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LINEAR STRUCTURE OF WEIGHTED
HOLOMORPHIC NON-EXTENDIBILITY

L. BERNAL-GONZALEZ

In this paper, it is proved that, for any domain G of the complex plane, there exists
an infinite-dimensional closed linear submanifold M; and a dense linear submanifold
M, with maximal algebraic dimension in the space H(G) of holomorphic functions on
G such that G is the domain of holomorphy of every nonzero member f of M; or M,
and, in addition, the growth of f near each boundary point is as fast as prescribed.

1. INTRODUCTION AND NOTATION

Throughout this paper, the following standard terminology and notation will be
used. The symbols N, C, D, T denote, respectively, the set of positive integers, the com-
plex plane, the open unit disk {2 € C: || < 1}, and the unit circle {z € C: |z| =1}.
If a € C and r > 0 then B(a,r) (B(a,r), respectively) denotes the open (closed, respec-
tively) Euclidean ball with centre a and radius r; in particular, B(0,1) = D. For points
a, b of C, the line segment joining a with b is [a,b]. If A C C then A (A°, JA, respec-
tively) denotes its closure (interior, boundary, respectively) in C. Moreover, if zp € C
then d(z, A) := inf{|z0— z |: 2 € A}. A domain is a nonempty open subset of C. If G is
a domain, then H(G) denotes the Fréchet space (= completely metrisable locally convex
space) of holomorphic functions on G, endowed with the topology of uniform convergence
on compacta. In particular, H(G) is a Baire space. Finally, if a € G and f € H(G) then
p(f,a) represents the radius of convergence of the Taylor series of f with centre at a. It
is well known that p(f,a) > d(a, 8G).

In 1884 Mittag~Lefler (see [9, Chapter 10]) discovered that for any domain G there
exists a function f € H(G) having G as its domain of holomorphy. Recall that G is said
to be a domain of holomorphy for f if f is holomorphic exactly at G, that is, f € H(G)
and f is analytically non-extendible across G or, more precisely, p(f,a) = d(a, 8G) for
all @ € G. Note that this implies that f has no holomorphic extension on any domain
containing G strictly. Both properties are equivalent if, for instance, G is a Jordan
domain, but the equivalence is not general (for instance, consider G := C \ (-o0, 0] and
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f := the principal branch of the logarithm on G). By H,(G) we denote the subclass of
functions which are holomorphic exactly at G. Hence, the Mittag-Lefller result mentioned
above says that H.(G) # 0 for any domain G.

In 1933 Kierst and Szpilrajn [12] showed that at least for G = D the property
discovered by Mittag-Lefller is generic, in the sense that H.(D) is not only nonempty
but even residual —hence dense~ in H(D), that is, its complement in H(D) is of first
category. Recently, Kahane ([11, Theorem 3.1 and following remarks]; see also [10,
Proposition 1.7.6] and {4, Theorem 3.1]) has observed that Kierst-Szpilrajn’s theorem
can be extended to every domain G and to rather general topological vector spaces
X ¢ H(G) (including the full space X = H(G)); indeed, under suitable conditions on
X, he shows that H,(G) N X is residual in X. In other words, H.(G) N X is topologically
large in X.

Recently, we have proved [4] for the case G = D that under adequate hypotheses a
topological vector space X C H (D) satisfies that H.(D)N X is also algebraically large, in
the sense that the last subset contains —except for zero— some “large” (= dense, or closed
infinite-dimensional) linear manifold. Again, the case X = H(D) is covered. Note that
the fact that H,(G) is not a linear manifold increases the interest in this matter. As for a
general domain G, Aron, Garcia and Maestre [1, Theorem 8] had already proved in 2001
that H(G) contains a dense linear manifold M; as well as a closed infinite-dimensional
linear manifold M, such that M;\ {0} C H,(G) (i = 1,2). In fact, their result extends to
any domain of holomorphy in CV (see also [4, Theorem 5.1] for an independent, different
proof in the ‘dense’ case with N = 1), and the manifolds M; (i = 1,2) are even ideals.

