and thermal conduction waves as a cause of “specular” reflectors in radar studies of the atmosphere, in STEP Handbook, Proceedings of the Seventh Workshop on Technical and Scientific Aspects of MST Radar, edited by B., Edwards, pp. 82–85, Hilton Head Island SC USA, 1996b.
Hocking, W. K, Dynamical coupling processes between the middle atmosphere and lower ionosphere, J. Atmos. Terr. Phys., 58, 735–752, 1996.Google Scholar
Hocking, W. K, System design, signal processing procedures and preliminary results for the Canadian (London, Ontario) VHF atmospheric radar, Radio Sci., 32, 687–706, 1997.Google Scholar
Hocking, W. K, Recent advances in radar instrumentation and techniques for studies of the mesosphere, stratosphere and troposphere, Radio Sci., 32, 2241–2270, 1997.Google Scholar
Hocking, W. K, Strengths and limitations for MST radar measurements of middle atmosphere winds, Ann. Geophys., 15, 1111–1122, 1997.Google Scholar
Hocking, W. K, The dynamical parameters of turbulence theory as they apply to middle atmosphere studies, Earth, Planets and Space, 51, 525–541, 1999.Google Scholar
Hocking, W. K, Temperatures using radarmeteor decay times, Geophys. Res. Lett., 26, 3297–3300, 1999.Google Scholar
Hocking, W. K, Real-time meteor entrance speed determinations made with interferometric meteor radars, Radio Sci., 35, 1205–1220, 2000.Google Scholar
Hocking, W. K, VHF tropospheric scatterer anisotropy at Resolute Bay and its implications for tropospheric radar-derived wind accuracies, Radio Sci., 36, 1777–1793, 2001a.Google Scholar
Hocking, W. K., Middle atmosphere dynamical studies at Resolute Bay over a full representative year: Mean winds, tides and special oscillations, Radio Sci., 36, 1795–1822, 2001.Google Scholar
Hocking, W. K, A hybrid Yagi/loop antenna system for VHF boundary layer studies, (invited), session 3Ac3 (Novel radar methods for studying the structure and dynamics of the atmosphere and ionosphere), in PIERS 2002 (Progress In Electromagnetics Research Symposium), Cambridge, Mass., USA, 2002.
Hocking, W. K, Evidence for viscosity, thermal conduction and diffusion waves in the Earth's atmosphere (invited), Review of Scientific Instruments, 74(1), 420–426, 2003a.Google Scholar
Hocking, W. K, A new approach to fast and accurate calculation of spectral beambroadening for turbulence studies, paper I.3.33, in 10th International Workshop on Technical and Scientific Aspects of MST Radar, Piura, Peru, 2003b.
Hocking, W. K, Radar meteor decay rate variability and atmospheric consequences, Ann. Geophys., 22, 3805–3814, 2004.Google Scholar
Hocking, W. K, Experimental radar studies of anisotropic diffusion of high altitude meteor trails, Earth, Moon, Planets, 95, 671–679, 2004b.Google Scholar
Hocking, W. K., A new approach to momentum flux determinations using SKiYMET meteor radars, Ann. Geophys., 23, 2433–2439, 2005.Google Scholar
Hocking, W. K, A review of mesospherestratosphere- troposphere (MST) radar developments and studies, circa 1997-2008, J. Atmos. Solar-Terr. Phys., 73, 848–882, 2011.Google Scholar
Hocking, W. K, The atmospheric wave graveyard, (workshop), in 14th International Workshop on Technical and Scientific Aspects of MST Radar plus first joint MST and Ionospheric workshop (MST14/iMST1), May 25–31, 2014, INPE (Brazilian National Institute for Space Research) Auditorium Fernando de Mendonca, Av. dos Astronautas, 1758 Jd da Granja - Sao Jose dos Campos, Brazil, 2014.
Hocking, W. K, and A. M, Hamza, A quantitative measure of the degree of anisotropy of turbulence in terms of atmospheric parameters, with particular relevance to radar studies, J. Atmos. Solar-Terr. Phys., 59, 1011–1020, 1997.Google Scholar
Hocking, W. K, and A, Hocking, Temperature tides determined with meteor radar, Ann. Geophys., 20, 1447–1467, 2002.Google Scholar
Hocking, W. K, and A, Hocking, Diagnostic capabilities of measurements of backscatter anisotropy, (invited), paper II. E. 2, in 10th International Workshop on Technical and Scientific Aspects of MST Radar, Piura, Peru, 2003.
Hocking, W. K, and A, Hocking, Procedure to extract boundary-layer wind measurements using relatively long pulses, in Handbook for STEP, Proceedings of the Twelfth International Workshop on Technical and Scientific Aspects of MST Radar, London, Ont., May 17–23, 2009, edited by N., Swarnalingam and W.K., Hocking, pp. 135–138, Canadian Association of Physicists, Canada, 2010.
Hocking, W. K, and K. L, Mu, Upper and middle tropospheric kinetic energy dissipation rates from measurements of C2 n – Review of theories, in-situ investigations, and experimental studies using the Buckland Park atmospheric radar in Australia, J. Atmos. Terr. Phys., 59, 1779–1803, 1997.Google Scholar
Hocking, W. K, and J, Röttger, Pulse-length dependence of radar signal strengths for Fresnel backscatter, Radio Sci., 18, 1312–1324, 1983.Google Scholar
Hocking, W. K, and J, Röttger, Studies of polar mesosphere summer echoes over EISCAT using calibrated signal strengths and statistical parameters, Radio Sci., 32, 1425–1444, 1997.Google Scholar
Hocking, W. K, and J, Röttger, The structure of turbulence in the middle and lower atmosphere seen by and deduced from MF, HF and VHF radar, with special emphasis on small-scale features and anisotropy, Ann. Geophys., 19, 933–944, 2001.Google Scholar
Hocking, W. K, and T, Thayaparan, Simultaneous and co-located observation of winds and tides by MF and meteor radars over London, Canada, (43 ◦N, 81 ◦W) during 1994–1996, Radio Sci., 32, 833–865, 1997.Google Scholar
Hocking, W. K, and R. A, Vincent, Comparative observations of D-region HF partial reflections at 2 and 6 MHz, J. Geophys. Res., 87, 7615–7624, 1982.Google Scholar
Hocking, W. K, and R. A, Vincent, A comparison between HF partial reflection profiles from the D-region and simultaneous Langmuir probe electron density measurements, J. Atmos. Terr. Phys., 44, 843–854, 1982.Google Scholar
Hocking, W. K, and R. L, Walterscheid, The role of Stokes' diffusion in middle atmospheric transport, in Coupling Processes in the Lower and Middle Atmosphere, edited by E.V., Thrane, T.A., Blix, and D.C., Fritts, vol. 387 of C: Mathematical and Physical Sciences, pp. 305–328, NATO (North Atlantic Treaty Organization), Kluwer Academic Publishers, Dordrecht, Boston and London, 1993.
