Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-21T04:32:22.909Z Has data issue: false hasContentIssue false

3 - Living Together in Novel Habitats: A Review of Land-Use Change Impacts on Mutualistic Ant-Plant Symbioses in Tropical Forests

from Part I - Landscape Mosaics, Habitat Fragmentation, and Edge Effects

Published online by Cambridge University Press:  01 September 2017

Paulo S. Oliveira
Affiliation:
Universidade Estadual de Campinas, Brazil
Suzanne Koptur
Affiliation:
Florida International University
Get access
Type
Chapter
Information
Ant-Plant Interactions
Impacts of Humans on Terrestrial Ecosystems
, pp. 52 - 72
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blüthgen, N., Menzel, F., Hovestadt, T., Fiala, B. and Bluthgen, N. (2007). Specialization, constraints, and conflicting interests in mutualistic networks. Current Biology, 17, 341346.Google Scholar
Blüthgen, N., Verhaagh, M., Goitía, W. and Blüthgen, N. (2000). Ant nests in tank bromeliads – an example of non-specific interaction. Insect. Soc., 47, 313316.Google Scholar
Bruna, E. M., Izzo, T. J., Inouye, B. D., Uriarte, M. and Vasconcelos, H. L. (2011). Asymmetric dispersal and colonization success of Amazonian plant-ants queens. PLoS ONE, 6, e22937.CrossRefGoogle ScholarPubMed
Bruna, E. M., Vasconcelos, H. L. and Heredia, S. (2005). The effect of habitat fragmentation on communities of mutualists: Amazonian ants and their host plants. Biological Conservation, 124, 209216.CrossRefGoogle Scholar
Chazdon, R. L. (2014). Second Growth: The Promise of Tropical Forest Regeneration in an Age of Deforestation. Chicago: University of Chicago Press.Google Scholar
DaRocha, W. D., Neves, F. S., Dáttilo, W. and Delabie, J. H. C. (2016). Epiphytic bromeliads as key components for maintenance of ant diversity and ant–bromeliad interactions in agroforestry system canopies. Forest Ecology and Management, 372, 128136.Google Scholar
Dáttilo, W., Guimarães, P. R. and Izzo, T. J. (2013). Spatial structure of ant-plant mutualistic networks. Oikos, 122, 16431648.Google Scholar
Dejean, A., Durou, S., Olmsted, I., Snelling, R. R. and Orivel, J. (2003). Nest site selection by ants in a flooded Mexican mangrove, with special reference to the epiphytic orchid Myrmecophila christinae. Journal of Tropical Ecology, 19, 325331.CrossRefGoogle Scholar
Dejean, A., Olmsted, I. and Snelling, R. R. (1995). Tree-epiphyte-ant relationships in the low inundated forest of Sian Ka’an biosphere reserve, Quintana Roo, Mexico. Biotropica, 27, 5770.Google Scholar
Donald, J., Maxfield, P., Murray, D. and Ellwood, M. D. F. (2017) How tropical epiphytes at the Eden Project contribute to rainforest canopy science. Sibbaldia: The Journal of Botanic Garden Horticulture, 14, 5568.Google Scholar
Dunne, J. A. and Williams, R. J. (2009). Cascading extinctions and community collapse in model food webs. Philosophical Transactions of the Royal Society B-Biological Sciences, 364, 17111723.Google Scholar
Dutra, D. and Wetterer, J. K. (2008). Ants in myrmecophytic orchids of Trinidad (Hymenoptera: Formicidae). Sociobiology, 51, 249254.Google Scholar
Edwards, D. P., Hassall, M., Sutherland, W. J. and Yu, D. W. (2006). Selection for protection in an ant-plant mutualism: host sanctions, host modularity, and the principal-agent game. Proceedings of the Royal Society B: Biological Sciences, 273, 595602.Google Scholar
