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SUMMARY

The objective of this study was to assess the performance of several algorithms for outbreak
detection based on weekly proportions of whole carcass condemnations. Data from one French
slaughterhouse over the 2005-2009 period were used (177 098 slaughtered cattle, 0.97% of whole
carcass condemnations). The method involved three steps: (i) preparation of an outbreak-free
historical baseline over 5 years, (ii) simulation of over 100 years of baseline time series with
injection of artificial outbreak signals with several shapes, durations and magnitudes, and (ii1)
assessment of the performance (sensitivity, specificity, outbreak detection precocity) of several
algorithms to detect these artificial outbreak signals. The algorithms tested included the Shewart
p chart, confidence interval of the negative binomial model, the exponentially weighted moving
average (EWMA); and cumulative sum (CUSUM). The highest sensitivity was obtained using a
negative binomial algorithm and the highest specificity with CUSUM or EWMA. EWMA
sensitivity was too low to select this algorithm for efficient outbreak detection. CUSUM’s
performance was complementary to the negative binomial algorithm. The use of both algorithms
on real data for a prospective investigation of the whole carcass condemnation rate as a
syndromic surveillance indicator could be relevant. Shewart could also be a good option
considering its high sensitivity and simplicity of implementation.
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INTRODUCTION veterinary inspectors aim to detect any lesions that
could have an impact on meat consumption without
necessarily performing a diagnosis of each case.
Consequently, meat inspection data (condemned por-
tions and reasons for condemnation) are generally

non-diagnostic, except in cases of regulated diseases

Slaughterhouses are central processing points for cat-
tle where each animal undergoes an ante-mortem and
post-mortem inspection. During this inspection,
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such as tuberculosis. These data cover a large popu-
lation and are complementary to other sources such
as mortality records or on-farm information, and
present information that are not available through
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any other type of animal records. All these character-
istics make meat inspection data a good candidate for
syndromic surveillance [1]. Syndromic surveillance
can be defined as the monitoring of non-specific health
indicators including clinical signs, symptoms and
proxy measures, to enable early identification of the
impact (or absence of impact) of potential human or
veterinary public health threats [2].

Meat inspection data availability was scarce at
worldwide level until recently. In France, a pilot proj-
ect called ‘Nergal-Abattoir’ was implemented from
2005 to 2010 to collect data in real time in ten cattle
slaughterhouses. Based on these meat inspection
data, several health indicators could be used for
early detection of outbreaks (of known or emerging
diseases) through syndromic surveillance [3]. Using
such indicators could raise alarms that should be
investigated to identify the cause (animal health
hazards, public health hazards, slaughtering process
issues). We started investigating whole carcass con-
demnation as an indicator because it is often linked
to acute conditions. It therefore reduces the dilution
bias due to the variable period of time between cattle
infection and the detection of lesions at the slaughter-
house. Little information is available to enable the in-
terpretation of an abnormal increase in the proportion
of whole carcass condemnations retrospectively. So a
simulation approach already used in previous studies
[4, 5] was applied to investigate the potential of moni-
toring whole carcass condemnation rates for syndro-
mic surveillance. This objective work was to assess
the performance of several algorithms for outbreak
detection based on weekly proportions of whole car-
cass condemnations in one French slaughterhouse.

MATERIALS AND METHODS
Materials

The Nergal-Abattoir project made it possible to col-
lect data in real time during the slaughtering process.
Data were collected using touch screens on the slaugh-
ter lines and transmitted through a constant data flow
to the database of the French Ministry of Agriculture.

Of the ten slaughterhouses involved in the Nergal-
Abattoir project, one in the Manche département
(French administrative area) provided adequate repre-
sentativeness of the slaughtered cattle of the
département and was therefore selected for this pilot
study. Veal calves (cattle aged <8 months) were
excluded because the farming practices and
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commercial network for this animal category are
very specific and because they were not well repre-
sented in the dataset [6].

Condemnation data from this slaughterhouse from
the years 2005-2009 were used. For each animal in-
cluded, the database contained the identification num-
ber, dates of birth and slaughter, département of last
farm location, sex, breed and reasons for condem-
nation. This last information was not used because
this study focused on a generic surveillance indicator.
The age of cattle was classified according to European
Regulations [7] and zootechnical considerations into
three age groups: 8-24 months, 2-5 years, and >5
years. Cattle breeds were grouped according to pro-
duction type as defined by the French national organ-
ization of agriculture products, into three categories
‘dairy’, ‘beef’ and ‘mixed’ cattle [8].

Methods

The method used comprised three steps. First was the
preparation of an outbreak-free historical baseline,
representing weekly condemnation proportions over
5 years. The second step was the use of these historical
data to simulate over 100 years of baseline time series,
and the injection of artificial outbreak signals with
several shapes, durations and magnitudes. The last
step was the assessment of the performance of several
algorithms to detect these artificial outbreak signals.