Hocking, W. K, G, Schmidt, and P, Czechowsky, Absolute Calibration of the SOUSY VHF Stationary radar, Max-Planck- Institut für Aeronomie report MPAE-W-00- 83-14, Katlenburg-Lindau, FRG, 1983.
Hocking, W. K., R., Rüster, and P., Czechowsky, Observation and Measurement of Turbulence and Stability in the Middle Atmosphere with a VHF Radar, University of Adelaide internal report ADP-335, University of Adelaide, Adelaide, SA, Australia, 1984.
Hocking, W. K., R., Rüster, and P., Czechowsky, Absolute reflectivities and aspect sensitivities of VHF radio wave scatterers measured with the SOUSY radar, J. Atmos. Terr. Phys., 48, 131–144, 1986.Google Scholar
Hocking, W. K, P. T, May, and J, Röttger, Interpretation, reliability and accuracies of parameters deduced by the spaced antenna method in middle atmosphere applications, Pure and Applied Geophys., 130, 571–604, 1989.Google Scholar
Hocking, W. K, S, Fukao, T, Tsuda, et al., Aspect sensitivity of stratospheric VHF radiowave scatterers, particularly above 15 km altitude, Radio Sci., 25, 613–627, 1990.Google Scholar
Hocking, W. K, S, Fukao, M. K, Yamamoto, T, Tsuda, and S, Kato, Viscosity waves and thermal-conduction waves as a cause of “specular” reflectors in radar studies of the atmosphere, Radio Sci., 26, 1281–1303, 1991.Google Scholar
Hocking, W. K, T, Thayaparan, and J, Jones, Meteor decay times and their use in determining a diagnostic mesospheric temperature–pressure parameter: Methodology and one year of data, Geophys. Res. Lett., 24, 2977–2980, 1997.Google Scholar
Hocking, W. K, B, Fuller, and B, Vandepeer, Real-time determination of meteor-related parameters utilizing modern digital technology, J. Atmos. Solar-Terr. Phys., 63, 155–169, 2001.Google Scholar
Hocking, W. K, M. C, Kelley, R, Rogers, et al., Resolute Bay VHF radar: A multipurpose tool for studies of tropospheric motions, middle atmosphere dynamics, meteor physics and ionospheric physics, Radio Sci., 36, 1839–1857, 2001.Google Scholar
Hocking, W. K, T, Thayaparan, and S. J, Franke, Method for statistical comparison of geophysical data by multiple instruments which have differing accuracies, Adv. Space Res., 27, 1089–1098, 2001.Google Scholar
Hocking, W. K, J, Singer, W, Bremer, et al., Meteor radar temperatures at multiple sites derived with SKiYMET radars and compared to OH, rocket and lidar measurements, J. Atmos. Solar-Terr. Phys., 66, 585–593, 2004.Google Scholar
Hocking, W. K, P. S, Argall, R.P., Lowe, R.J., Sica, and H., Ellinor, Height dependent meteor temperatures and comparisons with lidar and OH measurements, Canadian J. Phys., 85, 173–187 doi:10.1139/P07–038, 2007b.Google Scholar
Hocking, W. K, A, Hocking, D. G, Hocking, and M, Garbanzo-Salas, Windprofiler optimization using digital deconvolution procedures, J. Atmos. Solar-Terr. Phys., 118, 45–54, doi:10.1016/j.jastp.2013.08 .025, 2014.CrossRefGoogle Scholar
Hocking, W. K., et al., Applications of a worldwide network of mesospheric radars, with special emphasis on the Columbia Space Shuttle disaster, in Handbook for STEP, Proceedings of the Tenth International Workshop on Technical and Scientific Aspects of MST Radar, edited by J.L., Chau, J., Lau, and J., Röttger, pp. 460–460, Piura, Peru, 2003.
Hocking, W. K, et al., The AXONMET – A pole to pole chain of atmospheric meteor radars, in Proc. of the Twelfth International Workshop on Technical and Scientific Aspects of MST Radar, London, Ont., Canada, May 17–23, 2009, edited by N., Swarnalingam and W.K., Hocking, pp. 243–246, The Canadian Association of Physics, ISBN 978-0-9867285-0-1, 2010.
Hocking, W. K, T, Carey-Smith, D, Tarasick, et al., Detection of stratospheric ozone intrusions by windprofiler radars, Nature, 450, 281–284, 2007.Google Scholar
Hodges, R. R, Generation of turbulence in the upper atmosphere by internal gravity waves, J. Geophys. Res., 72, 3455–3458, 1967.Google Scholar
Hoenders, B. J, The painful derivation of the refractive index from microscopical considerations, in Proceedings of Light- Activated Tissue Regeneration and Therapy Conference, Volume 12 of Lecture Notes in Electrical Engineering, pp. 13–26, Springer, Boston MA, USA, 2008.
Hoffmann, P., W., Singer, D., Kueur, and K., Schulz-Schoellhammer, Observations of 3D winds and waves in the tropopause region above Northern Norway with the ALOMAR SOUSY radar during winter 1996/97, in Proc. European Workshop on Mesoscale Phenomena in Stratosphere, 1999.