In the terminology of [8], a subset S of a linear topological space E is spaceable
whenever S U {0} contains some closed infinite-dimensional subspace in E (see [8] and
[2] for nice, recent examples of spaceable sets). Therefore, under this convention, it has
been demonstrated in [1, Theorem 8] that H.(G) is spaceable in H(G).

Nevertheless, the approach in [1, Theorem 8] does not give any information about
how fast the functions in M; or M, can grow near the boundary. In {4, note after Theorem
5.1] it is suggested how this can be proved for the manifold M, (‘dense’ case) in H(G),
with G C C. Hence, it is natural to ask the following:

Given any prescribed (‘weight’) function ¢ : G — (0, +00), is the set

S, = {f € H.(G) : lil?jl.xp|f(z)|/cp(z) =+4ooforallt e BG}

spaceable in H(G)?

The main aim in this paper is to furnish an affirmative answer to this question.
This will be obtained in Section 2. Finally, in Section 3 we shall complete this study by
showing the existence of a dense linear submanifold M with mazimal algebraic dimension
~that is, dim(M) = x := the cardinality of the continuum- such that M \ {0} C S,,
where  is a given weight function as above.
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2. SPACEABILITY OF THE WEIGHTED NON-EXTENDIBILITY

Before establishing our main result, an auxiliary statement about basic sequences is
needed. Let us consider the Hilbert space L(T) of all (Lebesgue classes of) measurable
functions f : T — C with finite quadratic norm

Ifll2 = (/Ohlf(e“’)[2 d9/(27r))1/2_

Since (2")%2 _, is an orthonormal basis of L?(T), we have that (2"),3 is a basic sequence

in L*(T). Recall that two basic sequences (Zn)n>1, (¥n)n31 in a Banach space (E NIE II) are
o0

said to be equivalent if, for every sequence (an)n3) of scalars, the series Y anz, converges
00 n=1

if and only if the series ) anyn converges. This happens (see [3, p. 108]) if and only if

n=1
there exist two constants m, M € (0, +o0) such that, for every finite sequence (a;);=1,. s

of scalars, we have

(1)

J J
5| <D syl < MY agzs].
j=1 j=1

LEMMA 2.1. Assume that G is a domain with D C G and that (f;)j» C H(G)
is a sequence such that it is a basic sequence in L*(T) that is equivalent to (2%);5;. I

J()
{n=Yeun}

i=1
is a sequence In span(f;);»1 converging in H(G), then

J()

(2) sup D Jejul® < +oo.
teN S

PROOF: Observe first that, since D is a compact subset of G, convergence in H(G)
is stronger than convergence in L?(T)-norm. Therefore (h;)»1 converges in L%(T), so the
sequence (||h,||2)121 is bounded, say ||h]|; < @ (I € N). Let zj, y;, || - || be respectively
the function z — 27, the function f; and the norm || - [|,. Then, by (1), we get for every
[ € N that

J) J@) J() 2

m? Z lejul? = m? Zcﬂz’ > ek
i=1 2

Hence (2) is satisfied because the supremum is not greater that a?/m?. 0

2
= ||hl} < o?

Now, our main assertion about non-extendibility can be established.
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THEOREM 2.2. Let G C C be a domain and ¢ : G — (0, +00) be a function.
Then S, is spaceable in H(G).

Proor: We must prove the existence of an infinite-dimensional closed linear mani-
fold M in H(G) such that M \ {0} C S,. The case G = C being trivial, we may assume
G # C. We denote by G. the one-point compactification of G. Recall that in G, the
whole boundary 8G collapses to a unique point, say w. Without loss of generality, it can
be supposed that D C G.

We are going to choose countably many pairwise disjoint sequences {a(k, n): ne N}
(k € N) of distinct points of G \ D such that each of them has no accumulation point in
G and every prime end (see [5, Chapter 9]) of dG is an accumulation point of each such
sequence. The last property means, more precisely, the following: For every k& € N, every
a € G and every r > d(a, 8G), the intersection of {a(k,n): n € N} with the connected
component of B(a, ) NG containing a is infinite. In particular, every point t € dG would
be an accumulation point of each sequence {a.(k,n) n€E N}.

