Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-13T21:38:59.974Z Has data issue: false hasContentIssue false

2 - The history of radar in atmospheric investigations

Published online by Cambridge University Press:  25 November 2016

Wayne K. Hocking
Affiliation:
University of Western Ontario
Jürgen Röttger
Affiliation:
Max Planck Institut für Aeronomie, Germany
Robert D. Palmer
Affiliation:
University of Oklahoma
Toru Sato
Affiliation:
Kyoto University, Japan
Phillip B. Chilson
Affiliation:
University of Oklahoma
Get access

Summary

Introduction

The groundwork describing the atmospheric environment and the types of flows that radar can study in the Earth's atmosphere has been laid in the previous chapter. We now turn to a brief history of how radars came to be involved with studies of this type.

While most of this book is about MST radar, it is important that MST radar be seen in a broader context. We therefore begin this section on the history of the development of MST radar by looking not at MST radar itself, but rather at the development of meteorological radar. As indicated earlier, the period following World War II saw various developments of radar. Two primary streams were (i) ionospheric studies for world-wide communication, and (ii) studies of contaminants in radar detection for military and civil applications. The first stream of development led to extensive studies of the upper atmosphere and ionosphere, and the second led to more intensive investigations of the troposphere. Only with the development of MST radar did the two streams once again really merge.

Initially, there were two main aspects to radar detection – determination of range and, if possible, direction. Directional determination was achieved by using large antennas which concentrated the radar directionally, and range was generally found using timeof- flight delays.

The atmospheric radar principle for range-detection is basically fairly straightforward. A short pulse of an electromagnetic wave of typically several microseconds duration is transmitted from the radar antenna, whereupon it eventually may strike a target. It is then scattered back from the target to the radar antenna. The receive signal is called an echo, by analogy with the sound heard when your voice echoes from a distant object. Multiple radar echoes can be detected if there are multiple targets.

Echo samples are examined at consecutive time steps. Using early radars, this was done visually, whereas with more recent ones, digital sampling is used. Since the radar signal propagates with the speed of light c, the time t elapsed from the transmission of the pulse to the reception corresponds to a given range r = ct/2. We find, as an example, that echoes from backscattering targets at a range of, say 15 km, are received 100 microseconds after the pulse was transmitted. Echo samples are taken at a series of successive delays, called range gates.

Type
Chapter
Information
Atmospheric Radar
Application and Science of MST Radars in the Earth's Mesosphere, Stratosphere, Troposphere, and Weakly Ionized Regions
, pp. 47 - 119
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×