Skip to main content Accessibility help
Hostname: page-component-544b6db54f-lmg95 Total loading time: 0.919 Render date: 2021-10-17T01:43:15.567Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Chapter 13 - Neuroimaging Studies of Alexithymia

from Part IV - Biological Considerations

Published online by Cambridge University Press:  07 September 2018

Olivier Luminet
Université Catholique de Louvain, Belgium
R. Michael Bagby
University of Toronto
Graeme J. Taylor
University of Toronto
Get access
Advances in Research, Theory, and Clinical Practice
, pp. 207 - 249
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Aftanas, L. and Varlamov, A. (2004). Associations of alexithymia with anterior and posterior activation asymmetries during evoked emotions: EEG evidence of right hemisphere “electrocortical effort”. International Journal of Neuroscience, 114, 14431462.CrossRefGoogle Scholar
Aftanas, L.I. and Varlamov, A.A. (2007). Effects of alexithymia on the activity of the anterior and posterior areas of the cortex of the right hemisphere in positive and negative emotional activation. Neuroscience and Behavioral Physiology, 37, 6773.CrossRefGoogle ScholarPubMed
Aleman, A. (2005). Feelings you can’t imagine: Towards a cognitive neuroscience of alexithymia. Trends in Cognitive Sciences, 9, 553555.CrossRefGoogle ScholarPubMed
Anderson, A.K. and Phelps, E.A. (2001). Lesions of the human amygdala impair enhanced perception of emotionally salient events. Nature, 411, 305309.CrossRefGoogle ScholarPubMed
Bagby, R.M., Parker, J.D., and Taylor, G.J. (1994). The Twenty-item Toronto Alexithymia Scale – I. Item selection and cross–validation of the factor structure. Journal of Psychosomatic Research, 38, 2332.CrossRefGoogle ScholarPubMed
Bagby, R.M., Quilty, L.C., Taylor, G.J., et al. (2009). Are there subtypes of alexithymia? Personality and Individual Differences, 47, 413418.CrossRefGoogle Scholar
Bagby, R.M., Taylor, G.J., and Parker, J.D. (1994). The Twenty-item Toronto Alexithymia Scale – II. Convergent, discriminant, and concurrent validity. Journal of Psychosomatic Research, 38, 3340.CrossRefGoogle ScholarPubMed
Bagby, R.M., Taylor, G.J., Parker, J.D., et al. (2006). The development of the Toronto Structured Interview for Alexithymia: Item selection, factor structure, reliability and concurrent validity. Psychotherapy and Psychosomatics, 75, 2539.CrossRefGoogle ScholarPubMed
Barrett, L.F., Mesquita, B., Ochsner, K.N., et al. (2007). The experience of emotion. Annual Review of Psychology, 58, 373403.CrossRefGoogle ScholarPubMed
Bear, D.M. (1983). Hemispheric specialization and the neurology of emotion. Archives of Neurology, 40, 195202.CrossRefGoogle ScholarPubMed
Bermond, B., Bleys, J.W., and Stoffels, E.J. (2005). Left hemispheric preference and alexithymia: A neuropsychological investigation. Cognition and Emotion, 19, 151160.CrossRefGoogle Scholar
Bermond, B., Clayton, K., Liberova, A., et al. (2007). A cognitive and an affective dimension of alexithymia in six languages and seven populations. Cognition and Emotion, 21, 11251136.CrossRefGoogle Scholar
Berthoz, S., Artiges, E., Van de Moortele, P.F., et al. (2002). Effect of impaired recognition and expression of emotions on fronto-cingulate cortices: An fMRI study of men with alexithymia. American Journal of Psychiatry, 159, 961967.CrossRefGoogle Scholar
Bird, G., Silani, G., Brindley, R., et al. (2010). Empathic brain responses in insula are modulated by levels of alexithymia but not autism. Brain, 133, 15151525.CrossRefGoogle Scholar
Borsci, G., Boccardi, M., Rossi, R., et al. (2009). Alexithymia in healthy women: A brain morphology study. Journal of Affective Disorders, 114, 208215.CrossRefGoogle ScholarPubMed
Buchanan, D.C., Waterhouse, G.J., and West, S.C. (1980). A proposed neurophysiological basis of alexithymia. Psychotherapy and Psychosomatics, 34, 248255.CrossRefGoogle ScholarPubMed