Let us show how such a family of sequences can be constructed. We begin with
k =1. Let {c; : j € N} be a dense countable subset of G. For each j € N choose b; € G
such that |b; —¢;| = d(c;, 8G). For every j € Nlet {dy;; : | € N} be a sequence of points
in [c;, b;] \ D such that

|dije— bl <1/(L+3+1) (45,l €N).

Then we choose as {a(1,n) : n € N} a one-fold sequence (without repetitions) consisting
of all distinct points of the set {d j; : j,! € N}. It is easy to check that {a(1,n): n € N}
satisfies the required property. In a second step —that is, for £ = 2- we can select for
every j € N a sequence {d, ;; : | € N} of points of [c;, b;] \ (E)Tu {a(1,n): n e N}) such
that, in addition,
|doji— bl <1/(2+35+1) (j,! €N);

this is possible due to the denumerability of {a(1,n) : n € N}. Again, we define {a(2,n) :
neN } as a sequence consisting of all distinct points of the set {dz;; : j,! € N}; it then
satisfies the required prime end property. It is now clear that this process can be repeated
inductively, so yielding the desired disjoint family

{{a(k,n) :neN}: ke N}.
Secondly, let us consider the subset A:=D U B C G, where
B := {a(k,n): k,n € N}.

Recall that for each k € N the sequence {a(k,n) : n € N} is an enumeration of the
distinct points of a certain subset {dx;;: j,[ € N} C G satisfying

(3) k4 — bsl (7,L e N).

1
<—
k+j+1
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We have that A is relatively closed in G. Indeed, the set of accumulation points of A in
G is just D (which is included in A) because the set of accumulation points of B in G is
empty. Let us explain why this is so. Assume, by way of contradiction, that z3 € G is an
accumulation point of B. Then there is a sequence of distinct points (dk(n),j(n),i(n))n31 i
B tending to z. Then the set {(k(n),j(n), l(n)) :ne N} is infinite, so at least one of
the sets of positive integers {k(n) : n € N}, {j(n) : n € N}, {{(n) : n € N} is infinite,
hence unbounded. Therefore the sequence (k(n) + j(n) + l("))n;1 is also unbounded,
thus k(n) + j(n) + [(n) > 2/d(20, 3G) for infinitely many n € N. Consequently,

[ dk(n).sim)im) — 20| = 120 = bjtm)| = | ki), icn)im) — bjimy)

1 d(zq, 6G)
> 40 06) -~y T im w2

for infinitely many n € N, which is absurd.

Thus, A is closed in G. But note that G, \ A4 is connected as well as locally connected
at w, because D is compact (so it is “far” from w, and we can suppose that the basic
connected neighbourhoods of w do not intersect D), G\D is connected and B is countable
(so deleting B from G \ D makes no influence in connectedness or local connectedness).
Let us consider, for every N € N, the function gy : A — C defined as

zN if 2 € D,
gn(z) = n(l + ¢(a(N, n))) if z=a(N,n) and n € N,
0 if z=a(k,n) and k,n € N with k # N.

Observe that gy is continuous on A and holomorphic on A% (= D). Then the Arakelian
approximation theorem (see [7, pp. 136-144]) guarantees the existence of a function
fv € H(G) such that

1
IfN(Z) - gN(z)| < v for all z € A.

Consequently, one obtains

(4) IfN(z) - le < 3LN for all z € D,
(5) IfN(a(N, n)) — n(l + ¢(a(N, n)))l <1 foralln €N, and
(6) IfN(a(k,n))l < 3LN for allm € N and all k € N\ {N}.

Finaily, we define the sought-after linear manifold M by
M := closureyg)(span{fy : N € N}).

It is clear that M is a closed linear manifold in H(G). On the other hand, we have from
(4) that ||fv — @nfla < 37V for all N € N (where pn(z) := zV). By using this last
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o0

inequality as well as the fact Y 3V < 1 together with the basis perturbation theorem
N=1

[6, p. 46, Theorem 9], we can derive that (fn)n31 is a basic sequence in L*(T). Indeed,

let (e,)n>1 be the sequence of coefficient functionals corresponding to the basic sequence
(z2™)n31- Since |lep]l2 =1 (n € N), one obtains

o0
3 lesllallin — enll < 1.
N=1

Therefore the perturbation theorem applies because (¢n)n31 is a basic sequence.