Edwards, D. P., Tobias, J. A., Sheil, D., Meijaard, E. and Laurance, W. F. (2014). Maintaining ecosystem function and services in logged tropical forests. Trends in Ecology & Evolution, 29, 511520.Google Scholar
Ellwood, M. D. F., Blüthgen, N., Fayle, T. M., Foster, W. A. and Menzel, F. (2016). Analysis of pairwise interactions reveals unexpected patterns in tropical ant communities Acta Oecologica, 75, 2434.CrossRefGoogle Scholar
Ellwood, M. D. F. and Foster, W. A. (2004). Doubling the estimate of invertebrate biomass in a rainforest canopy? Nature, 429, 549551.CrossRefGoogle Scholar
Ellwood, M. D. F., Jones, D. T. and Foster, W. A. (2002). Canopy ferns in lowland dipterocarp forest support a prolific abundance of ants, termites and other invertebrates. Biotropica, 34, 575583.Google Scholar
Ellwood, M. D. F., Manica, A. and Foster, W. A. (2009). Stochastic and deterministic processes jointly structure tropical arthropod communities. Ecology Letters, 12, 277284.CrossRefGoogle Scholar
Emer, C., Venticinque, E. and Fonseca, C. R. (2013). Effects of dam-induced landscape fragmentation on Amazonian ant-plant mutualistic networks. Conservation Biology, 27, 763773.CrossRefGoogle ScholarPubMed
Ewers, R. M. and Didham, R. K. (2008). Pervasive impact of large-scale edge effects on a beetle community. Proceedings of the National Academy of Sciences, 105, 54265429.Google Scholar
Fayle, T. M., Chung, A. Y., Dumbrell, A. J., Eggleton, P. and Foster, W. A. (2009). The effect of rain forest canopy architecture on the distribution of epiphytic ferns (Asplenium spp.) in Sabah, Malaysia. Biotropica, 41, 676681.Google Scholar
Fayle, T. M., Dumbrell, A. J., Turner, E. C. and Foster, W. A. (2011). Distributional patterns of epiphytic ferns are explained by the presence of cryptic species. Biotropica, 43, 67.Google Scholar
Fayle, T. M., Edwards, D. P., Foster, W. A., Yusah, K. M. and Turner, E. C. (2015a). An ant-plant by-product mutualism is robust to selective logging of rain forest and conversion to oil palm plantation. Oecologia, 178, 441450.Google Scholar
Fayle, T. M., Edwards, D. P., Turner, E. C. et al. (2012). Public goods, public services, and by-product mutualism in an ant-fern symbiosis. Oikos, 121, 12791286.Google Scholar
Fayle, T. M., Eggleton, P., Manica, A., Yusah, K. M. and Foster, W. A. (2015b). Experimentally testing and assessing the predictive power of species assembly rules for tropical canopy ants. Ecology Letters, 18, 254262.Google Scholar
Fayle, T. M., Ellwood, M. D. F., Turner, E. C. et al. (2008). Bird’s nest ferns: islands of biodiversity in the rainforest canopy. Antenna, 32(1), 3437.Google Scholar
Fayle, T. M., Turner, E. C. and Foster, W. A. (2013). Ant mosaics occur in SE Asian oil palm plantation but not rain forest and are influenced by the presence of nest-sites and non-native species. Ecography, 36, 10511057.Google Scholar
Fayle, T. M., Turner, E. C., Snaddon, J. L. et al. (2010). Oil palm expansion into rain forest greatly reduces ant biodiversity in canopy, epiphytes and leaf-litter. Basic and Applied Ecology, 11, 337345.Google Scholar
Feldhaar, H., Gadau, J. and Fiala, B. (2010). Speciation in obligately plant-associated crematogaster ants: host distribution rather than adaption towards specific hosts drives the process. In: Glaubrecht, M (ed.) Evolution in Action. Berlin Heidelberg: Springer, pp. 193213.Google Scholar