Carr, L., Iacoboni, M., Dubeau, M.C., et al. (2003). Neural mechanisms of empathy in humans: A relay from neural systems for imitation to limbic areas. Proceedings of the National Academy of Sciences USA, 100, 54975502.CrossRefGoogle ScholarPubMed
Craig, A.D. (2002). Opinion: How do you feel? Interoception: The sense of the physiological condition of the body. Nature Reviews Neuroscience, 3, 655.CrossRefGoogle Scholar
Craig, A.D. (2009). How do you feel – now? The anterior insula and human awareness. Nature Reviews Neuroscience, 10, 5970.CrossRefGoogle Scholar
Damasio, A. and Dolan, R.J. (1999). The feeling of what happens. Nature, 401, 847.Google Scholar
Damasio, A.R., Everitt, B.J., and Bishop, D. (1996). The somatic marker hypothesis and the possible functions of the prefrontal cortex [and discussion]. Philosophical Transactions of the Royal Society B: Biological Sciences, 351, 14131420.Google Scholar
Dolcos, F., Iordan, A.D., and Dolcos, S. (2011). Neural correlates of emotion-cognition interactions: A review of evidence from brain imaging investigations. Journal of Cognitive Psychology, 23, 669694.CrossRefGoogle ScholarPubMed
Donges, U.S. and Suslow, T. (2017). Alexithymia and automatic processing of emotional stimuli: A systematic review. Reviews in the Neurosciences, 28, 247264.CrossRefGoogle ScholarPubMed
Duan, X., Dai, Q., Gong, Q., et al. (2010). Neural mechanism of unconscious perception of surprised facial expression. NeuroImage, 52, 401407.CrossRefGoogle ScholarPubMed
Enzi, B., Amirie, S., and Brüne, M. (2016). Empathy for pain-related dorsolateral prefrontal activity is modulated by angry face perception. Experimental Brain Research, 234, 33353345.CrossRefGoogle ScholarPubMed
Etkin, A., Büchel, C., and Gross, J.J. (2015). The neural bases of emotion regulation. Nature Reviews Neuroscience, 16, 693700.CrossRefGoogle ScholarPubMed
Etkin, A., Egner, T., and Kalisch, R. (2011). Emotional processing in anterior cingulate and medial prefrontal cortex. Trends in Cognitive Sciences, 15, 8593.CrossRefGoogle ScholarPubMed
FeldmanHall, O., Dalgleish, T., and Mobbs, D. (2013). Alexithymia decreases altruism in real social decisions. Cortex, 49, 899904.CrossRefGoogle ScholarPubMed
Feng, C., Li, Z., Feng, X., et al. (2016). Social hierarchy modulates neural responses of empathy for pain. Social Cognitive and Affective Neuroscience, 11, 485495.CrossRefGoogle ScholarPubMed
Ferguson, E., Bibby, P.A., Rosamond, S., et al. (2009). Alexithymia, cumulative feedback, and differential response patterns on the Iowa Gambling Task. Journal of Personality, 77, 883902.CrossRefGoogle Scholar
Frewen, P., Lane, R.D., Neufeld, R.W., et al. (2008a). Neural correlates of levels of emotional awareness during trauma script-imagery in posttraumatic stress disorder. Psychosomatic Medicine, 70, 2731.CrossRefGoogle ScholarPubMed
Frewen, P.A., Lanius, R.A., Dozois, D.J., et al. (2008b). Clinical and neural correlates of alexithymia in posttraumatic stress disorder. Journal of Abnormal Psychology, 117, 887891.CrossRefGoogle ScholarPubMed
Frewen, P.A., Pain, C., Dozois, D.J., et al. (2006). Alexithymia in PTSD. Annals of the New York Academy of Sciences, 1071, 397400.CrossRefGoogle ScholarPubMed
Gainotti, G. (1989). Disorders of emotions and affect in patients with unilateral brain damage. In Boller, F. and Grafman, J. (Eds.), Handbook of Neuropsychology, vol. 5, pp. 345358. Amsterdam: Elsevier.Google Scholar
Gazzaniga, M.S. (1989). Organization of the human brain. Science, 245, 947952.CrossRefGoogle ScholarPubMed
Goerlich-Dobre, K.S., Bruce, L., Martens, S., et al. (2014). Distinct associations of insula and cingulate volume with the cognitive and affective dimensions of alexithymia. Neuropsychologia, 53, 284292.CrossRefGoogle ScholarPubMed