Högbom, J. A, Aperture synthesis with a nonregular distribution of interferometer baselines, Astron. and Astrophys. Supplement, 15, 417, 1974.Google Scholar
Holdsworth, D. A, and I. M, Reid, Spaced antenna analysis of atmospheric radar backscatter model data, Radio Sci., 30, 1417–1433, 1995.Google Scholar
Holdsworth, D. A, and I. M, Reid, The Buckland Park MF radar: routine observation scheme and velocity comparisons, Ann. Geophys., 22, 3815–3828, 2004.Google Scholar
Holdsworth, D. A, and I. M, Reid, Comparisons of full correlation analysis (FCA) and imaging Doppler interferometry (IDI) winds using the Buckland Park MF radar, Ann. Geophys., 22, 3829–3842, 2004.Google Scholar
Holdsworth, D. A, R. A, Vincent, and I. M, Reid, Mesospheric turbulent velocity measurements using the Buckland Park MF radar, Ann. Geophys., 19, 1007–1017, 2001.Google Scholar
Holdsworth, D. A, R, Vuthaluru, I. M, Reid, and R. A, Vincent, Differential absorption measurements of mesospheric and lower thermospheric electron densities using the Buckland Park MF radar, J. Atmos. Solar-Terr. Phys., 64, 2029–2042, 2002.Google Scholar
Holloway, C. L, R. J, Doviak, S.A., Cohn, R.J., Lataitis, and J.S., V. Baelen, Cross correlations and cross spectra for spaced antenna wind profilers. 2. Algorithms to estimate wind and turbulence, Radio Sci., 32, 967–982, 1997.Google Scholar
Holt, O., Discussion of paper by W.A., Flood, “Revised theory for partial reflection Dregion measurements,” J. Geophys. Res., 74, 5179–5182, 1969.Google Scholar
Holton, J., J., Beres, and X., Zhou, On the vertical scale of gravity waves excited by localized thermal forcing, J. Atmos. Sci., 59, 2019–2023, 2002.Google Scholar
Holton, J. R, Waves in the equatorial stratosphere generated by tropospheric heat sources, J. Atmos. Sci., 29, 368–375, 1972.Google Scholar
Holton, J. R, The role of gravity wave induced drag and diffusion in the momentum budget of the mesosphere, J. Atmos. Sci., 39, 791–799, 1982.Google Scholar
Holton, J. R, The influence of gravity wave breaking on the general circulation of the middle atmosphere, J. Atmos. Sci., 40, 2497–2507, 1983.Google Scholar
Holton, J. R, P. H, Haynes, M.E., McIntyre, et al., Stratosphere–troposphere exchange, Rev. Geophys., 33(4), 403–439, 1995.Google Scholar
Hooke, W. H, and R. M, Jones, Dissipative waves excited by gravity-wave encounters with the stably stratified planetary boundary layer, J. Atmos. Sci., 43, 2048–2060, 1986.Google Scholar
Hooper, D. A, and E, Pavelin, Tropopause erosion by mountain wave breaking, in Proceedings of the Tenth International Workshop on Technical and Scientific Aspects of MST Radar, edited by J., Chau, J., Lau, and J., Röttger, Radio Observatorio de Jicamarca/Universidad de Piura, Peru, 2003.
Hooper, D. A, and L, Thomas, Aspect sensitivity of VHF scatterers in troposphere and stratosphere from comparison of powers in off-vertical beams, J. Atmos. Terr. Phys., 57, 655–663, 1995.Google Scholar
Hooper, D. A, H. J, Reid, and E, Pavelin, The signature of mid-latitude convection observed by MST radar, in Proceedings of the Tenth International Workshop on Technical and Scientific Aspects of MST Radar, edited by J., Chau, J., Lau, and J., Röttger, pp. 334–337, Universidad de Piura, Radio Observatorio de Jicamarca, Lima, Peru, 2003.
Hooper, D. A, J, Arvelius, and K, Stebel, Retrieval of atmospheric static stability from MST radar return signal power, Ann. Geophys., 22, 3781–3788, 2004.Google Scholar
Hooper, D. A, A. J, McDonald, E, Pavelin, T.K., Carey-Smith, and C.L., Pascoe, The signature of mid-latitude convection observed by VHF wind-profiling radar, Geophys. Res. Lett., 32, L04, 808, doi:10. 1029/2004GL020 401, 2005.Google Scholar
Hoppe, U.-P, and D. C, Fritts, On the downward bias in vertical velocity measurements by VHF radars, Geophys. Res. Lett., 22, 619–622, 1995.Google Scholar
Hoppe, U. P, and D. C, Fritts, High-resolution measurements of vertical velocity with the European incoherent scatter VHF radar: 1. Motion field characteristics and measurement biases, J. Geophys. Res., 100, 16 813–16 826, 1995b.Google Scholar
Hoppe, U. P, E. V, Thrane, T.A., Blix, et al., Studies of polar mesosphere summer echoes by VHF radar and rocket probes, Adv. Space Res., 14(9), 138–148, 1994.Google Scholar
Houghton, J. T, The Physics of Atmospheres, Cambridge University Press, Cambridge 1977.
Howard, L. N, Note on a paper of John W. Miles, J. Fluid Mechs., 10, 509–512, 1961.Google Scholar
Huaman, M. M, and B. B, Balsley, Longterm- mean aspect sensitivity of PMSE determined from Poker Flat MST radar data, Geophys. Res. Lett., 25, 947–950, 1998.Google Scholar
Huaman, M. M, M. C, Kelley, W.K., Hocking, and R. F., Woodman, Polar mesosphere summer echo studies at 51.5 MHz at Resolute Bay, Canada: Comparisons with Poker Flat Results, Radio Sci., 36, 1823–1837, 2001.Google Scholar
Huang, J., and J., MacDougall, Legendre coding for digital ionosondes, Radio Sci., 40, doi: 10.1029/2004RS003, 123, 2005.CrossRefGoogle Scholar
Hung, R. J, T, Phan, and R. E, Smith, Observation of gravity waves during the extreme tornado outbreak of 3 April 1974, J. Atmos. Terr. Phys., 40, 831, 1978.Google Scholar
Hunten, D. M, Energetics of thermospheric eddy transport, J. Geophys. Res., 79, 2533–2534, 1974.Google Scholar
Hysell, D. L, Radar imaging of equatorial F region irregularities with maximum entropy interferometry, Radio Sci., 31, 1567–1578, 1996.Google Scholar
Hysell, D. L, 30 MHz radar observations of artificial E region field-aligned plasma irregularities, Ann. Geophys., 26, 117–129, 2008.Google Scholar
Hysell, D. L, and J. L, Chau, Inferring E region electron density profiles at Jicamarca from Faraday rotation of coherent scatter, J. Geophy. Res., 106, 30 371–30, 380 2001.Google Scholar
Hysell, D. L, and J. L, Chau, Optimal aperture synthesis radar imaging, Radio Sci., 41, RS2003, doi:10.1029/2005RS003, 383, 2006.CrossRefGoogle Scholar
Imura, S., J., Furumoto, T., Tsuda, et al., Estimation of humidity profiles by combining co-located VHF and UHF wind-profiling radar data, J. Meteorol. Soc. Japan, 85, 301– 319, 2007.Google Scholar
Ishihara, M., Wind profiler network of Japan Meteorological Agency, in Upper-Air Technology and Techniques Workshop, Geneva, Switzerland, 2005.