Since (fn)n31 is a basic sequence, we get that, in particular, the functions fy (N
€ N) are linearly independent. Hence M has infinite dimension.

It remains to show that M \ {0} C S,. Fix f € M \ {0}. Since the convergence in
H(G) is stronger that the convergence in L?(T), we have that (the restriction to T of) f

is in M := closureyz)(span{fy : N € N}). Therefore f has a (unique) representation
o0

f = c;fi in L*(T), because (fn)ny1 is a basic sequence in this space. But f # 0, so
i=1

there is N € N with ¢y # 0. On the other hand, there is a sequence

J(0)

{h[ = Ecj'[fj}
i=1 21

in span{f; : j € N} (without loss of generality, we can assume that J(l) > N for all l)
that converges to f compactly in G. By Lemma 2.1,

)
C:= supz gl < +oo.
teN =

But (h)i»1 also converges to f in L*(T), so the continuity of each projection

Y difje MdneC (meN)
5=1

yields that llim ¢ny = cn. In particular, there exists l € N such
—>00
(7) lena| > Ic—;l for all > Iy.

Let us fix n € N. Since the singleton {a(N, n)} is a compact subset of G, we get the
existence of a positive integer | = I(n) > ly such that

(8) |(a(N, m)) = f{a(N,m)| < 1.
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By using (5), (6), (7), (8), the triangle inequality and the Cauchy-Schwarz inequality,

we obtain

’f(a(N,n))| > ‘h:(a(N,n))‘ 1
Ji

2 |CN,!fN(a(N: "))‘ - Z‘Cj,tfj (a(N, ﬂ))i -1

JEN
> @(n(l + ¢(a(N, n))) - 1) —%ch,dé -1
oo J() 1
> ICTNl(n(l +¢(a(N, n))) - 1) - (;(%)2)1/2 (]}; |Cj,l|2> " -1
J#N
> @(n(l + ¢(a(N, n))) - l) -CcY2 -1,
Consequently,
"lggof(a(N, n)) = oo = nlir{.lof(a(N, n))/e(a(N,n)).

The second equality shows that lim sup] f (z)|/<p(z) = +oo for all ¢t € 3G, because each
zt

boundary point is a limit point of (z, := a(N, n))@l.

Now, it is time to use the prime end approximation property of the sequence (z,).
Suppose, by way of contradiction, that f ¢ S,. Then f & H,(G), so there must be a
point ¢ € G such that p(f,c) > d(c,0G). Choose r with d(c,0G) < r < p(f,c). By
the construction of the sequences (a(k,n))n21 (k € N), there exists a sequence {n; < n,
< ---} € N for which z,, € GN B(c,r) (j € N). Finally, the sum S(2) of the Taylor
series of f with centre ¢ is bounded on B(c,7). But S = f on G N B(c,7), so S(2n;)
= f(zn;) = 00 (j = 00), which is absurd. This contradiction finishes the proof.

3. MANIFOLDS WITH MAXIMAL ALGEBRAIC DIMENSION

We conclude this note with a theorem that completes our Theorem 2.2 as well as
Theorem 5.1 in [4] and (in the one-dimensional case) Theorem 8 in [1]. Specifically, we
are able to construct —for a prescribed function ¢ : G — (0, +00)- a linear submanifold
M c H(G) with M \ {0} C S, that is not only dense, but even it satisfies dim(M) = x
(notice that the dense linear manifold M whose construction is suggested in [4, note
following Theorem 5.1] was only of countably infinite dimension; in the opposite direction,
the dense manifold X provided in [1, Theorem 8] does satisfy dim(X) = x, but the
fact X \ {0} C S, does not hold). Observe that, as an easy consequence of Baire’s
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category theorem and of the fact that H(G) is infinite-dimensional, metrisable, separable
and complete, we have dim(H(G)) = x. Hence x is the maximal algebraic dimension
which is permitted for the submanifolds of H(G). For instance, the linear manifold M
constructed in the proof of Theorem 2.2 satisfies dim(M) = x (because it is a closed
subspace of H(G), so M is also infinite-dimensional, metrisable, separable and complete)
but it is not dense.