Goerlich-Dobre, K.S., Lamm, C., Pripfl, J., et al. (2015a). The left amygdala: A shared substrate of alexithymia and empathy. NeuroImage, 122, 2032.CrossRefGoogle ScholarPubMed
Goerlich‐Dobre, K.S., Votinov, M., Habel, U., et al. (2015b). Neuroanatomical profiles of alexithymia dimensions and subtypes. Human Brain Mapping, 36, 38053818.CrossRefGoogle ScholarPubMed
Goerlich, K.S., Votinov, M., Lammertz, S.E., et al. (2017). Effects of alexithymia and empathy on the neural processing of social and monetary rewards. Brain Structure and Function, 222, 22352250.CrossRefGoogle ScholarPubMed
Goerlich-Dobre, K.S., Witteman, J., Schiller, N.O., et al. (2013). Blunted feelings: Alexithymia is associated with a diminished neural response to speech prosody. Social Cognitive and Affective Neuroscience, 9, 11081117.CrossRefGoogle ScholarPubMed
Grabe, H.J., Möller, B., Willert, C., et al. (2004). Interhemispheric transfer in alexithymia: A transcallosal inhibition study. Psychotherapy and Psychosomatics, 73, 117123.CrossRefGoogle ScholarPubMed
Grabe, H.J., Wittfeld, K., Hegenscheid, K., et al. (2014). Alexithymia and brain grey matter volumes in a general population sample. Human Brain Mapping, 35, 59325945.CrossRefGoogle Scholar
Gündel, H., López–Sala, A., and Ceballos-Baumann, A.O. (2004). Alexithymia correlates with the size of the right anterior cingulate. Psychosomatic Medicine, 66, 132140.CrossRefGoogle ScholarPubMed
Hariri, A.R., Bookheimer, S.Y., and Mazziotta, J.C. (2000). Modulating emotional responses: Effects of a neocortical network on the limbic system. NeuroReport, 11, 4348.CrossRefGoogle ScholarPubMed
Heinzel, A., Schäfer, R., Müller, H.W., et al. (2010). Increased activation of the supragenual anterior cingulate cortex during visual emotional processing in male subjects with high degrees of alexithymia: An event-related fMRI study. Psychotherapy and Psychosomatics, 79, 363370.CrossRefGoogle Scholar
Ho, N.S., Wong, M.M., and Lee, T.M. (2016). Neural connectivity of alexithymia: Specific association with major depressive disorder. Journal of Affective Disorders, 193, 362372.CrossRefGoogle ScholarPubMed
Hodsoll, S., Viding, E., and Lavie, N. (2011). Attentional capture by irrelevant emotional distractor faces. Emotion, 11, 346353.CrossRefGoogle ScholarPubMed
Hogeveen, J., Bird, G., Chau, A., et al. (2016). Acquired alexithymia following damage to the anterior insula. Neuropsychologia, 82, 142148.CrossRefGoogle ScholarPubMed
Hoppe, K.D. and Bogen, J.E. (1977). Alexithymia in twelve commissurotomized patients. Psychotherapy and Psychosomatics, 28, 148155.CrossRefGoogle ScholarPubMed
Hornak, J., Bramham, J., Rolls, E.T., et al. (2003). Changes in emotion after circumscribed surgical lesions of the orbitofrontal and cingulate cortices. Brain, 126, 16911712.CrossRefGoogle ScholarPubMed
Ihme, K., Dannlowski, U., Lichev, V., et al. (2013). Alexithymia is related to differences in gray matter volume: A voxel-based morphometry study. Brain Research, 1491, 6067.CrossRefGoogle ScholarPubMed
Jacobs, R.H., Renken, R., Aleman, A., et al. (2012). The amygdala, top-down effects, and selective attention to features. Neuroscience and Biobehavioral Reviews, 36, 20692084.CrossRefGoogle ScholarPubMed
Jenkins, L.M., Andrewes, D.G., Nicholas, C.L., et al. (2018). Emotional reactivity following surgery to the prefrontal cortex. Journal of Neuropsychology, 12, 120141.CrossRefGoogle ScholarPubMed
Jessimer, M. and Markham, R. (1997). Alexithymia: A right hemisphere dysfunction specific to recognition of certain facial expressions? Brain and Cognition, 34, 246258.CrossRefGoogle ScholarPubMed
Jongen, S., Axmacher, N., Kremers, N.A., et al. (2014). An investigation of facial emotion recognition impairments in alexithymia and its neural correlates. Behavioural Brain Research, 271, 129139.CrossRefGoogle ScholarPubMed