Retrospective time-series analysis: definition of an
outbreak-free historical baseline

A descriptive analysis of the weekly proportion of cat-
tle with whole carcass condemnation was performed
using summary statistics by week, month and year
as well as moving average charts. Autocorrelation
and partial autocorrelation were investigated.

To define an outbreak-free historical baseline, re-
gression models were fit to the time series of the
weekly number of cattle with whole carcass condem-
nation (227 weeks available from 6 June 2005 to 9
October 2009). Poisson and negative binomial models
were investigated. For each model tested, an offset
with the weekly number of slaughtered cattle was
used.

The following covariates were investigated: age,
sex, production type, seasonality through a sinusoidal
trend (annual, bi-annual, quarterly, monthly) and all
possible combinations of these seasonalities. Age
and sex were taken into account as a combined
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Fig. 1. Description of steps in the method for outbreak-free baseline construction and simulation of 40 outbreak

scenarios.

age-sex variable because of the correlation between
these two variables [6]. It was systematically included
in each model tested because of its known impact on
whole carcass condemnation [6]. Interactions between
all variables were also investigated. For each model,
fit was assessed using the analysis of residuals and
Pearson goodness-of-fit test. Comparisons between
models were performed using Akaike’s Information
Criteria (AIC); the model with the lowest AIC was
selected.
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Because no information was available regarding
outbreaks during the period of data available for
this study, it was not possible to remove aberrations
based on biological reasons. To remove temporal
aberrations, the procedure elaborated by Tsui et al
[9] and tested by Dorea et al. on veterinary laboratory
data [10] was used. The procedure consisted in fitting
the previously selected model on the entire dataset and
replacing each data point above the one-sided 95%
confidence interval (CI) (Fig. 1) by the value of this
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CI. This value was obtained using the 95th percentile of
the Poisson or negative binomial distribution (depend-
ing on the nature of the model previously selected) with
the mean defined as the value estimated by the model for
each time point (week). The assumption was made that
these time points above the one-sided 95% CI repre-
sented aberrations in the time series (indicative or not
of outbreak signals) or excessive random noise. The
new dataset could then be considered as an outbreak-
free historical baseline (Fig. 1).

Simulated data with outbreak signals

The model including all significant covariates pre-
viously selected was fitted to this outbreak-free histori-
cal dataset. It was then used to predict weekly values
on the following 5048 weeks, using the method pre-
sented by Dorea et al [4]: the predicted value for
each week was used to define the mean of a Poisson
or negative binomial distribution (depending on the
model selected). A value was randomly sampled for
each week using the distribution defined for that
week. The dataset created was the simulated baseline
(Fig. 1).

Artificial outbreak signals were introduced in the
simulated baseline. An initial period of 208 weeks
with no outbreaks was set, and a buffer period
(fixed number of weeks between two outbreaks) of
12 weeks was defined using baseline values. Due to
the lack of information regarding outbreak shapes
based on the analysis of the impact of real outbreaks
on condemnation data, we decided to use several out-
breaks shapes previously proposed in the literature
[5, 11].

Different combinations of outbreak shape (spike,
flat, linear, exponential), magnitude (1-4) and dur-
ation (2, 4, 8 weeks) made it possible to create 40
scenarios (Fig. 1):

e Four scenarios with introduction of outbreaks with
a spike shape (magnitudes 1, 2, 3 and 4).

e Twelve scenarios with introduction of outbreaks
with respectively flat, linear and exponential shapes,
combining the four outbreak magnitudes with the
three durations.

To implement the four outbreak magnitudes, the
weekly Poisson or negative binomial distributions,
previously used to create the simulated baseline,
were used to sample four values (number of cattle
with whole carcass condemnation) for each week.
For an outbreak of magnitude 1, one value was
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added to the baseline value for the dedicated week,
for an outbreak of magnitude 2, two values were
added to the baseline value, and so forth. This value
was called the ‘intensified value’. To obtain the four
shapes and three durations, a coefficient was applied
to the intensified value. For spike and flat shapes,
the intensified value was kept without modification.
For linear and exponential shapes, the coefficients
increased from 0 to 1 linearly and exponentially re-
spectively during the outbreak duration to obtain
the right shape. For example, for a linear outbreak
with a duration of 4 weeks, the value of the first
week was multiplied by 0.25, the second by 0.5, the
third by 0.75 and the fourth by 1 to obtain a linear in-
creasing shape. The same process was applied for the
exponential shape, e.g. for 4 weeks: 0.46 for the first
week, 0.59 for the second, 0.77 for the third and
1 for the last week.