Fernandes, D. N. and Sanford, R. L. (1995). Effects of recent land-use practices on soil nutrients and succession under tropical wet forest in Costa Rica. Conservation Biology, 9, 915922.Google Scholar
Fisher, B. L. and Zimmerman, J. K. (1988). Ant/orchid associations in the Barro Colorado National Monument, Panama. Lindleyana, 3, 1216.Google Scholar
Floater, G. J. (1995). Effect of epiphytes on the abundance and species richness of litter-dwelling insects in a Seychelles cloud forest. Tropical Ecology, 36, 203212.Google Scholar
Fonseca, C. R. (1999). Amazonian ant-plant interactions and the nesting space limitation hypothesis. Journal of Tropical Ecology, 15, 807825.Google Scholar
Fortuna, M. A. and Bascompte, J. (2006). Habitat loss and the structure of plant–animal mutualistic networks. Ecology Letters, 9, 281286.Google Scholar
Foster, W. A., Snaddon, J. L., Turner, E. C. et al. (2011). Establishing the evidence base for maintaining biodiversity and ecosystem function in the oil palm landscapes of South East Asia. Philosophical Transactions of the Royal Society B: Biological Sciences, 366, 32773291.Google Scholar
Frederickson, M. E., Greene, M. J. and Gordon, D. M. (2005). ‘Devil’s gardens’ bedevilled by ants. Nature, 437, 495496.Google Scholar
Freiberg, M. and Turton, S. M. (2007). Importance of drought on the distribution of the birds nest fern, Asplenium nidus, in the canopy of a lowland tropical rainforest in north-eastern Australia. Austral Ecology, 32, 7076.CrossRefGoogle Scholar
Gay, H. and Hensen, R. (1992). Ant specificity and behaviour in mutualisms with epiphytes: the case of Lecanopteris (Polypodiaceae). Biological Journal of the Linnean Society, 47, 261284.CrossRefGoogle Scholar
Gibernau, M., Orivel, J., Delabie, J. H. C., Barabe, D. and Dejean, A. (2007). An asymmetrical relationship between an arboreal ponerine ant and a trash-basket epiphyte (Araceae). Biological Journal of the Linnean Society, 91, 341346.Google Scholar
Gibson, L., Lee, T. M., Koh, Lian Pin et al. (2011). Primary forests are irreplaceable for sustaining tropical biodiversity. Nature, 478, 378381.CrossRefGoogle ScholarPubMed
Haddad, N. M., Brudvig, L. A., Clobert, J. et al. (2015). Habitat fragmentation and its lasting impact on Earth’s ecosystems. Science Advances, 1, e1500052.Google Scholar
Hardwick, S. R., Toumi, R., Pfeifer, M. et al. (2015). The relationship between leaf area index and microclimate in tropical forest and oil palm plantation: Forest disturbance drives changes in microclimate. Agricultural and Forest Meteorology, 201, 187195.Google Scholar
Hodgkison, R., Balding, S. T., Akbar, Z. and Kunz, T. H. (2003). Roosting ecology and social organization of the spotted-winged fruit bat, Balionycteris maculata (Chiroptera: Pteropodidae), in a Malaysian lowland dipterocarp forest. Journal of Tropical Ecology, 19, 667676.CrossRefGoogle Scholar
Holttum, R. E. (1976). Asplenium Linn., sect. Thamnopteris Presl. Gardens’ Bulletin, Singapore, 27, 143154.Google Scholar
Huxley, C. R. (1978). The ant-plants Myrmecodia and Hydnophytum (Rubiaceae), and the relationships between their morphology, ant occupants, physiology and ecology. New Phytologist, 80, 213268.Google Scholar
Kaiser-Bunbury, C. N. and Blüthgen, N. (2015). Integrating network ecology with applied conservation: a synthesis and guide to implementation. AoB Plants, 7: plv076. doi:10.1093/aobpla/plv076Google Scholar