Isler, J. R, M. J, Taylor, and D. C, Fritts, Observational evidence of wave ducting and evanescence in the mesosphere, J. Geophys. Res., 102, 26 301–26, 313 1997.Google Scholar
Jain, A. R, Y. J, Rao, A.K., Patra, et al., Observations of tropical convection events using Indian MST radar: First results, Q.J.R. Meteorol. Soc., 126, 3097–3115, 2000.Google Scholar
James, P. K, A review of radar observations of the troposphere in clear air conditions, Radio Sci., 15, 151–175, 1980.Google Scholar
Janches, D., M.C., Nolan, D.D., Meisel, et al., On the geocentric micrometeor velocity distribution, J. Geophys. Res, 108, doi 10.1029/2002JA009, 789, 2003.Google Scholar
Janches, D., D.C., Fritts, D.M., Riggin, M.P., Sulzer, and S., Gonzalez, Gravity waves and momentum fluxes in the mesosphere and lower thermosphere using 430 MHz dual-beam measurements at Arecibo: 1. Measurements, methods, and gravity waves, J. Geophys. Res., 111, D18,107 doi:10.1029 /2005JD006, 882, 2006.Google Scholar
Janches, D., J.L., Hormaechea, C., Brunini, W.K., Hocking, and D.C., Fritts, An initial meteoroid stream survey in the southern hemisphere using the Southern Argentina agile meteor radar (SAAMER), Icarus, 223, 677–683, doi:10.1016/j.icarus.2012.12.018, 2013.Google Scholar
Jarvis, M. J, M. A, Clilverd, M.C., Rose, and S., Rodwell, Polar mesosphere summer echoes (PMSE) at Halley (76 ◦S, 27 ◦W), Antarctica, Geophys. Res. Lett., 32, L06, 816, doi:10.1029/2004GL021,804., 2005.Google Scholar
Jasperson, W. H, Mesoscale time and space wind variability, J. Appl. Meteorol., 21, 831–839, 1982.Google Scholar
Johnson, F. S, Transport processes in the upper atmosphere, J. Atmos. Sci., 32, 1658–1662, 1975.Google Scholar
Johnson, F. S, and B, Gottlieb, Eddy mixing and irregularities of ionospheric levels, Planet. Space Sci., 18, 1707–1718, 1970.Google Scholar
Johnson, F. S, and E. M, Wilkins, Thermal upper limit on eddy diffusion in the mesosphere and lower thermosphere, J. Geophys. Res., 70, 1281–1284, 1965.Google Scholar
Johnson, J. B, Thermal agitation of electricity in conductors, Phys. Rev., 32, 97–109, doi:10.1103/PhysRev.32.97, 1928.Google Scholar
Johnston, P. E, L. M, Hartten, C.H., Love, D.A., Carter, and K.S., Gage, Range errors in wind profiling caused by strong reflectivity gradients, J. Atmos. Oceanic Technol., 19, 934–953, 2002.Google Scholar
Jones, G.O.L., F.T., Berkey, C.S., Fish, W.K., Hocking, and M.J., Taylor, Validation of imaging Doppler interferometer winds using meteor radar, Geophys. Res. Lett., 30, 1743–1746, 2003.Google Scholar
Jones, G.O.|L., M.A., Clilverd, P.J., Espy, et al., An alternative explanation of PMSElike scatter inMF radar data, Ann. Geophys., 22, 2715–2722, 2004.Google Scholar
Jones, J., and W., Jones, Meteor radiant activity mapping using single-station radar observations, Mon. No t.R. Astron. Soc., 367(3), 1050–1056, 2006.Google Scholar
Jones, J., A.R., Webster, and W.K., Hocking, An improved interferometer design for use with meteor radars, Radio Sci., 33, 55–65, 1998.Google Scholar
Jones, J., P., Brown, K.J., Ellis, et al., The Canadian meteor orbit radar: system overview and preliminary results, Planetary and Space Science, 53, 413–421, 2005.Google Scholar
Jones, L. M, and J.W., Peterson, Falling sphere measurements, 30 to 120 km, Meteorological monographs, 8, 176–189, 1968.Google Scholar
Jones, W. L, and D. D, Houghton, The coupling of momentum between internal gravity waves and mean flow: A numerical study, J. Atmos. Sci., 28, 604–608, 1971.Google Scholar
Justus, C. G, The eddy diffusivities, energy balance parameters, and heating rate of upper atmospheric turbulence, J. Geophys. Res., 72, 1035–1039, 1967.Google Scholar
Kagan, L. M, M. C, Kelley, F, Garcia, et al., The structure of electromagnetic waveinduced 557.7 nm emission associated with a sporadic-E event over Arecibo, Phys. Review Lett., 85, 218–221, 2000.Google Scholar
Kaimal, J. C, J. C, Wyngaard, D.A., Haugen, et al., Turbulence structure in the convective boundary layer, J. Atmos. Sci., 33, 2152–2168, 1976.Google Scholar
Kamen, E. W, and B. S, Heck, Fundamentals of Signals and Systems Using the Web and MATLAB, Prentice Hall, Upper Saddle River, New Jersey, 2000.
Kamio, K., K., Nishimura, and T., Sato, Adaptive sidelobe control for clutter rejection of atmospheric radars, Ann. Geophys., 22, 4005–4012, 2004.Google Scholar
Karashtin, A. N, Y. V, Shlyugaev, V.I., Abramov, et al., First HF radar measurements of summer mesopause echoes at SURA, Ann. Geophys., 15, 935–941, 1997.Google Scholar
Katz, I., and P.J., Harney, Early detection of weather radar during World War II, in Radar in Meteorology, edited by D. Atlas, pp. 16–21, American Met. Soc., 1990.Google Scholar
Kay, S., Modern Spectral Estimation: Theory and Application, Prentice-Hall, Englewood Cliffs, NJ, 1987.
Keeler, R. J, and R. E, Passarelli, Signal processing for atmospheric radars, in Radar in Meteorology, edited by D. Atlas, pp. 199–229, American Met. Soc., 1990.Google Scholar
Kelley, M. C, The Earth's Ionosphere: Plasma Physics and Electrodynamics, Academic Press, San Diego, 1989.
Kelley, M. C, and J. C, Ulwick, Large- and small-scale organization of electrons in the high-latitude mesosphere: Implications of the STATE experiment, J. Geophys. Res., 93, 7001–7008, 1988.Google Scholar
Kelley, M. C, D. T, Farley, and J, Röttger, The effect of cluster ions on anomalous VHF backscatter from the summer polar mesosphere, Geophys. Res. Lett., 14, 1031–1034, 1987.Google Scholar
Kelly, J., and C., Heinselman, Initial results from Poker Flat incoherent scatter radar (PFISR), J. Atmos. Solar-Terr. Phys., 71, 635 doi:10.1016/j.jastp.2009.01.009, 2009.Google Scholar
Kelso, T. S, http://celestrak.com/NORAD/ele ments/radar.txt, http://nssdc.gsfc.nasa.gov/, in NSSDC Two-line Elements of Radar Calibration Satellites, National Space Science Data Center, 2009.