Outbreak detection and performance assessment

Detection algorithms. Four algorithms were investi-
gated for outbreak detection: the Shewart p chart,
one-sided confidence interval of the previously selec-
ted model (Poisson or negative binomial model), ex-
ponentially weighted moving average (EWMA) and
cumulative sum (CUSUM). These algorithms are
commonly used for outbreak detection [12-14]. For
each method, several detection parameters were eval-
uated (Table 1).

Shewart p chart is an attribute control chart, based
on the binomial distribution that enables the detection
of outbreaks through proportions [15]. For each week
Jj, the mean proportion of whole carcass condemnation
p and an upper control limit [UCL(p)] were computed
as follows:

where x; is the number of cattle with whole carcass
condemnation in week i; n; and n; are the number of
cattle slaughtered during weeks 7 and j, respectively;
and k is a constant that determines how sensitive the
control chart will be.

An alarm was raised for week j if the observed pro-
portion of whole carcass condemnation was higher
than UCL(p);.

Poisson or negative binomial models were also used
for outbreak detection. The number of cattle with
whole carcass condemnation for week j was predicted
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Table 1. Description of algorithms tested for outbreak detection

Algorithm Applied on

Parameters investigated

Shewart p chart
Poisson or negative
binomial model
week by week

Weekly proportion of cattle with whole carcass condemnation
Weekly number of cattle with whole carcass condemnation. The weekly
number of slaughtered cattle was added as an offset. The model was fitted

k=13,20r3
One-sided 80%, 85%, 90%,
95%, 99% CI

EWMA Residuals of Poisson/negative binomial model previously defined A=0-1,0-2 or 0-4
L=13o0r2
CUSUM Residuals of Poisson/negative binomial model previously defined H=2or3

EWMA, Exponentially weighted moving average; CUSUM, cumulative sum; CI, confidence interval; k, number of standard
deviations; 4, smoothing parameter of the EWMA; L, number of standard deviations; H, value of the upper control limit.

by the model selected to build the outbreak-free his-
torical baseline on data of the j— 1 previous weeks.
A baseline of 208 weeks was used, meaning that pre-
diction only started at week 209. The one-sided CI
defined the UCL for week j [UCL(M)]. If the
observed value for week j was higher than the UCL
(M);, an alarm was raised. The observed value for
week j was replaced by UCL(M); for the next step
(i.e. fitting the model on the j previous weeks and
predicting the number of whole condemnations for
week j+ 1).

EWMA was applied on residuals of the model pre-
viously selected. The EWMA statistic Z and the upper
control limit UCL(Z) for each week j were computed
as [16]:

Z; = X*Res; + (1 — 1)*Z;_; forjin[209: jma] and
UCL(Z)J = 71 —|— L*O’Zj,

where A is the smoothing parameter, Res; is the
residual for week j, L is the magnitude above the
expected value, Z; is the mean value of Z; from
week; to week;_i,

O'ij = var(ResjE[l;j_l]) (m) [1 — (1= /1)2./].

The first value Z, was defined as the mean of
residuals from week; to week,pg (baseline).

An alarm was raised for week j if Z; was higher than
UCL(2),.

CUSUM was performed on residuals of the model
previously selected. CUSUM for each week j was
calculated as follows [16]:

CUSUM; = max{0, (res; — res<;) + CUSUM;_,}
If CUSUM; was above H (an a priori fixed upper con-

trol limit), an alarm was raised and the CUSUM value
was reset to zero.
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Performance indicators

Three performance indicators were calculated for each
outbreak detection algorithm, i.e. sensitivity, specifi-
city and outbreak detection precocity.

Sensitivity was defined as the number of real out-
breaks detected (injected outbreak signal for which
an alarm was raised) divided by the total number of
outbreak signals injected in the dataset. An outbreak
was considered as detected if the outbreak was
detected for at least 1 week.

Specificity was defined as the proportion of weeks
for which no alarm was raised in weeks without an
injected outbreak (i.e. weeks between the injected
outbreaks).

Outbreak detection precocity was defined as the
mean week of detection for a given simulated out-
break signal shape, when this outbreak signal lasts
more than 1 week. This indicator is therefore not
relevant for the spike shape, simulated to last only
1 week.

Performance indicators were computed for each
outbreak detection algorithm applied to each of the
40 scenarios and for each age-sex category. For each
algorithm and parameter evaluated, the median, mini-
mum and maximum values of each performance indi-
cator were calculated for the 16 values for the spike
shape (four age-sex categories, four scenarios) and
48 values for the other shapes (four age-sex categories,
12 scenarios). These ‘summary statistics’ were also
computed separately for each age-sex category.