Karasawa, S. and Hijii, N. (2006a). Determinants of litter accumulation and the abundance of litter-associated microarthropods in bird’s nest ferns (Asplenium nidus complex) in the forest of Yambaru on Okinawa Island, southern Japan. Journal of Forest Research, 11, 313318.Google Scholar
Karasawa, S. and Hijii, N. (2006b). Does the existence of bird’s nest ferns enhance the diversity of oribatid (Acari: Oribatida) communities in a subtropical forest? Biodiversity and Conservation, 15, 45334553.CrossRefGoogle Scholar
Karasawa, S. and Hijii, N. (2006c). Effects of distribution and structural traits of bird’s nest ferns (Asplenium nidus) on oribatid (Acari: Oribatida) communities in a subtropical Japanese forest. Journal of Tropical Ecology, 22, 213222.Google Scholar
King, J. R. and Tschinkel, W. R. (2008). Experimental evidence that human impacts drive fire ant invasions and ecological change. Proceeding of the National Academy of Sciences, 105, 2033920343.Google Scholar
Klimes, P., Idigel, C., Rimandai, M. et al. (2012). Why are there more arboreal ant species in primary than secondary tropical forests? Journal of Animal Ecology, 81, 11031112.Google Scholar
Laughlin, D. C. and Messier, J. (2015). Fitness of multidimensional phenotypes in dynamic adaptive landscapes. Trends in Ecology & Evolution, 30, 487496.CrossRefGoogle ScholarPubMed
Laurance, W. F., Camargo, J. L. C., Luizão, R. C. C. et al. (2011). The fate of Amazonian forest fragments: a 32-year investigation. Biological Conservation, 144, 5667.Google Scholar
Lowe, S., Browne, M., Boudjelas, S. and De Poorter, M. (2000). 100 of the World’s Worst Invasive Alien Species: A Selection from the Global Invasive Species Database. The Invasive Species Specialist Group (ISSG), Auckland, New Zealand, 12 pp.Google Scholar
Mayer, V. E., Frederickson, M. E., McKey, D. and Blatrix, R. (2014). Current issues in the evolutionary ecology of ant-plant symbioses. New Phytologist, 202, 749764.Google Scholar
Mikissa, J. B., Jeffery, K., Fresneau, D. and Mercier, J. L. (2013). Impact of an invasive alien ant, Wasmannia auropunctata Roger, on a specialised plant–ant mutualism, Barteria fistulosa Mast. and Tetraponera aethiops F. Smith., in a Gabon forest. Ecological Entomology, 38, 580584.Google Scholar
Murase, K., Itioka, T., Nomura, M. and Yamane, S. (2003). Intraspecific variation in the status of ant symbiosis on a myrmecophyte, Macaranga bancana, between primary and secondary forests in Borneo. Population Ecology, 45, 221226.CrossRefGoogle Scholar
Murase, K., Yamane, S., Itino, T. and Itioka, T. (2010). Multiple factors maintaining high species-specificity in Macaranga-Crematogaster (Hymenoptera: Formicidae) myrmecophytism: higher mortality in mismatched ant-seedling pairs. Sociobiology, 55, 883898.Google Scholar
Ness, J. and Bronstein, J. (2004). The effects of invasive ants on prospective ant mutualists. Biological Invasions, 6, 445461.Google Scholar
Owusu-Sekyere, E., Cobbina, J. and Wakatsuki, T. (2006). Nutrient cycling in primary, secondary forests and cocoa plantation in the Ashanti Region, Ghana. West African Journal of Applied Ecology, 9, 1–9. http://dx.doi.org/10.4314/wajae.v9i1.45680Google Scholar
Padmawathe, R., Qureshi, Q. and Rawat, G. S. (2004). Effects of selective logging on vascular epiphyte diversity in a moist lowland forest of Eastern Himalaya, India. Biological Conservation, 119, 8192.Google Scholar
