Skip to main content Accessibility help
×
Home
Hostname: page-component-8bbf57454-5qtdt Total loading time: 0.184 Render date: 2022-01-24T04:51:47.196Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }
This chapter is part of a book that is no longer available to purchase from Cambridge Core

6 - Miscellaneous science and medicine

Simon Bricker
Affiliation:
Countess of Chester Hospital
Get access

Summary

Mechanisms of action of general anaesthetics

Commentary

This has been the focus of fundamental research which this viva will not have time to explore in depth. The subject matter is complex and although selective effects on CNS proteins appear to offer the most complete explanation, much remains unexplained. If you can give a reasonably plausible summary of the main points, then you should have done enough to pass.

The viva

You will be asked about the theories that have been advanced to explain the action of general anaesthetics.

  • Compounds that cause reversible insensibility range from xenon, which is chemically unreactive and whose structure could not be simpler, to barbiturates and phenols, whose structures are both complex and dissimilar. This makes the search for a unifying theory of action with particular emphasis on a specific structure–activity relationship more difficult.

  • Meyer–Overton hypothesis: Meyer and Overton (separately) were the first to relate the potency of anaesthetic agents to their lipid solubility. They argued further that the onset of narcosis was evident as soon as the particular substance had attained a certain molar concentration in the lipids of the cell, and that the lipid layers of the cell membrane represented the main site of action. Much early research was based on the hypothesis that disruption of the lipid bilayer affected the function of membrane proteins and mediated an interruption of neuronal traffic. As a unifying theory however, it was undermined by the observations that temperature rises disrupt lipid membranes without inducing a state of general anaesthesia, and that there are many compounds with high lipid solubility which exert no anaesthetic effect.

  • […]

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Send book to Kindle

To send this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Send book to Dropbox

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Dropbox.

Available formats
×

Send book to Google Drive

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Google Drive.

Available formats
×