Jonker, F.A., Jonker, C., Scheltens, P., et al. (2015). The role of the orbitofrontal cortex in cognition and behavior. Reviews in the Neurosciences, 26, 111.CrossRefGoogle ScholarPubMed
Kano, M., Fukudo, S., Gyoba, J., et al. (2003). Specific brain processing of facial expressions in people with alexithymia: An H215O‐PET study. Brain, 126, 14741484.CrossRefGoogle Scholar
Kano, M., Hamaguchi, T., Itoh, M., et al. (2007). Correlation between alexithymia and hypersensitivity to visceral stimulation in human. Pain, 132, 252263.CrossRefGoogle ScholarPubMed
Kano, M., Ito, M., and Fukudo, S. (2011). Neural substrates of decision making as measured with the Iowa Gambling Task in men with alexithymia. Psychosomatic Medicine, 73, 588597.CrossRefGoogle ScholarPubMed
Karlsson, H., Näätänen, P., and Stenman, H. (2008). Cortical activation in alexithymia as a response to emotional stimuli. British Journal of Psychiatry, 192, 3238.CrossRefGoogle ScholarPubMed
Koch, K., Wagner, G., Schachtzabel, C., et al. (2012). Aberrant anterior cingulate activation in obsessive-compulsive disorder is related to task complexity. Neuropsychologia, 50, 958964.CrossRefGoogle ScholarPubMed
Kubota, M., Miyata, J., Hirao, K., et al. (2011). Alexithymia and regional grey matter alterations in schizophrenia. Neuroscience Research, 70, 206213.CrossRefGoogle Scholar
Kugel, H., Eichmann, M., Dannlowski, U., et al. (2008). Alexithymic features and automatic amygdala reactivity to facial emotion. Neuroscience Letters, 435, 4044.CrossRefGoogle ScholarPubMed
Lamm, C., Decety, J., and Singer, T. (2011). Meta-analytic evidence for common and distinct neural networks associated with directly experienced pain and empathy for pain. NeuroImage, 54, 24922502.CrossRefGoogle ScholarPubMed
Lane, R.D., Ahern, G.L., Schwartz, G.E., et al. (1997). Is alexithymia the emotional equivalent of blindsight? Biological Psychiatry, 42, 834844.CrossRefGoogle ScholarPubMed
Lane, R.D., Reiman, E.M., Axelrod, B., et al. (1998). Neural correlates of levels of emotional awareness: Evidence of an interaction between emotion and attention in the anterior cingulate cortex. Journal of Cognitive Neuroscience, 10, 525535.CrossRefGoogle ScholarPubMed
Lang, S., Stopsack, M., Kotchoubey, B., et al. (2011). Cortical inhibition in alexithymic patients with borderline personality disorder. Biological Psychology, 88, 227232.CrossRefGoogle ScholarPubMed
Larsen, J.K., Brand, N., Bermond, B., et al. (2003). Cognitive and emotional characteristics of alexithymia: A review of neurobiological studies. Journal of Psychosomatic Research, 54, 533541.CrossRefGoogle ScholarPubMed
Larson, C.L., Baskin-Sommers, A.R., Stout, D.M., et al. (2013). The interplay of attention and emotion: Top-down attention modulates amygdala activation in psychopathy. Cognitive, Affective, and Behavioral Neuroscience, 13, 757770.CrossRefGoogle ScholarPubMed
Lemche, E., Brammer, M.J., David, A.S., et al. (2013). Interoceptive-reflective regions differentiate alexithymia traits in depersonalization disorder. Psychiatry Research: Neuroimaging, 214, 6672.CrossRefGoogle ScholarPubMed
Leweke, F., Stark, R., Milch, W., et al. (2004). Patterns of neuronal activity related to emotional stimulation in alexithymia. Psychotherapie, Psychosomatik, medizinische Psychologie, 54, 437444.CrossRefGoogle ScholarPubMed
Liang, X., He, Y., Salmeron, B.J., et al. (2015). Interactions between the salience and default-mode networks are disrupted in cocaine addiction. Journal of Neuroscience, 35, 80818090.CrossRefGoogle ScholarPubMed
Lieberman, M.D., Eisenberger, N.I., Crockett, M.J., et al. (2007). Putting feelings into words. Psychological Science, 18, 421428.CrossRefGoogle ScholarPubMed