Kent, G. S, and R.W. H., Wright, Movements of ionospheric irregularities and atmospheric winds, J. Atmos. Terr. Phys., 30, 657, 1968.Google Scholar
Kildal, P. S, Study of element patterns and excitations of the line feeds of the spherical reflector antenna in Arecibo, IEEE Trans. Antennas Propagat., 34, 197–207, 1986.Google Scholar
Kildal, P. S, L. A, Baker, and T, Hagfors, The Arecibo upgrading: electrical design and expected performance of the dual-reflector feed system, Proc. IEEE, 82, 714–724, 1994.Google Scholar
Kim, Y. J, S. D, Eckermann, and H. Y, Chun, An overview of the past, present and future of gravity-wave drag parameterization for numerical climate and weather prediction models, Atmos. Ocean, 41, 65–98, 2003.Google Scholar
King-Hele, D. G, The Earth's neutral upper atmosphere, Revs. Geophys. Space Phys., 16, 733–740, 1978.Google Scholar
Kirkpatrick, S., C.D., Gelatt, and M.P., Vecchi, Optimization by simulated annealing, Science, New Series, 220, 671–680, 1983.Google Scholar
Kirkwood, S., Polar mesosphere winter echoes – A review of recent results, Adv. Space. Res., 40, 751–757, 2007.Google Scholar
Kirkwood, S., P., Chilson, E., Belova, et al., Infrasound – the cause of strong polar mesosphere winter echoes?, Ann. Geophys, 24, 475–491, 2006.Google Scholar
Kirkwood, S., I., Wolf, P., Dalin, et al., Polar mesosphere summer echoes at Wasa, Antarctica (73 ◦S) – First observations and comparison with 68 ◦N, Geophys. Res. Lett., 34, L15, 803, doi:10.1029/2007GL030, 516, 2007.Google Scholar
Klaassen, G. P, A brief overview of gravity wave breaking theory, in Handbook for STEP, Proceedings of the Tenth International Workshop on Technical and Scientific Aspects of MST Radar, edited by J.L., Chau, J., Lau, and J., Röttger, pp. 189–193, Piura, Peru, 2003.
Klaassen, G. P, On the viability of Lagrangian theories of internal wave spectra: Implications for Doppler-spread theory and radar measurements, in Proceedings of the Twelfth International Workshop on Technical and Scientific Aspects of MST Radar, edited by N., Swarnalingam and W.K., Hocking, pp. 259–265, Publ. by Canadian Assoc. of Physicists, 2010.
Klaassen, G. P, and W. R, Peltier, The onset of turbulence in finite-amplitude Kelvin– Helmholtz billows, J. Fluid Mech., 155, 1–35, 1985.Google Scholar
Klaassen, G. P, and W. R, Peltier, Evolution of finite amplitude Kelvin–Helmholtz billows in two spatial dimensions, J. Atmos. Sci., 42, 1321–1339, 1985b.Google Scholar
Klaus, V., Temperature retrieval with VHF radar using combined techniques, Ann. Geophys., 26, 3805–3817, 2008.Google Scholar
Klostermeyer, J., On the role of parametric instability in radar observations of mesospheric gravity waves, in Middle Atmosphere Program Handbook, vol. 28, pp. 299–308, Scostep Secretariat, University of Illinois, USA, 1989.
Klostermeyer, J., Two-and three-dimensional parametric instabilities in finite-amplitude internal gravity waves, Geophys. Astrophys. Fluid Dyn., 61, 1–25, 1991.Google Scholar
Klostermeyer, J., and R., Rüster, Radar observation and model computation of a jet streamgenerated Kelvin–Helmholtz instability, J. Geophys. Res., 85, 2841–2846, 1980.Google Scholar
Klostermeyer, J., and R., Rüster, Further study of a jet stream-generated Kelvin–Helmholtz instability, J. Geophys. Res., 86, 6631–6637, 1981.Google Scholar
Kolmogoroff, A. N, The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers (Russian), Proc. the USSR Academy of Sciences, 30, 299–303, 1941.Google Scholar
Kolmogoroff, A. N, Dissipation of energy in locally isotropic turbulence (Russian), Proc. the USSR Academy of Sciences, 32, 16–18, 1941.Google Scholar
Kolmogoroff, A. N, The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers (English), Proceedings of the Royal Society of London, Series A: Mathematical and Physical Sciences, A434, 9–13, 1991a.Google Scholar
Kolmogoroff, A. N, Dissipation of energy in locally isotropic turbulence (English), Proceedings of the Royal Society of London, Series A: Mathematical and Physical Sciences, A434, 15–17, 1991b.Google Scholar
Kudeki, E., Radar interferometer observations of mesospheric echoing layers at Jicamarca, Geophys. Res., 93, 5413–5421, 1988.Google Scholar
Kudeki, E., and S.J., Franke, Statistics of momentum flux estimation, J. Atmos. Solar-Terr. Phys., 60, 1549–1553, 1998.Google Scholar
Kudeki, E., and R., Stitt, Frequency domain interferometry: A high resolution radar technique for studies of atmospheric turbulence, Geophys. Res. Lett., 14, 198–201, 1987.Google Scholar
Kudeki, E., and R., Stitt, Frequency domain interferometry studies of mesospheric layers at Jicamarca, Radio Sci., 25, 575–590, 1990.Google Scholar
Kudeki, E., and F., Surucu, Radar interferometric imaging of field-aligned plasma irregularities in the equatorial electrojet, Geophys. Res. Lett., 18, 41–44, 1991.Google Scholar
Kudeki, E., and R.F., Woodman, A poststatistics steering technique for MST radar applications, Radio Sci., 25, 591–594, 1990.Google Scholar
Kudeki, E., P.K., Rastogi, and F., Surucu, Systematic errors in radar wind estimation: Implication for comparative measurements, Radio Sci., 28, 169–179, 1993.Google Scholar
Kumar, K. K, Temperature profiles in the MLT region using radar-meteor trail decay times: Comparison with TIMED/SABER observations, Geophys. Res. Lett., 34, L16, 811 doi:10.1029/2007GL030, 704, 2007.Google Scholar
Kung, E. C, Large scale balance of kinetic energy in the atmosphere, Mon. Wea. Rev., 94, 627–640, 1966.Google Scholar
Kunkel, K. E, E. W, Eloranta, and J. A, Weinman, Remote determination of winds, turbulence, spectra and energy dissipation rates in the boundary layer from lidar measurements, J. Atmos. Sci., 37, 978–985, 1980.Google Scholar
Kuo, F. S, C. C, Chen, S.I., Liu, J., Röttger, and C.H., Liu, Systematic behaviour of signal statistics of MST radar echoes from clear air and their interpretation, Radio Sci., 22, 1043–1052, 1987.Google Scholar
La Hoz, C., Radar scattering from dusty plasmas, Phys. Scr., 45, 529–534, 1992.Google Scholar
La Hoz, C., J., Röttger, and S.J., Franke, Spatial interferometry measurements with the EISCAT VHF radar, in Handbook for MAP, vol. 28, pp. 185–1991, 1989.Google Scholar
La Hoz, C., O., Havnes, L.I., Næsheim, and D.L., Hysell, Observations and theories of polar mesospheric summer echoes at a Bragg wavelength of 16 cm, J. Geophys. Res., 111, doi:10.1029/2005JD006, 044, 2006.Google Scholar
La Londe, L., The design of linearly polarized slotted waveguide feeds for spherical reflectors, IEEE Trans. Antennas Propagat., 27, 289–293, 1979.Google Scholar
Labitt, M., Some Basic Relations Concerning the Radar Measurement of Air Turbulence, Mass. Inst. of Technol., Lincoln Lab.,Work. Pap. 46WP-5001, 1979.