Palmer, T. M., Stanton, M. L., Young, T. P. et al. (2008). Breakdown of an ant-plant mutualism follows the loss of large herbivores from an African Savanna. Science, 319, 192195.Google Scholar
Passmore, H. A., Bruna, E. M., Heredia, S. M. and Vasconcelos, H. L. (2012). Resilient networks of ant-plant mutualists in Amazonian forest fragments. PLoS ONE, 7, e40803.Google Scholar
Patra, B., Bera, S. and Hickey, R. J. (2008). Soral crypsis: protective mimicry of a coccid on an Indian fern. Journal of Integrative Plant Biology, 50, 653658.Google Scholar
Picard, N., Gourlet-Fleury, S. and Forni, É. (2012). Estimating damage from selective logging and implications for tropical forest management. Canadian Journal of Forest Research, 42, 605613.Google Scholar
Plowman, N. S., Hood, A. S. C., Moses, J., Redmond, C., Novotny, V., Klimes, P. and Fayle, T. M. (2017). Network reorganization and breakdown of an ant-plant protection mutualism with elevation. Proceedings of the Royal Society B: Biological Sciences 284: 20162564. http://dx.doi.org/10.1098/rspb.2016.2564.Google Scholar
Putz, F. E. and Holbrook, N. M. (1988). Further observations on the dissolution of mutualism between Cecropia and its ants: the Malaysian case. Oikos, 53, 121125.Google Scholar
Richardson, B. A., Borges, S. and Richardson, M. J. (2006). Differences between epigeic earthworm populations in tank bromeliads from Puerto Rico and Dominica. Caribbean Journal of Science, 42, 380385.Google Scholar
Rico-Gray, V. and Oliveira, P. S. (2007). The Ecology and Evolution of Ant-Plant Interactions. Chicago: University of Chicago Press.Google Scholar
Rodgers, D. J. and Kitching, R. L. (1998). Vertical stratification of rainforest collembolan (Collembola: Insecta) assemblages: description of ecological patterns and hypotheses concerning their generation. Ecography, 21, 392400.Google Scholar
Rodgers, D. J. and Kitching, R. L. (2011). Rainforest Collembola and the insularity of epiphyte microhabitats. Insect Conservation and Diversity, 4, 99106.Google Scholar
Rodríguez-Castañeda, G., Forkner, R. E., Tepe, E. J., Gentry, G. L. and Dyer, L. A. (2011). Weighing defensive and nutritive roles of ant mutualists across a tropical altitudinal gradient. Biotropica, 43, 343350.Google Scholar
Roland, L.-A. R. d., Rabearivony, J., Razafimanjato, G., Robenarimangason, H. and Thorstrom, R. (2005). Breeding biology and diet of Banded Kestrels Falco zoniventris on Masoala Peninsula, Madagascar. Ostrich, 76, 3236.CrossRefGoogle Scholar
Sala, O. E., Stuart Chapin, F., III et al. (2000). Global biodiversity scenarios for the year 2100. Science, 287, 17701774.Google Scholar
Scheffers, B. R., Edwards, D. P., Diesmos, A., Williams, S. E. and Evans, T. A. (2013). Microhabitats reduce animal’s exposure to climate extremes. Global Change Biology, n/a-n/a.Google Scholar
Scheffers, B. R., Phillips, B. L. and Shoo, L. P. (2014). Asplenium bird’s nest ferns in rainforest canopies are climate-contingent refuges for frogs. Global Ecology and Conservation, 2, 3746.Google Scholar
Slik, F. J. W., Keßler, P. J. A. and Welzen, P. C. v. (2003). Macaranga and Mallotus species (Euphorbiaceae) as indicators for disturbance in the mixed lowland dipterocarp forest of East Kalimantan (Indonesia). Ecological Indicators, 2, 311324.Google Scholar
Snaddon, J. L., Turner, E. C., Fayle, T. M. et al. (2012). Biodiversity hanging by a thread: the importance of fungal-litter trapping systems in tropical rainforests. Biology Letters, 8, 397400.Google Scholar