For each algorithm, the selection of what could be
considered as the best parameter of those investigated
was made through examination of the four combina-
tions of median sensitivity and specificity (one for
each shape). We set a minimum median sensitivity
of 0.95; if this condition was fulfilled, we chose the
parameter that gave the best median sensitivity while


https://doi.org/10.1017/S0950268814003495

2564  C. Dupuy and others

N _
Q L X
= o -
Q vﬂg
< RS
= =
2 2
= L B
< = o
S Eg| QT Qe
S| ¥ D
3 Oo|o—~c~
T
v —_
S0 X | A~~~
N Sl B ADNEA NN
S VT- | N ANondS
Al =S ] NN — N —
N “— = [ a2
= — oS | XA ==
= = o) | F N>~ 0D
s b S 2| oo wao =~
S o S|l A"~
S = Z & —
N
S 03
S =2 X
-~ o
= < g
S =3
S ==
Q s g
~ g
Q 28
= =t DN NO NN
3 RE|Dinwn T
= Oo|ddd~S
)
= )
~ E—O
8 < 2
© 38
S S| moaoaq
B Gy o | <t >~ Vv — 0
= 1) : 3| O~ v <+
S 5] O & | en W
N M| Z=| — e
§
= 3
N L X
-} o -
) <
2 = S
S = 5
S 23
S
3 Sk
) B <t \© 0 O ©
3 SE|lTAD—®
= UOo|lo~~
=
= 5]
= = o
= = 8
S S 8
= Lol “5& n< <<t
= o] | nen St O —
S X g 2|®—vVaw
S S S| vy Ao
\ Zw — — — N o0
S
N
S PEC
N EORIN
= o
s =
) g
Y ES
Q = B
= =]
X g g
< =
N L 8
S EE|evoaywmn
~ < = o a
o| ¥~ <
Y VOo|ldd S~~~
)
= )
50 =
3 = &
S o aQ
L
“ S| S| vonanmn—
) - M S Ao o
= B! g3 |Smoaa
-~ I E cnv-“'v—‘\o
S A Zw — [9\ Vel
S —_
m/-\
5 =2 _ 7
N -
< §8¢ s
S E%cdﬂ)
N m®>\
= AL
NNV A
. |~ | ~
5 | L3823
QL 2|1 8585
< X V| =S E= E S
NA o0 5] o O
E 2 <|=2m=mE

https://doi.org/10.1017/50950268814003495 Published online by Cambridge University Press

maintaining an acceptable median specificity of at
least 0.97. If the sensitivity and specificity values
were similar, then detection precocity was compared.
For each algorithm, we then had one best parameter
for each shape. If it was not the same for each
shape, we chose the one that had the highest occur-
rence out of the four. Only results with these selected
parameters are presented and discussed.

All methods were implemented using the R en-
vironment [17].

RESULTS
Studied population

The 177098 cattle slaughtered in the slaughterhouse
of the Manche département from 6 June 2005 to 9
October 2009 (227 weeks) were included in the
study. Females aged 8-24 months (rn=465) and
males aged >5 years (n=423) were excluded (too
few animals). During the study period, the proportion
of cattle within the studied population ranged from
16.2% to 33.7% according to age-sex categories
(Table 2). The proportions of cattle with whole car-
cass condemnation were similar in the female age
groups (1.34% and 1.38% for age groups 2-5 and >5
years, respectively), and lower in males (0.49% and
0.42% for age groups 8-24 months and 2-5 years,
respectively) (Table 2).

Retrospective time-series analysis and simulated data

The descriptive analysis highlighted that the weekly
proportions of cattle with whole carcass condem-
nation presented low autocorrelations and a week
number effect.

A model selection process was conducted to select
the following negative binomial model:

Y ~ age-sex *(cos(2*pi*t/52) + sin(2*pi*1/52))
+ offset(log (V)), (D)

where Y is the weekly number of cattle with whole
carcass condemnation, age-sex is the combined age
and sex categorical variable, ¢ is the week number
(from 1 to 227), and N is the weekly number of cattle
slaughtered.

The production type was not kept in the final
model. The age-sex variable led to the construction
of four time series, one for each category.

The outlier removal procedure enabled the removal of
1-5 time points (out of the 227) depending on the age-sex
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Table 3. Summary statistical values of performance indicators for all age-sex categories. For each indicator the
median (minimum-maximum) values for each age-sex category, each outbreak duration and magnitude are presented
by outbreak shape and outbreak detection algorithm

Sensitivity, median (min-max) Specificity, median (min-max) Precocity, median (min-max)

Spike

Shewart

CUSUM

EWMA

Negative binomial
Flat

Shewart

CUSUM

EWMA

Negative binomial
Linear

Shewart

CUSUM

EWMA

Negative binomial
Exponential

Shewart

CUSUM

EWMA

Negative binomial

0-85 (0-48-1-00)
0-82 (0-30-1-00)
0-56 (0-36-0-81)
0-89 (0-50-1-00)

0-99 (0-71-1-00)
0-99 (0-55-1-00)
0-81 (0-44-0-99)
1-00 (0-75-1-00)

