Skip to main content Accessibility help
×
Hostname: page-component-788cddb947-t9bwh Total loading time: 0 Render date: 2024-10-12T16:18:37.919Z Has data issue: false hasContentIssue false

12 - Statistical Approaches for Inferring and Predicting Food-Web Architecture

from Part II - Food Webs: From Traits to Ecosystem Functioning

Published online by Cambridge University Press:  05 December 2017

John C. Moore
Affiliation:
Colorado State University
Peter C. de Ruiter
Affiliation:
Wageningen Universiteit, The Netherlands
Kevin S. McCann
Affiliation:
University of Guelph, Ontario
Volkmar Wolters
Affiliation:
Justus-Liebig-Universität Giessen, Germany
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Adaptive Food Webs
Stability and Transitions of Real and Model Ecosystems
, pp. 178 - 192
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allesina, S. and Pascual, M. (2009). Food web models: a plea for groups. Ecology Letters, 12, 652662.Google Scholar
Allesina, S., Alonso, D., and Pascual, M. (2008). A general model for food web structure. Science, 320, 658661.CrossRefGoogle ScholarPubMed
Bersier, L. F., Cattin, M. F., Banasek-Richter, C., Baltensperger, R., and Gabriel, J. P. (2006). Box B: Reply to Martinez and Cushing. In Ecological Networks: Linking Structure to Dynamics in Food Webs, ed. Pascual, M. and Dunne, J. A., New York: Oxford University Press, pp. 9192.Google Scholar
Brose, U., Cushing, L., Berlow, E. L., et al. (2005). Body sizes of consumers and their resources. Ecology, 86, 2545.CrossRefGoogle Scholar
Capitán, J. A., Arenas, A., and Guimerà, R. (2013). Degree of intervality of food webs: from body-size data to models. Journal of Theoretical Biology, 334, 3544.Google Scholar
Cattin, M. F., Bersier, L. F., Banasek-Richter, C., Baltensperger, R., and Gabriel, J. P. (2004). Phylogenetic constraints and adaptation explain food-web structure. Nature, 427, 835839.Google Scholar
Cohen, J. E. (1968). Alternate derivations of a species-abundance relation. American Naturalist, 102, 165172.Google Scholar
Cohen, J. E. (1978). Food Webs and Niche Space. Princeton, NJ: Princeton University Press.Google Scholar
Cohen, J. E. and Newman, C. M. (1985). A stochastic theory of community food webs. 1. Models and aggregated data. Proceedings of the Royal Society B: Biological Sciences, 224, 421448.Google Scholar
Cohen, J. E., Briand, F., and Newman, C. M. (1990). Community Food Webs, Data and Theory. Berlin: Springer-Verlag.Google Scholar
Cohen, J. E., Jonsson, T., and Carpenter, S. R. (2003). Ecological community description using the food web, species abundance, and body size. Proceedings of the National Academy of Sciences of the United States of America, 100, 17811786.CrossRefGoogle ScholarPubMed
Drossel, B., Higgs, P. G., and McKane, A. J. (2001). The influence of predator–prey population dynamics on the long-term evolution of food web structure. Journal of Theoretical Biology, 208, 91107.Google Scholar
Eklöf, A., Jacob, U., Kopp, J., et al. (2013). The dimensionality of ecological networks. Ecology Letters, 16, 577583.Google Scholar
Fournier, T., Rohr, R. P., Scherer, H., Mazza, C., and Bersier, L. F. (2009). How to estimate the niche values in a food web? The 94th ESA Annual Meeting (August 2–7, 2009), abstract: http://eco.confex.com/eco/2009/techprogram/P20894.HTM.Google Scholar
Freckleton, R. P., Harvey, P. H., and Pagel, M. (2002). Phylogenetic analysis and comparative data: a test and review of evidence. American Naturalist, 160, 712726.Google Scholar
Grafen, A. (1989). The phylogenetic regression. Philosophical Transactions of the Royal Society B: Biological Sciences, 326, 119157.Google Scholar
Gravel, D., Poisot, T., Albouy, C., Velez, L., and Mouillot, D. (2013). Inferring food web structure from predator–prey body size relationships. Methods in Ecology and Evolution, 4, 10831090.CrossRefGoogle Scholar
Harper-Smith, S., Berlow, E. L., Knapp, R. A., Williams, R. J., and Martinez, N. D. (2005). Communicating ecology through food webs: visualizing and quantifying the effects of stocking alpine lakes with trout. In Dynamic Food Webs: Multispecies Assemblages, Ecosystem Development, and Environmental Change, ed. de Ruiter, P C., Wolters, V., and Moore, J. C., Elsevier Academic Press, pp. 407423.Google Scholar