Landecker, T. L, and R, Wielebinski, The galactic metre wave radiation: A twofrequency survey between declinations +25 deg and −25 deg and the preparation of a map of the whole sky, Aust.J. Phys., Suppl., 16, 1–30, 1970.Google Scholar
Lane, T. P, J. D, Doyle, R, Plougonven, M.A., Shapiro, and R.D., Sharman, Observations and numerical simulations of inertia-gravity waves and shearing instabilities in the vicinity of a jet stream, J. Atmos. Sci., 61, 2692–2706, 2004.Google Scholar
Larsen, M. F, Can a VHF Doppler radar provide synoptic wind data? A comparison of 30 days of radar and radiosonde data, Mon. Wea. Review, 111, 2047–2057, 1983.Google Scholar
Larsen, M. F, and J, Röttger, VHF and UHF Doppler radars as tools for synoptic research, Bull. Amer. Meteorol. Soc., 63, 996–1008, 1982.Google Scholar
Larsen, M. F, and J, Röttger, Comparison of tropopause height and frontal boundary locations based on radar and radiosonde data, Geophys. Res. Lett., 10, 325–328, 1983.Google Scholar
Larsen, M. F, and J, Röttger, Observations of frontal zone and tropopause structures with a VHF Doppler radar and radiosondes, Radio Sci., 20, 1223–1232, 1985.Google Scholar
Larsen, M. F, and J, Röttger, Observations of thunderstorm reflectivities and Doppler velocities measured at VHF and UHF, J. Atmos. Oceanic Technol., 4, 151–159, 1987.Google Scholar
Latteck, R., W., Singer, and W.K., Hocking, Measurement of turbulent kinetic energy dissipation rates in the mesosphere by a 3MHz Doppler radar, Adv. Space Research, 35, 1905–1910, 2005.Google Scholar
Latteck, R., W., Singer, S., Kirkwood, et al., Absolute calibration of VHF radars using a calibrated noise source and an ultrasonic delay line, in Proceedings of the Eleventh International Workshop on Technical and Scientific Aspects of MST Radar, edited by V.K., Anandan, pp. 301–305, Gadanki/Tirupati, India, 2007.Google Scholar
Latteck, R., W., Singer, R.J., Morris, et al., Similarities and differences in polar mesosphere summer echoes observed in the Arctic and Antarctica, Ann. Geophys., 26, 2795–2806, 2008.Google Scholar
Latteck, R., W., Singer, M., Rapp, et al., MAARSY: The new MST radar on Andoya – System description and first results, Radio Sci., 47, RS1006, doi:10.1029 /2011RS004, 775, 2012.Google Scholar
Law, D. C, Windprofilers: applications and characteristics, QST Journal, 76, 48–50, 1992.Google Scholar
Lee, Y., A.R., Paradis, and D., Klingle-Watson, Preliminary results of the 1983 coordinated aircraft-Doppler weather radar turbulence experiment, Vol 1., Tech. Rep., Lincoln Lab., MIT, Lexington, Mass., USA., 1988.
Lehmann, V., and G., Teschke, Wavelet based methods for improved wind profiler signal processing, Ann. Geophys., 19, 825–836, 2001.Google Scholar
Lehtinen, M. S, A, Huuskonen, and J, Pirttila, First experience of full-profile analysis with GUISDAP, Ann. Geophys., 14, 1487–1495, 1996.Google Scholar
Lesicar, D., and W.K., Hocking, Studies of seasonal behavior of the shape of mesospheric scatterers using a 1.98 MHz radar, J. Atmos. Terr. Phys., 54, 295–309, 1992.Google Scholar
Lesicar, D., W.K., Hocking, and R.A., Vincent, Comparative studies of scatterers observed by MF radars in the southern hemisphere mesosphere, J. Atmos. Terr. Phys., 56, 581–591, 1994.Google Scholar
Ley, B. E, and W. R, Peltier, Wave generation and frontal collapse, J. Atmos. Sci., 35, 3–17, 1978.Google Scholar
Lhermitte, R., Doppler sonar observation of tidal flow, J. Geophys. Res., 88, 725–742, 1983.Google Scholar
Lhermitte, R. M, and D, Atlas, Precipitation motion by pulse Doppler, in Proc. Ninth Weather Radar Conf., pp. 218–223, Amer. Meteorol. Soc., Boston, 1961.Google Scholar
Li, J., and P., Stoica, An adaptive filtering approach to spectral estimation and SAR imaging, IEEE. Trans. Signal Proc., 44(6), 1469–1484, doi:10.1109/78.506,612, 1996.CrossRefGoogle Scholar
Lilly, D. K, Stratified turbulence and the mesoscale variability of the atmosphere, J. Atmos. Sci., 40, 749–761, 1983.Google Scholar
Lilly, D. K, Two-dimensional turbulence generated by energy-sources at 2 scales, J. Atmos. Sci., 46, 2026–2030, 1989.Google Scholar
Lilly, D. K, D. E, Waco, and S. I, Adelfang, Stratospheric mixing estimated from highaltitude turbulence measurements, J. Appl. Meteorol., 13, 488–493, 1974.Google Scholar
Lindner, B. C, Radio studies of the lower ionosphere, Ph.D. thesis, University of Adelaide, Adelaide, Australia, 1972.