0-96 (0-65-1-00)
0-99 (0-44-1-00)
0-78 (0-34-1-00)
0-99 (0-70-1-00)

0-96 (0-66-1-00)
0-99 (0-48-1-00)
0-78 (0-38-1-00)
0-99 (0-71-1-00)

0-93 (0-90-0-96)
0-95 (0-89-0-97)
0-96 (0-92-0-97)
0-90 (0-87-0-92)

0-97 (0-91-0-99)
0-99 (0-94-1-00)
0-99 (0-94-1-00)
0-95 (0-90-0-99)

0-96 (0-91-0-99)
0-98 (0-92-1-00)
0-98 (0-93-0-99)
0-94 (0-90-0-99)

0-96 (0-91-0-99)
0-98 (0-93-1-00)
0-97 (0-93-0-99)
0-94 (0-90-0-99)

1-28 (1-01-2-68)
1-35 (1-00-3-22)
279 (1-43-4-01)
1-16 (1-00-2-15)

241 (1-09-4-70)
232 (1-06-5-29)
3-51 (1-62-6-00)
1-97 (1-02-3-97)

2:04 (1-03-4-90)
1-94 (1-03-5-43)
335 (1-58-6-37)
1-72 (1-01-4-24)

CUSUM, Cumulative sum; EWMA, exponentially weighted moving average.
Parameters for each algorithm were: Shewart, K=1-3; CUSUM, H=2; EWMA, lambda=0-4 and L =1-3; negative

binomial, CI 80%.

category considered (Fig. 1). We obtained 227 weeks of
data that could be considered as the outbreak-free his-
torical baseline for each age-sex category. After the simu-
lation of 5675 weeks of data for each age-sex category,
outbreak signals were injected based on the 40 possible
scenarios (Fig. 1). Depending on the scenario, the num-
ber of outbreaks injected ranged from 274 to 421.

Outbreak detection algorithm performance
Parameter selection for each algorithm

Based on the summary statistics values of the perform-
ance indicators, the best parameter values were:

e A value of 1.3 for K for the Shewart chart.

e The one-sided 80% confidence interval (CI) for the
negative binomial model.

e An UCL of 2 for CUSUM.

e A value of 1.3 for L and of 0.4 for A for EWMA.

Performance indicators

For each algorithm, the sensitivity and specificity were
higher for detection of outbreaks with a flat shape
than for those with a spike shape, with the linear

https://doi.org/10.1017/50950268814003495 Published online by Cambridge University Press

and exponential shapes falling between the two
(Table 3). Detection precocity was higher for the de-
tection of outbreaks with an exponential shape than
for those with a linear shape. For each algorithm, the
sensitivity increased with the outbreak magnitude, es-
pecially from magnitudes 1 to 3. Specificity increased
with the outbreak magnitude for the Shewart and
CUSUM algorithms but was not impacted by magni-
tude for EWMA and the negative binomial algorithm
(Table 4). This effect of the magnitude on sensitivity
and specificity decreased with outbreak duration. For
each algorithm, the sensitivity and specificity increased
with outbreak duration except for EWMA, for which
sensitivity decreased between the durations of 2 and 4
weeks (Table 5).

For the CUSUM and EWMA algorithms, specifi-
city was similar for each age-sex category. For the
Shewart control chart, specificity was lower for
males aged 2-5 years than for all other age-sex cat-
egories. For the negative binomial algorithm, males
aged 8-24 months and 2-5 years had lower specifici-
ties than females aged 2-5 years and >5 years
(Supplementary Tables S1-S4). For each algorithm,
the sensitivity decreased according to age-sex
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Table 4. Summary statistical values of performance indicators for all age-sex categories. For each indicator the
median (minimum-maximum) values for each age-sex category and outbreak duration are presented by outbreak
shape and outbreak detection algorithm

Magnitude

1

Shewart
Spike

Flat
Linear

Exponential

CUSUM
Spike

Flat
Linear
Exponential

EWMA
Spike

Flat
Linear
Exponential

Negative binomial
Spike

Flat
Linear

Exponential

0-69 (0-48-0-87)
0:92 (0-90-0-93)
0-96 (0-71-1-00)
0-95 (0-91-0-98)
091 (0-65-0-97)
0-94 (0-91-0-97)
0-90 (0-66-0-97)
0-94 (0-91-0-96)

0-66 (0-30-0-92)
0-92 (0-89-0-95)
0-97 (0-55-1-00)
0-98 (0-94-0-99)
0-92 (0-44-1-00)
0-96 (0-92-0-98)
0-92 (0-48-1-00)
0-97 (0-93-0-98)