THEOREM 3.1. Let G C C be a domain and ¢ : G — (0,+00) be a function.
Then there is a dense linear manifold M in H(G) such that dim(M) = x and M \ {0}
C S,

PROOF: Again, the case G = C is trivial, so we suppose G # C. First, we consider
pairwise disjoint sequences {a(k,n) : n € N} (k € N), and then we select a sequence
{fv : N € N} C H(G). This is made exactly as in the proof of Theorem 2.2, with the
sole exception that instead of (5) we have

(9) \ fr (a(N,n)) - n1/2(1 +p(a(N, n)))| <1 forallneN.
In other words, with the notation of the proof of Theorem 2.2 we would define
gn(a(N,n)) := n1/2(1 + ¢(a(N, n))) (N,n € N)

before the application of Arakelian’s theorem. The key point will be that n!/? tends to
infinity as n — oo, but less rapidly than any power n" (N € N). Let us define

M, := closuregg) (span{fy : N € N}).

Therefore we obtain as in the proof of Theorem 2.2 that M; \ {0} C S,. As observed at
the beginning of this section, we have dim(M;) = x.

Second, fix an increasing sequence {K, : n € N} of compact subsets of G such
that each compact subset of G is contained in some K, and each component of the
complement of every K, contains some connected component of the complement of G
(see [13, Chapter 13]). Choose a dense countable subset {1, : n € N} of H(G). Now
congsider for each N € N the set Ay := KNU{a(k,n) 1 k,ne N}. In a similar way to the
proof of [4, Theorem 5.2], we have that Ay is closed in G and that G, \ Ay is connected
and locally connected at w. The function hy : Ay — C defined as

¥Yn(z) if z € Ky,

hn(z) = n”(l + w(a(k,n))) if z=a(k,n) (k,n €N) and 2 ¢ Ky

is continuous on Ay and holomorphic on A% (= K%). We now use again the Arakelian
approximation theorem to obtain this time a function Fy € H(G) such that

(10) |Fn(2) — hn(2)| < % for all z € Ap.
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From (10) we derive that [Fiy(z) — ¥n(2z)| < 1/N for all z € Ay and all N € N. These

inequalities together with the denseness of {1y : N € N} and the exhaustion property

of the family { Ky : N € N} yield the denseness of the sequence {Fy : N € N} in H(G).
Finally, we define M as

M :=span(M,U{Fy: N € N}).

Since M D {Fy : N € N} and M > M, it is evident that M is a dense linear submanifold
of H(G) and dim(M) = x. It remains to show that M\ {0} C S,. For this, fix a function
feM\{0}. If f € M, then we already know that f € S,. Thus, we can assume that
f € M\ M,. Then there are finitely many scalars ¢y,...,cn, ds, ..., d, with ¢y # 0 such
that

N B
(11) F=Y cFi+Y dif;.
j=1 j=1

Recall that according to the proof of Theorem 2.2 the set B := {a(k,n) : k,n € N} has
no accumulation point in G. In particular, each compact set K; may contain only finitely
many points a(k, n). Therefore we can derive from (10) the existence of a number ng € N
such that

(12) ‘Fj(a(N, n)) — nj(l + o(a(N, n)))l <1 foralln>ng (j=1,...,N).
On the other hand, we obtain by (6) and (9) that
(13) ’fj(a(N, n)){ < n‘/z(l + cp(a(N,n))) +1 (j=1,...,u;n€N).

To finish, from (11), (12), (13) and the triangle inequality it is deduced for n > ng that

o) 3 e (1 o)) ~1] = Sl (- olatvrm) +1]
(ildyl)[ 1/2(1+<p( (N,n))) +1],

Consequently,

lim f(a(N,n)) =oc0 = "li'rg\of(a(N, n))/¢(a(N,n)).

n—00

Then the desired conclusion may be achieved as in the last paragraph of the proof of
Theorem 2.2. 0

FINAL QUESTION. Do the analogues of Theorems 2.2 and 3.1 hold for a domain of holo-
morphy in CV?
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