Stuntz, S., Ziegler, C., Simon, U. and Zotz, G. (2002). Diversity and structure of the arthropod fauna within three canopy epiphyte species in central Panama. Journal of Tropical Ecology, 18, 161176.CrossRefGoogle Scholar
Talaga, S., Dézerald, O., Carteron, A. et al. (2015). Tank bromeliads as natural microcosms: a facultative association with ants influences the aquatic invertebrate community structure. C. R. Biol., 338, 696700.Google Scholar
Tanaka, H., Inui, Y. and Itioka, T. (2009). Anti-herbivore effects of an ant species, Crematogaster difformis, inhabiting myrmecophytic epiphytes in the canopy of a tropical lowland rainforest in Borneo. Ecol. Res., 24, 13931397.Google Scholar
Tanaka, H. O., Yamane, S., Nakashizuka, T., Momose, K. and Itioka, T. (2007). Effects of deforestation on mutualistic interactions of ants with plants and hemipterans in tropical rainforest of Borneo. Asian Myrmecology, 1, 3150.Google Scholar
Thorstrom, R. and Roland, L.-A. R. d. (2000). First nest description, breeding behaviour and distribution of the Madagascar Serpent-Eagle Eutriorchis astur. Ibis, 142, 217224.CrossRefGoogle Scholar
Tilman, D., Fargione, J., Wolff, B. et al. (2001). Forecasting agriculturally driven global environmental change. Science, 292, 281284.Google Scholar
Turner, E. C. (2005). The ecology of the Bird’s Nest Fern (Asplenium spp.) in unlogged and managed habitats in Sabah, Malaysia. PhD, University of Cambridge, Cambridge.Google Scholar
Turner, E. C. and Foster, W. A. (2006). Assessing the influence of Bird’s nest ferns (Asplenium spp.) on the local microclimate across a range of habitat disturbances in Sabah, Malaysia. Selbyana, 27, 195200.Google Scholar
Turner, E. C. and Foster, W. A. (2009). The impact of forest conversion to oil palm on arthropod abundance and biomass in Sabah, Malaysia. Journal of Tropical Ecology, 25, 2330.Google Scholar
Turner, E. C., Snaddon, J. L., Johnson, H. R. and Foster, W. A. (2007). The impact of bird’s nest ferns on stemflow nutrient concentration in a primary rain forest, Sabah, Malaysia. Journal of Tropical Ecology, 23, 721724.Google Scholar
Tylianakis, J. M., Laliberté, E., Nielsen, A. and Bascompte, J. (2010). Conservation of species interaction networks. Biological Conservation, 143, 22702279.Google Scholar
Walter, D. E., Seeman, O., Rodgers, D. and Kitching, R. L. (1998). Mites in the mist: how unique is a rainforest canopy knockdown fauna? Australian Journal of Ecology, 23, 501508.Google Scholar
Watkins, J. E., Cardelús, C. L. and Mack, M. C. (2008). Ants mediate nitrogen relations of an epiphytic fern. New Phytologist, 180, 58.Google Scholar
Weathers, K. C., Cadenasso, M. L. and Pickett, S. T. (2001). Forest edges as nutrient and pollutant concentrators: potential synergisms between fragmentation, forest canopies, and the atmosphere. Conservation Biology, 15, 15061514.Google Scholar
Wetterer, J. K. (1997). Ants on Cecropia in Hawaii. Biotropica, 29, 128132.CrossRefGoogle Scholar
Wilcove, D. S., Giam, X., Edwards, D. P., Fisher, B. and Koh, L. P. (2013). Navjot’s nightmare revisited: logging, agriculture, and biodiversity in Southeast Asia. Trends in Ecology & Evolution, 28, 531540.CrossRefGoogle Scholar
Yu, D. W., Wilson, H. B. and Pierce, N. E. (2001). An empirical model of species coexistence in a spatially structured environment. Ecology, 82, 17611771.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×