0-45 (0-36-0-55)
0-95 (0-92-0-96)
0-70 (0-44-0-93)
0-99 (0-94-1-00)
0-63 (0-34-0-95)
0-98 (0-93-0-99)
0-65 (0-38-0-94)
0-97 (0-93-0-99)

0-75 (0-50-0-91)
0-89 (0-87-0-92)
0-99 (0-75-1-00)
0:95 (0-90-0-99)
0:95 (0-70-1-00)
0-94 (0-90-0-98)
0-95 (0-71-0-99)
0-94 (0-90-0-98)

0-84 (0-62-0-96)
0-93 (0-91-0-94)
0-99 (0-83-1-00)
0-97 (0-93-0-99)
0-96 (0-79-1-00)
0-95 (0-92-0-98)
0-96 (0-80-1-00)
0-95 (0-92-0-98)

0-81 (0-45-0-98)
0-93 (0-92-0-96)
0-99 (0-71-1-00)
0-99 (0-96-1-00)
0-99 (0-61-1-00)
0-97 (0-95-0-99)
0-98 (0-65-1-00)
0-98 (0-95-0-99)

0-59 (0-47-0-70)
0-96 (0-92-0-97)
0-79 (0-53-0-97)
0-99 (0-95-1-00)
0-77 (0-46-0-97)
0-98 (0-94-0-99)
0-78 (0-47-0-97)
0-97 (0-94-0-99)

0-89 (0-65-0-98)
0-90 (0-87-0-92)
1-00 (0-88-1-00)
0-95 (0-91-0-99)
0-99 (0-84-1-00)
0-95 (0-90-0-98)
0-99 (0-84-1-00)
0-95 (0-91-0-98)

0-90 (0-70-0-99)
0-94 (0-91-0-95)
1-00 (0-88-1-00)
0-98 (0-94-0-99)
0-99 (0-83-1-00)
0-96 (0-93-0-98)
0-98 (0-85-1-00)
0-97 (0-93-0-98)

0-87 (0-58-0-99)
0-94 (0-94-0-96)
1-00 (0-79-1-00)
0-99 (0-98-1-00)
0-99 (0-69-1-00)
0-98 (0-96-1-00)
0-99 (0-74-1-00)
0-99 (0-97-0-99)

0-66 (0-54-0-77)
0-96 (0-94-0-97)
0-84 (0-59-0-97)
0-99 (0-96-1-00)
0-85 (0-54-0-99)
0-98 (0-95-0-99)
0-85 (0-56-0-99)
0-97 (0-95-0-99)

0-93 (0-74-1-00)
0-90 (0-87-0-92)
1-00 (0-94-1-00)
0-95 (0-91-0-99)
1-00 (0-89-1-00)
0:95 (0-91-0-99)
1-00 (0-90-1-00)
0-95 (0-91-0-99)

0-94 (0-73-1-00)
0-95 (0-92-0-96)
1-00 (0-94-1-00)
0-98 (0-95-0-99)
1-00 (0-88-1-00)
0-97 (0-93-0-99)
0-99 (0-89-1-00)
0-97 (0-94-0-99)

0-90 (0-64-1-00)
0-95 (0-95-0-97)
1-00 (0-86-1-00)
1-00 (0-98-1-00)
0-99 (0-78-1-00)
0-99 (0-97-1-00)
1-00 (0-79-1-00)
0-99 (0-98-1-00)

0-70 (0-56-0-81)
0-96 (0-95-0-96)
0-84 (0-64-0-99)
0-99 (0-96-1-00)
0-88 (0-61-1-00)
0-97 (0-95-0-99)
0-87 (0-62-1-00)
0-97 (0-96-0-99)

0-96 (0-78-1-00)
0-90 (0-87-0-92)
1-00 (0-97-1-00)
0-95 (0-91-0-99)
1-00 (0-94-1-00)
0-95 (0-91-0-99)
1-00 (0-95-1-00)
0-95 (0-91-0-99)

Se, Sensitivity; Sp, specificity; CUSUM, cumulative sum; EWMA, exponentially weighted moving average.

Parameters for each algorithm were: Shewart, K=1-3; CUSUM, H=2; EWMA, lambda=0-4 and L =1-3; negative

binomial, CI 80%.

categories in the following order: females aged >5
years; females aged 2-5 years; males aged 8-24
aged 2-5 years

months; males
Tables S1-S4).

For each outbreak shape, sensitivity was higher for
the negative binomial algorithm than for the EWMA
algorithm, with the CUSUM and Shewart chart fall-
ing between the two. Specificity was higher for
EWMA and CUSUM than for the negative binomial
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(Supplementary

DISCUSSION

ance of several

algorithm with the Shewart chart falling between the
two (Table 3).