Liemburg, E.J., Swart, M., Bruggeman, R., et al. (2012). Altered resting state connectivity of the default mode network in alexithymia. Social Cognitive and Affective Neuroscience, 7, 660666.CrossRefGoogle ScholarPubMed
MacLean, P.D., 1949. Psychosomatic disease and the “Visceral Brain”: Recent developments bearing on the Papez theory of emotion. Psychosomatic Medicine, 11, 338353.CrossRefGoogle ScholarPubMed
MacLean, P.D., 1990. The Triune Brain in Evolution. New York: Plenum Press.Google Scholar
Maddock, R.J. (1999). The retrosplenial cortex and emotion: New insights from functional neuroimaging of the human brain. Trends in Neurosciences, 22, 310316.CrossRefGoogle ScholarPubMed
Mantani, T., Okamoto, Y., Shirao, N., et al. (2005). Reduced activation of posterior cingulate cortex during imagery in subjects with high degrees of alexithymia: A functional magnetic resonance imaging study. Biological Psychiatry, 57, 982990.CrossRefGoogle ScholarPubMed
Mériau, K., Wartenburger, I., Kazzer, P., et al. (2006). A neural network reflecting individual differences in cognitive processing of emotions during perceptual decision making. NeuroImage, 33, 10161027.CrossRefGoogle ScholarPubMed
Mesulam, M. and Mufson, E.J. (1982). Insula of the old world monkey. III: Efferent cortical output and comments on function. Journal of Comparative Neurology, 212, 3852.CrossRefGoogle Scholar
Mesulam, M.M. and Mufson, E.J. (1985). The insula of Reil in man and monkey: Architectonics, connectivity, and function. In Jones, E.G. and Peters, A. (Eds.), Association and Auditory Cortices, vol. 4, pp. 179228. New York: Plenum Press.CrossRefGoogle Scholar
Miyake, Y., Okamoto, Y., Onoda, K., et al. (2012). Brain activation during the perception of stressful word stimuli concerning interpersonal relationships in anorexia nervosa patients with high degrees of alexithymia in an fMRI paradigm. Psychiatry Research: Neuroimaging, 201, 113119.CrossRefGoogle Scholar
Molenberghs, P., Cunnington, R., and Mattingley, J.B. (2009). Is the mirror neuron system involved in imitation? A short review and meta-analysis. Neuroscience and Biobehavioral Reviews, 33, 975980.CrossRefGoogle Scholar
Molenberghs, P., Johnson, H., Henry, J.D., et al. (2016). Understanding the minds of others: A neuroimaging meta–analysis. Neuroscience and Biobehavioral Reviews, 65, 276291.CrossRefGoogle ScholarPubMed
Moormann, P., Bermond, B., Vorst, H.C., et al. (2008). New avenues in alexithymia research: The creation of alexithymia types. In Vingerhoets, A.J.M., Nyklíček, I., and Denollet, J. (Eds.), Emotion Regulation, pp. 2742. New York: Springer.CrossRefGoogle Scholar
Moriguchi, Y., Decety, J., Ohnishi, T., et al. (2007). Empathy and judging other’s pain: An fMRI study of alexithymia. Cerebral Cortex, 17, 22232234.CrossRefGoogle ScholarPubMed
Moriguchi, Y., Ohnishi, T., Decety, J., et al. (2009). The human mirror neuron system in a population with deficient self‐awareness: An fMRI study in alexithymia. Human Brain Mapping, 30, 20632076.CrossRefGoogle Scholar
Moriguchi, Y., Ohnishi, T., Lane, R.D., et al. (2006). Impaired self-awareness and theory of mind: An fMRI study of mentalizing in alexithymia. NeuroImage, 32, 14721482.CrossRefGoogle ScholarPubMed
Mueller, J., Alpers, G.W., and Reim, N. (2006). Dissociation of rated emotional valence and Stroop interference in observer-rated alexithymia. Journal of Psychosomatic Research, 61, 261269.CrossRefGoogle ScholarPubMed
Nemiah, J.C., Freyberger, H., and Sifneos, P.E. (1976). Alexithymia: A view of the psychosomatic process. In Hill, O.W. (Ed.), Modern Trends in Psychosomatic Medicine, vol. 3, pp. 430439. London: Butterworths.Google Scholar
Noonan, M.P., Kolling, N., Walton, M.E., et al. (2012). Re‐evaluating the role of the orbitofrontal cortex in reward and reinforcement. European Journal of Neuroscience, 35, 9971010.CrossRefGoogle ScholarPubMed