Lindner, B. C, The nature of D-region scattering of vertical incidence radio waves.I. Generalized statistical theory of diversity effects between spaced receiving antennas, Aust.J. Phys., 28, 163–170, 1975.Google Scholar
Lindner, B. C, The nature of D-region scattering of vertical incidence radio waves. II. Experimental observation using spaced antenna reception, Aust.J. Phys., 28, 171–184, 1975.Google Scholar
Lindzen, R. S, Turbulence and stress owing to gravity wave and tidal breakdown, J. Geophys. Res., 86, 9707–9714, 1981.Google Scholar
Lingard, D. M, A deconvolution technique for measuring D-region radio wave backscatter, J. Atmos. Terr. Phys., 58, 1201–1209, 1996.Google Scholar
Liu, C. H, and C. J, Pan, New observational techniques for studying the dynamics of the middle atmosphere using the Chung Li VHF radar, J. Atmos. Terr. Phys., 55, 1055–1066, 1993.Google Scholar
Liu, C. H, and K. C, Yeh, Scattering of VHF and UHF radar signals from the turbulent air, Radio Sci., 15, 277–282, 1980.Google Scholar
Liu, C. H, J, Röttger, C. J, Pan, and S. J, Franke, A model for spaced antenna observational mode for MST radars, Radio Sci., 25, 551–563, 1990.Google Scholar
Liziola, L. E, and B. B, Balsley, Horizontally propagating quasi-sinusoidal tropospheric waves observed in the lee of the Andes, Geophys. Res. Lett., 24, 1075–1078, 1997.Google Scholar
Lloyd, K. H, C. H, Low, B.J., McAvaney, D., Rees, and R.G., Roper, Thermospheric observations combining chemical seeding and ground based techniques – 1. Winds, turbulence and the parameters of the neutral atmosphere, Planet. Space Sci., 20, 761, 1972.Google Scholar
Lomb, N. R, Least-squares frequency analysis of unequally spaced data, Astrophys. Space Sci., 39, 447–462, 1976.Google Scholar
Lopez-Dekker, P., and S.J., Frasier, Radio acoustic sounding with a UHF volume imaging radar, J. Atmos. Oceanic Technol., 21, 766–776, 2004.Google Scholar
Lothon, M., B., Campistron, S., Jacoby-Koaly, et al., Comparison of radar reflectivity and vertical velocity observed with a scannable C-band radar and two UHF profilers in the lower troposphere, J. Atmos. Oceanic Technol., 19, 899–910, 2002.Google Scholar
Lothon, M., B., Campistron, S., Jacoby-Koaly, et al., Reply to “Comments on ‘Comparison of radar reflectivity and vertical velocity observed with a scannable C-band radar and two UHF profilers in the lower troposphere’,” J. Atmos. Oceanic Technol., 20, 1224–1229, 2003.Google Scholar
Lübken, F. J, Seasonal variation of turbulent energy dissipation rates at high latitudes as determined by in-situ measurements of neutral density fluctuations, J. Geophys. Res., 102, 13 441–13, 456 1997.Google Scholar
Lübken, F. J, Turbulent scattering for radars:A summary, J. Atmos. Solar-Terr. Phys., 107, 1–7, doi:10.1016/j.jastp.2013.10.015, 2014.Google Scholar
Lübken, F. J, U. Von, Zahn, E.V., Thrane, et al., In-situ measurements of turbulent energy dissipation rates and eddy diffusion coefficients during MAP/WINE, J. Atmos. Terr. Phys., 49, 763–776, 1987.Google Scholar
Lübken, F. J, J, Giebeler, T, Blix, et al., In-situ measurement of the Schmidt number within a PMSE layer, Geophys. Res. Lett., 21(15), 1651–1854, 1994.Google Scholar
Lübken, F. J, M, Rapp, T, Blix, and E, Thrane, Microphysical and turbulent measurements of the Schmidt number in the vicinity of polar mesosphere summer echoes, Geophys. Res. Lett., 25, 893–896, 1998.Google Scholar
Lübken, F. J, M, Zecha, J, Höffner, and J, Röttger, Temperatures, polar mesosphere summer echoes, and noctilucent clouds over Spitzbergen (78 ◦N), J. Geophys. Res., 109, 11 203–11, 217 2004.Google Scholar
Lübken, F. J, B, Strelnikov, M, Rapp, et al., The thermal and dynamical state of the atmosphere during polar mesosphere winter echoes, Atmos. Chem. Phys., 6, 13–24, 2006.Google Scholar
Lübken, F. J, W, Singer, R, Latteck, and I, Strelnikova, Radar measurements of turbulence, electron densities, and absolute reflectivities during polar mesosphere winter echoes (PMWE), Adv. Space Res., 40, 758–764, doi:10.1016/j.asr.2007.01.015, 2007.Google Scholar
Luce, H., M., Crochet, F., Dalaudier, and C., Sidi, Interpretation of VHF ST radar vertical echoes from in-situ temperature sheet observations, Radio Sci., 30, 1002–1025, 1995.Google Scholar
Luce, H., F., Dalaudier, M., Crochet, and C., Sidi, Direct comparison between in-situ and VHF oblique radar measurements of refractive index spectra: A new successful attempt, Radio Sci., 31, 1487–1500, 1996.Google Scholar
Luce, H., M., Crochet, C., Hanuise, M.K., Yamamoto, and S., Fukao, On the interpretation of the layered structures detected by MST radars in dual frequency domain interferometry (FDI) mode, Radio Sci., 34, 1077–1083, 1999.Google Scholar
Luce, H., J., Röttger, M.K., Yamamoto, and S., Fukao, Scattering layer thickness and position estimated by radar frequency domain interferometry 1. Effects of the limited horizontal extent and advection of the scattering layers, Radio Sci., 35, 119–131, 2000a.Google Scholar
Luce, H., J., Röttger, M., Crochet, M.K., Yamamoto, and S., Fukao, Scattering layer thickness and position estimated by radar frequency domain interferometry 2. Effects of tilts of the scattering layer or radar beam, Radio Sci., 35, 1109–1127, 2000b.Google Scholar
Luce, H., M.K., Yamamoto, S., Fukao, D., Helal, and M., Crochet, A frequency domain radar interferometric imaging (FII) technique based on high resolution methods, J. Atmos. Solar-Terr. Phys., 63, 221–234, 2001a.Google Scholar
Luce, H., M., Crochet, and F., Dalaudier, Temperature sheets and aspect sensitive radar echoes, Ann. Geophys., 19, 899–920, 2001b.Google Scholar
Luce, H., S., Fukao, F., Dalaudier, and M., Crochet, Strong mixing events observed near the tropopause with the MU radar and highresolution balloon techniques, J. Atmos. Sci., 59, 2885–2895, 2002.Google Scholar
Luenberger, D. G, Linear and Nonlinear Programming, Addison-Wesley, Reading, Mass., 1984.