The objective of this study was to assess the perform-
outbreak detection algorithms
applied to the weekly proportion of whole carcass
condemnations through a simulation strategy. More
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Table 5. Summary statistical values of performance indicators for all age-sex categories. For each indicator the
median (minimum-maximum) values for each age-sex category and outbreak magnitude are presented by outbreak

shape and outbreak detection algorithm

Duration
2
Shewart
Flat Se 0-95 (0-71-1-00)
Sp 0-95 (0-91-0-98)
Linear Se 0-90 (0-65-1-00)
Sp 0-94 (0-91-1-00)
Exponential Se 0-92 (0-66-1-00)
Sp 0-95 (0-91-0-98)
CUSUM
Flat Se 0-96 (0-55-1-00)
Sp 0-98 (0-94-0-99)
Linear Se 0-92 (0-44-1-00)
Sp 0-96 (0-92—-1-00)
Exponential Se 0-94 (0-48-1-00)
Sp 0-97 (0-93-0-98)
EWMA
Flat Se 0-74 (0-51-0-96)
Sp 0-96 (0-94-0-97)
Linear Se 0-69 (0-47-0-94)
Sp 0-96 (0-93-0-96)
Exponential Se 0-72 (0-51-0-95)
Sp 0-96 (0-93-0-97)
Negative binomial
Flat Se 0-98 (0-75-1-00)
Sp 0-92 (0-90-0-94)
Linear Se 0-96 (0-70-1-00)
Sp 0-92 (0-90-1-00)
Exponential Se 0-97 (0-71-1-00)
Sp 0-92 (0-90-0-94)

0-99 (0-83-1-00)
0-97 (0-93-0-99)
0-95 (0-75-1-00)
0-96 (0-91-1-00)
0-96 (0-75-1-00)
0-96 (0-92-0-99)

0-99 (0-75-1-00)
0-99 (0-97-1-00)
0-98 (0-59-1-00)
0-98 (0-95-1-00)
0-99 (0-65-1-00)
0-98 (0-96-1-00)

0-67 (0-44-0-84)
0-99 (0-99-1-00)
0-62 (0-34-0-89)
0-99 (0-98-0-99)
0-63 (0-38-0-89)
0-99 (0-99-0-99)

1-00 (0-89-1-00)
0-95 (0-93-0-97)
0-99 (0-80-1-00)
0-94 (0-92-1-00)
0-99 (0-81-1-00)
0:95 (0-93-0-97)

1-00 (0-94-1-00)
0-98 (0-95-0-99)
0-99 (0-89-1-00)
0-97 (0-93-1-00)
0-97 (0-85-1-00)
0-96 (0-92-0-99)

1-00 (0-92-1-00)
1-00 (0-99-1-00)
0-99 (0-84-1-00)
0-99 (0-98-1-00)
0-99 (0-75-1-00)
0-99 (0-97-1-00)

0-91 (0-81-0-99)
0-99 (0-99-1-00)
0-90 (0-76-1-00)
0-98 (0-97-1-00)
0-88 (0-70-1-00)
0-97 (0-96-0-97)

1-00 (0-99-1-00)
0-98 (0-95-0-99)
1-00 (0-94-1-00)
0-97 (0-95-1-00)
0-99 (0-91-1-00)
0-97 (0-94-0-99)

Se, Sensitivity; Sp, specificity; CUSUM, cumulative sum; EWMA, exponentially weighted moving average.
Parameters for each algorithm were: Shewart, K=1-3; CUSUM, H=2; EWMA, lambda=0-4 and L =1-3; negative

binomial, CI 80%.

than 4 years of historical data were used to simulate
more than 100 years of data and then evaluate the per-
formance of the Shewart p control chart, EWMA,
CUSUM and negative binomial algorithms.

Algorithm performance

The number of weeks of simulated data (rn=15675
weeks) was chosen in order to be able to include
enough outbreaks signals, at least 200 as recom-
mended by Dorea et al., to obtain relevant perform-
ance indicator estimations [4].

The sensitivity definition was based on an outbreak
scale whereas the specificity definition was based on a
weekly scale. This was necessary to enable compari-
sons between outbreaks of different durations.
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The simulated data into which outbreak signals
were injected were meant to represent the raw, unpro-
cessed data that a fully operational syndromic surveil-
lance system would have to analyse daily. These data
will have some expected noise, which the simulation
process aimed to reproduce (that is, a cut-off value
for removal of outbreaks was not applied).
However, the aberration detection algorithms were
trained with data that were pre-processed in order to
remove excessive noise (using a cut-off value of 95%
for outlier removal). This removed not only possible
outbreak signals in historical data, but also normal
variation and noise. This causes the aberration detec-
tion algorithms to have increased sensitivity, which is
a desired feature of the system, at a cost of decreased
specificity.
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For each outbreak detection algorithm, several
parameters were investigated. The best parameters
were those that induced the best sensitivity while striv-
ing at the same time to maintain an acceptable specifi-
city. A specificity of at least 0.97, meaning that less
than 3% of false alarms are generated, is commonly
used in biosurveillance [18]. In this study we stressed
sensitivity, setting a minimum level of 0.95 before con-
sidering specificity, because we thought that in the
context of meat inspection higher sensitivity was
worth a higher number of false alarms. Hence the
negative binomial algorithm had a median specificity
of only 0.94 for linear and exponential shapes. This
was also the case for the spike shape for which all
the algorithms investigated gave a median specificity
of between 0.9 and 0.96. A specificity of 0.94 means
a 6% false alarm rate, corresponding to three false
alarms per year in the absence of aberrations. Even
if the number of false alarms must be low in order
to maintain trust in the system and an appropriate
communication strategy between all surveillance
stakeholders, this number seems reasonable and
compatible with appropriate investigations at the
département level.