Ochsner, K.N., Silvers, J.A., and Buhle, J.T. (2012). Functional imaging studies of emotion regulation: A synthetic review and evolving model of the cognitive control of emotion. Annals of the New York Academy of Sciences, 1251, E1E24.CrossRefGoogle ScholarPubMed
Papez, J.W. (1937). A proposed mechanism of emotion. Archives of Neurology and Psychiatry, 38, 725743.CrossRefGoogle Scholar
Paradiso, S., Vaidya, J.G., McCormick, L.M., et al. (2008). Aging and alexithymia: association with reduced right rostral cingulate volume. American Journal of Geriatric Psychiatry, 16, 760769.CrossRefGoogle ScholarPubMed
Parker, J.D., Keightley, M.L., Smith, C.T., et al. (1999). Interhemispheric transfer deficit in alexithymia: An experimental study. Psychosomatic Medicine, 61, 464468.CrossRefGoogle Scholar
Peck, C.J. and Salzman, C.D. (2014). The amygdala and basal forebrain as a pathway for motivationally guided attention. Journal of Neuroscience, 34, 1375713767.CrossRefGoogle ScholarPubMed
Pessoa, L. (2008). On the relationship between emotion and cognition. Nature Reviews Neuroscience, 9, 148158.CrossRefGoogle ScholarPubMed
Phelps, E.A. (2004). Human emotion and memory: Interactions of the amygdala and hippocampal complex. Current Opinion in Neurobiology, 14, 198202.CrossRefGoogle ScholarPubMed
Pouga, L., Berthoz, S., de Gelder, B., et al. (2010). Individual differences in socioaffective skills influence the neural bases of fear processing: The case of alexithymia. Human Brain Mapping, 31, 14691481.CrossRefGoogle ScholarPubMed
Preece, D., Becerra, R., Allan, A., et al. (2017). Establishing the theoretical components of alexithymia via factor analysis: Introduction and validation of the attention-appraisal model of alexithymia. Personality and Individual Differences, 119, 341352.CrossRefGoogle Scholar
Reker, M., Ohrmann, P., Rauch, A.V., et al. (2010). Individual differences in alexithymia and brain response to masked emotion faces. Cortex, 46, 658667.CrossRefGoogle ScholarPubMed
Richter, J., Möller, B., Spitzer, C., et al. (2006). Transcallosal inhibition in patients with and without alexithymia. Neuropsychobiology, 53, 101107.CrossRefGoogle ScholarPubMed
Romei, V., De Gennaro, L., Fratello, F., et al. (2008). Interhemispheric transfer deficit in alexithymia: A transcranial magnetic stimulation study. Psychotherapy and Psychosomatics, 77, 175181.CrossRefGoogle ScholarPubMed
Scarpazza, C., di Pellegrino, G., and Làdavas, E. (2014). Emotional modulation of touch in alexithymia. Emotion, 14, 602610.CrossRefGoogle ScholarPubMed
Scarpazza, C., Làdavas, E., and di Pellegrino, G. (2015). Dissociation between emotional remapping of fear and disgust in alexithymia. PloS One, 10, e0140229.CrossRefGoogle ScholarPubMed
Schaefer, A. and Gray, J.R. (2007). A role for the human amygdala in higher cognition. Reviews in the Neurosciences, 18, 355364.CrossRefGoogle ScholarPubMed
Sifneos, P.E. (1973). The prevalence of “alexithymic” characteristics in psychosomatic patients. Psychotherapy and Psychosomatics, 22, 255262.CrossRefGoogle ScholarPubMed
Silani, G., Bird, G., Brindley, R., et al. (2008). Levels of emotional awareness and autism: An fMRI study. Social Neuroscience, 3, 97112.CrossRefGoogle Scholar
Spalletta, G., Pasini, A., Costa, A., et al. (2001). Alexithymic features in stroke: Effects of laterality and gender. Psychosomatic Medicine, 63, 944950.CrossRefGoogle ScholarPubMed
Sturm, V.E. and Levenson, R.W. (2011). Alexithymia in neurodegenerative disease. Neurocase, 17, 242250.CrossRefGoogle ScholarPubMed
Suslow, T., Kersting, A., and Arolt, V. (2003). Alexithymia and incidental learning of emotional words. Psychological Reports, 93, 10031012.CrossRefGoogle ScholarPubMed