Lumley, J. L, and H. A, Panofsky, The Structure of Atmospheric Turbulence, John Wiley and Sons, New York, London, and Sydney, 1964.
Maeda, K., H., Alvarez, J., Aparici, J., May, and P., Reich, A 45-MHz continuum survey of the northern hemisphere, Astron. Astrophys. Suppl. Ser., 140, 145–154, 1999.Google Scholar
Maekawa, Y., S., Fukao, and S., Kato, Vertical propagation characteristics of internal gravity waves around the mesopause observed by the Arecibo UHF radar, J. Atmos. Terr. Phys., 49, 73–80, 1987.Google Scholar
Maguire, W. B, and S. K, Avery, Retrieval of raindrop size distribution using two Doppler wind profilers: model sensitivity testing, J. Appl. Meteorol., 33, 1623–1635, 1995.Google Scholar
Mahan, A. I, A mathematical proof of Stokes' reversibility principle, J. Opt. Soc. Am., 33, 621–626, 1943.Google Scholar
Mailloux, R. J, Phased Array Antenna Handbook, 2nd ed., Artec House, Boston, 2005.
Manchester, R. N, Correction to paper by H.K., Sen and A.A., WyllerOn the generalization of the Appleton–Hartree magnetionic formulas”, J. Geophys. Res., 70, 4995, 1965.CrossRefGoogle Scholar
Manning, L. A, The theory of the radio detection of meteors, J. Applied Phys., 19, 689–699, 1948.Google Scholar
Manning, L. A, O. G, Villard, and A. M, Peterson, Meteoric echo study of upper atmosphere winds, Proc. Inst. Radio Engrs, 38, 877–883, 1950.Google Scholar
Manson, A., and C.E., Meek, Partial-reflection D-region electron densities, in Handbook for MAP, Ground based techniques, edited by R.A., Vincent, vol. 13, pp. 113–123, SCOSTEP Secretariat, Dept. of Electr. Computer Eng., Univ. of Illinois, Urbana, IL 61801, USA, 1984.
Manson, A. H, and C. E, Meek, Gravity wave propagation characteristics (60–120 km) as determined by the Saskatoon MF radar (Gravnet) system: 1983–85 at 52 ◦N, 107 ◦W, J. Atmos Sci., 45, 932–946, 1988.Google Scholar
Manson, A. H, M.W.J., Merry, and R.A., Vincent, Relationship between the partial reflection of radio waves from the lower ionosphere and irregularities as measured by rocket probes, Radio Sci., 4, 955–958, 1969.Google Scholar
Manson, A. H, et al., Gravity wave spectra, directions and wave interactions: Global MLT-MFR network, Earth Planets Space, 51, 543–562, 1999.Google Scholar
Manson, A. H, et al., Gravity wave activity and dynamical effects in the middle atmosphere (60–90 km): observations from an MF/MLT radar network, and results from the Canadian middle atmosphere model (CMAM), J. Atmos. Solar-Terr. Phys., 64, 65–90, 2002.Google Scholar
Marks, C. J, and S. D, Eckermann, A threedimensional nonhydrostatic ray-tracing model for gravity waves: Formulation and preliminary results for the middle atmosphere, J. Atmos. Sci., 52, 1959–1984, 1995.Google Scholar
Marple, S. L, Digital Spectral Analysis with Applications, Prentice-Hall, Englewood Cliffs, NJ, 1987.
Marshall, J. M, A. M, Peterson, and A. A, Barnes, Combined radar acoustic sounding system, Applied Optics, 11, 102–112, 1972.Google Scholar
Mathews, J. D, The effect of negative ions on collision dominated Thomson scattering, J. Geophys. Res., 81, 505–512, doi: 10.1029 /JA083iA02p00, 505, 1978.Google Scholar
Mathews, J. D, Incoherent scatter radar studies of the mesosphere, in Handbook for MAP, Ground based techniques, edited by R.A., Vincent, vol. 13, pp. 135–154, SCOSTEP Secretariat, Dept. of Electr. Computer Eng., Univ. of Illinois, Urbana, IL 61801, USA, 1984a.
Mathews, J. D, The incoherent scatter radar as a tool for studying the ionospheric D-region, J. Atmos. Terr. Phys., 46, 975–986, 1984.Google Scholar
Mathews, J. D, and B. S, Tanenbaum, A plasma wave and electron-plasma diffusion interpretation of Thomson scattering from a plasma containing negative ions, Planet. Space Sci., 29, 335–340, doi: 10.1016/0032 –0633(81)90,021–0, 1978.Google Scholar
Mathews, J. D, J. H, Shapiro, and B. S, Tanenbaum, Evidence for distributed scattering in D-region partial-reflection processes, J. Geophys. Res., 78, 8266, 1973.Google Scholar
Mathews, J. D, J. K, Breakall, and M. P, Sulzer, The moon as a calibration target of convenience for VHF-UHF radar systems, Radio Sci., 23, 1–12, 1988.Google Scholar
Matsuno, T., Lagrangian motion of air parcels in the stratosphere in the presence of planetary waves, Pure Appl. Geophys., 118, 189–216, 1980.Google Scholar
Matsuno, T., A quasi one-dimensional model of the middle atmosphere circulation interacting with internal gravity waves, J. Meteorol. Soc. Japan, 60, 215–226, 1981.Google Scholar
Matuura, N., Y., Masuda, H., Inuki, et al., Radio acoustic measurement of temperature profile in the troposphere and stratosphere, Nature, 323, 426–428, 1986.Google Scholar
May, P. T, Comparison of wind-profiler and radiosonde measurements in the tropics, J. Atmos. Oceanic Technol., 10, 122–128, 1993.Google Scholar
May, P. T, and R. G, Strauch, An examination of wind profiler signal processing algorithms, J. Atmos. Oceanic Technol., 6, 731–735, 1989.