The same tendency was observed for all the algorithms
with regard to outbreak shape: sensitivity and specificity
were higher for detection of outbreaks with a flat shape
than for those with a spike shape, with the linear and
exponential shapes falling between the two. This is sur-
prising because each algorithm is commonly known to
have dedicated performances: Shewart charts for detec-
tion of single spikes, CUSUM for detection of shifts in
the process mean and EWMA for detection of gradual
increases in the mean. Their performance was found to
be similar regarding outbreak shape when applied to
the weekly proportion of whole carcass condemnations.
For the spike shape, none of the algorithms investigated
were able to obtain high sensitivity (median sensitivity
between 0.56 and 0.89) or high specificity (median spe-
cificity between 0.90 and 0.96). The best sensitivity/spe-
cificity pair was obtained for the negative binomial
algorithm (median sensitivity = 0.89, median specificity
=0.90) but no algorithm provided satisfactory detection
of this type of outbreak. However, this lack of detection
compared to the other outbreak shapes could be an
artefact due to the short duration of these outbreaks
compared to other shapes. It was also logical that the
highest sensitivity values were obtained for the flat
shape, and not for the linear or exponential shapes, be-
cause these latter had the highest number of days with
high proportions for each scenario.
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The difference observed in terms of detection per-
formances between females and males could be linked
to the fact that the proportion of cattle with whole car-
cass condemnation was higher for females than for
males in our dataset. This had a direct effect on sensi-
tivity and specificity.

This study showed that the highest sensitivity was
obtained using the negative binomial algorithm and
the highest specificity using CUSUM or EWMA.
EWMA sensitivity was too low to select this algorithm
for efficient outbreak detection. CUSUM showed per-
formance that was complementary to the negative bi-
nomial algorithm. The use of both algorithms on real
data for a prospective investigation of the whole car-
cass condemnation rate as a syndromic surveillance
indicator could be relevant. The Shewart control
chart could also be a good option considering its
high sensitivity and simplicity of implementation.

Combining several algorithms could be a way of
improving syndromic surveillance system perform-
ance. For instance, to obtain maximum sensitivity,
an investigation could be performed if at least one al-
gorithm generates an alert. To obtain maximum spe-
cificity, an investigation could be performed only if
an alert is generated by all algorithms. A balance be-
tween sensitivity and specificity should be found in
order to define the threshold of the number of alerts
above which investigations must be conducted. This
will depend on the objective of the system and the
financial resources allocated to investigations.

Factors to take into account when using meat inspection
data for syndromic surveillance

Due to the complexity of the culling decision process,
there is a necessity to evaluate the representativeness
of meat inspection data available before instigating
syndromic surveillance. The result is a restriction of
the dataset and possibly the conclusion that not
enough data are available. In this study we had to dis-
card veal calves as the dataset was too small. A similar
study should therefore be conducted on this animal
category when data become available.

Considering the previous studies, the number of cat-
tle slaughtered should be taken into account as well as
age and sex. Statistical analyses are then more com-
plex than just monitoring a raw number of cattle
with whole carcass condemnation. Control charts
must be applied under the assumption of independent
and identically distributed observations [12]. In this
study we have accounted for explainable patterns,
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including the denominator data (total number of slaugh-
tered animals) using regression models, and then applied
outbreak signal detection with well-known algorithms
using model residuals [19]. This made it possible to pro-
cess proportions and not just numbers, which could be a
better indicator for surveillance.

Perspectives

This study, based on a simulation approach, showed
that the proportion of whole carcass condemnations
could be a useful indicator for syndromic surveillance
since it enables good detection performance especially
for flat, linear and exponential outbreak shapes. The
recent implementation of a national meat inspection
database in France will make it possible to investigate
this indicator on real data in a prospective way. The
Shewart control chart could be used as a first step
and then CUSUM and the negative binomial algor-
ithm when historical data becomes available. Other
indicators based on meat inspection data could be
further investigated using the same approach.
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