Hoff, P. D. (2009). Multiplicative latent factors models for description and prediction of social networks. Computational and Mathematicals Organization, 15, 261272.Google Scholar
Jonsson, T., Cohen, J. E., and Carpenter, S. R. (2005). Food webs, body size, and species abundance in ecological community description. In Advances in Ecological Research, Vol. 36, ed. Caswell, H., Elsevier Academic Press, pp. 184.Google Scholar
Kolaczyk, E. D. (2009). Statistical Analysis of Network Data. New York: Springer.CrossRefGoogle Scholar
Legendre, P. and Legendre, L. (1998). Numerical Ecology. Amsterdam: Elsevier.Google Scholar
Naisbit, R. E., Rohr, R. P., Rossberg, A. G., Kehrli, P., and Bersier, L.-F. (2012). Phylogeny versus body size as determinants of food web structure. Proceedings of the Royal Society B: Biological Sciences, 279, 32913297.Google Scholar
Pellissier, L., Rohr, R. P., Ndiribe, C., et al. (2013). Combining food web and species distribution models for improved community projections. Ecology and Evolution, 3, 45724583.Google Scholar
Petchey, O. L., Beckerman, A. P., Riede, J. O., and Warren, P. H. (2008). Size, foraging, and food web structure. Proceedings of the National Academy of Sciences of the United States of America, 105, 41914196.Google Scholar
Pinnegar, J. K., Trenkel, V. M., Tidd, A. N., Dawson, W. A., and Du Buit, M. H. (2003). Does diet in Celtic Sea fishes reflect prey availability? In Annual Symposium of the Fisheries Society of the British Isles, Norwich, pp. 197212.Google Scholar
Price, P. W. (2003). Macroevolutionary Theory on Macroecological Patterns. Cambridge, UK: Cambridge University Press.Google Scholar
Rohr, R. P., Scherer, H., Kehrli, P., Mazza, C., and Bersier, L. F. (2010). Modeling food webs: exploring unexplained structure using latent traits. American Naturalist, 173, 170177.Google Scholar
Rohr, R. P., Naisbit, R. E., Mazza, C., and Bersier, L. F. (2016). Matching-centrality decomposition and the forecasting of new links in networks. Proceedings of the Royal Society B: Biological Sciences, 283, 20152702.Google Scholar
Ross, R. (1911). Some quantitative studies in epidemiology. Nature, 87, 466467.Google Scholar
Rossberg, A. G. (2013). Food Webs and Biodiversity: Foundations, Models, Data. Wiley.CrossRefGoogle Scholar
Rossberg, A. G., Matsuda, H., Amemiya, T., and Itoh, K. (2006). Food webs: experts consuming families of experts. Journal of Theoretical Biology, 241, 552563.Google Scholar
Rossberg, A. G., Brannstrom, A., and Dieckmann, U. (2010). How trophic interaction strength depends on traits. Theoretical Ecology, 3, 1324.Google Scholar
Stouffer, D. B., Camacho, J., Guimera, R., Ng, C. A., and Nunes Amaral, L. A. (2005). Quantitative patterns in the structure of model and empirical food webs. Ecology, 86, 13011311.Google Scholar
Stouffer, D. B., Camacho, J., and Amaral, L. A. N. (2006). A robust measure of food web intervality. Proceedings of the National Academy of Sciences of the United States of America, 103, 1901519020.Google Scholar
Warren, P. H. (1989). Spatial and temporal variation in the structure of a freshwater food web. Oikos, 55, 299311.Google Scholar
Williams, R. J. and Martinez, N. D. (2000). Simple rules yield complex food webs. Nature, 404, 180183.Google Scholar
Williams, R. J. and Martinez, N. D. (2008). Success and its limits among structural models of complex food webs. Journal of Animal Ecology, 77, 512519.Google Scholar
Williams, R. J. and Purves, D. W. (2011). The probabilistic niche model reveals substantial variation in the niche structure of empirical food webs. Ecology, 92, 18491857.CrossRefGoogle ScholarPubMed
Williams, R. J., Anandanadesan, A., and Purves, D. (2010). The probabilistic niche model reveals the niche structure and role of body size in a complex food web. PLoS ONE, 5, e12092.Google Scholar
Woodward, G., Speirs, D. C., and Hildrew, A. G. (2005). Quantification and resolution of a complex, size-structured food web. In Advances in Ecological Research, Vol. 36, ed. Caswell, H., Elsevier Academic Press, pp. 85135.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×