Suslow, T., Kugel, H., Rufer, M., et al. (2016). Alexithymia is associated with attenuated automatic brain response to facial emotion in clinical depression. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 65, 194200.CrossRefGoogle ScholarPubMed
Sutherland, M.T., Carroll, A.J., Salmeron, B.J., et al. (2013). Insula’s functional connectivity with ventromedial prefrontal cortex mediates the impact of trait alexithymia on state tobacco craving. Psychopharmacology, 228, 143155.CrossRefGoogle ScholarPubMed
Taylor, G.J., Bagby, R.M., and Parker, J.D. (1997). Disorders of Affect Regulation: Alexithymia in Medical and Psychiatric Illness. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
TenHouten, W.D., Hoppe, K.D., Bogen, J.E., et al. (1986). Alexithymia: An experimental study of cerebral commissurotomy patients and normal control subjects. American Journal of Psychiatry, 143, 312316.Google ScholarPubMed
Tucker, D.M. (1981). Lateral brain function, emotion, and conceptualization. Psychological Bulletin, 89, 1946.CrossRefGoogle ScholarPubMed
van der Velde, J., Gromann, P.M., Swart, M., et al. (2014). Alexithymia influences brain activation during emotion perception but not regulation. Social Cognitive and Affective Neuroscience, 10, 285293.CrossRefGoogle Scholar
van der Velde, J., Servaas, M.N., Goerlich, K.S., et al. (2013). Neural correlates of alexithymia: A meta-analysis of emotion processing studies. Neuroscience and Biobehavioral Reviews, 37, 17741785.CrossRefGoogle ScholarPubMed
van der Velde, J., van Tol, M.J., Goerlich-Dobre, K.S., et al. (2014). Dissociable morphometric profiles of the affective and cognitive dimensions of alexithymia. Cortex, 54, 190199.CrossRefGoogle ScholarPubMed
Vorst, H.C. and Bermond, B. (2001). Validity and reliability of the Bermond–Vorst Alexithymia Questionnaire. Personality and Individual Differences, 30, 413434.CrossRefGoogle Scholar
Vuilleumier, P. (2005). How brains beware: Neural mechanisms of emotional attention. Trends in Cognitive Sciences, 9, 585594.CrossRefGoogle ScholarPubMed
Watters, C.A., Taylor, G.J., Quilty, L.C., et al. (2016). An examination of the topology and measurement of the alexithymia construct using network analysis. Journal of Personality Assessment, 98, 649659.CrossRefGoogle ScholarPubMed
Weiskrantz, L. (1986). Blindsight: A Case Study and Implications. Oxford: Oxford University Press.Google Scholar
Wingbermühle, E., Theunissen, H., Verhoeven, W., et al. (2012). The neurocognition of alexithymia: Evidence from neuropsychological and neuroimaging studies. Acta Neuropsychiatrica, 24, 6780.CrossRefGoogle ScholarPubMed
Wirsen, A., Af Klinteberg, B., Levander, S., et al. (1990). Differences in asymmetric perception of facial expression in free-vision chimeric stimuli and reaction time. Brain and Cognition, 12, 229239.CrossRefGoogle ScholarPubMed
Xu, P., Opmeer, E.M., van Tol, M.J., et al. (2018). Structure of the alexithymic brain: A parametric coordinate-based meta-analysis. Neuroscience and Biobehavioral Reviews, 87, 5055.CrossRefGoogle ScholarPubMed
Zeitlin, S.B., Lane, R.D., O’Leary, D.S., et al. (1989). Interhemispheric transfer deficit and alexithymia. American Journal of Psychiatry, 146, 14341439.Google ScholarPubMed
Zhang, X., Salmeron, B.J., Ross, T.J., et al. (2011). Factors underlying prefrontal and insula structural alterations in smokers. NeuroImage, 54, 4248.CrossRefGoogle ScholarPubMed
Zotev, V., Krueger, F., Phillips, R., et al. (2011). Self-regulation of amygdala activation using real-time fMRI neurofeedback. PloS One, 6, e24522.CrossRefGoogle ScholarPubMed
Cited by

Send book to Kindle

To send this book to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats

Send book to Dropbox

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Dropbox.

Available formats

Send book to Google Drive

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Google Drive.

Available formats