BULL. AUSTRAL. MATH. SOC. Vol. 61 (2000) [27-32]

APPLICATIONS OF FOX'S DERIVATION IN DETERMINING THE GENERATORS OF A GROUP

WAN LIN

We give a necessary and sufficient condition for a set of elements to be a generating set of a quotient group F/N, where F is the free group of rank n and N is a normal subgroup of F. Birman's Inverse Function Theorem is a corollary of our criterion. As an application of this criterion, we give necessary and sufficient conditions for a set of elements of the Burnside group B(n, p) of exponent p and rank n to be a generating set.

For a group G, denote by ZG its integral group ring. Elements of ZG are of the form $\sum_{g \in G} a_g g$, where $a_g \in \mathbb{Z}$ is equal to zero for all but a finite number of g. Addition and multiplication in ZG are defined by $\sum_{g \in G} a_g g + \sum_{g \in G} b_g g = \sum_{g \in G} (a_g + b_g)g$ and $\left(\sum_{g \in G} a_g g\right) \left(\sum_{g \in G} b_g g\right) = \sum_{g \in G} \left(\sum_{h \in G} a_{gh^{-1}} b_h\right) g$. Let ε denote the augmentation homomorphism of ZG into itself, that is, $(\sum a_g g)^{\varepsilon} = \sum a_g$, for any element $\sum a_g g$ in ZG. The kernel $\Delta = \text{Ker} \varepsilon$ is called the augmentation ideal of ZG [8]. It is easily verified that $\Delta = \mathbb{Z}G(G-1)$. A mapping D of ZG into itself is called a (left) derivation if D(u + v) = Du + Dv and $D(u \cdot v) = Du \cdot v^{\varepsilon} + u \cdot Dv$, for any u, v in ZG. Derivation in ZG has the following elementary properties:

(i) Da = 0, for any $a \in \mathbb{Z}$;

(ii)
$$D(u_1 \cdot u_2 \cdots u_k) = \sum_{i=1}^{k} u_1 \cdot u_2 \cdots u_{i-1} \cdot Du_i,$$

for any elements $u_1, u_2, \dots, u_k \in G, \ k \ge 1;$

(iii) $D(u^{-1}) = -u^{-1} \cdot Du$, for any element $u \in G$.

Let F be the free group with basis x_1, x_2, \ldots, x_n . We let $\frac{\partial}{\partial x_j}$, $j = 1, 2, \ldots, n$, be the Fox free partial derivative with respect to x_j in $\mathbb{Z}F$ [6, 8], that is, $\frac{\partial x_i}{\partial x_j} = \delta_{ij}$, where δ_{ij} is the Kroneker delta. If y_1, y_2, \ldots, y_n is a set of elements of F, let

Received 23rd March, 1999

I would like to thank my supervisor Professor C.K. Gupta for suggesting this topic to me.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/00 \$A2.00+0.00.

 $\left\|\frac{\partial y_i}{\partial x_j}\right\| = \left\|\frac{\partial (y_1, y_2, \dots, y_n)}{\partial (x_1, x_2, \dots, x_n)}\right\| \text{ denote the Jacobian matrix. In 1973, Birman [4] proved that } y_1, y_2, \dots, y_n \text{ generate } F \text{ if and only if } \left\|\frac{\partial y_i}{\partial x_j}\right\| \text{ has a right inverse.}$

In the current paper, we shall establish a necessary and sufficient condition for a set of elements $\overline{y_1}, \overline{y_2}, \ldots, \overline{y_n}$ to be a generating set for G = F/N, where N is a normal subgroup of F. As an application of our criterion, we give necessary and sufficient conditions for a set of elements of the Burnside group B(n, p) of exponent p and rank n to be a generating set.

THEOREM 1. Let F be the free group with basis x_1, x_2, \ldots, x_n and N a normal subgroup of F. Suppose y_1, y_2, \ldots, y_n is a set of elements of F. Then $\overline{y_1}, \overline{y_2}, \ldots, \overline{y_n}$ is a generating set for F/N if and only if there exist an $n \times n$ matrix $A = (a_{ij})$ over $\mathbb{Z}F$, elements g_1, g_2, \ldots, g_n in $\mathbb{Z}F$ and h_1, h_2, \ldots, h_n in N such that

$$(a_{ij}) \left\| \frac{\partial y_i}{\partial x_j} \right\| + \operatorname{diag} \left(g_1, g_2, \dots, g_n \right) \left\| \frac{\partial h_i}{\partial x_j} \right\| = E_i$$

where E is the $n \times n$ identity matrix and diag (g_1, g_2, \ldots, g_n) is the $n \times n$ diagonal matrix with main diagonal entries g_1, g_2, \ldots, g_n .

PROOF: If $\overline{y_1}$, $\overline{y_2}$, ..., $\overline{y_n}$ is a generating set of F/N, then $\overline{x_i} = X_i(\overline{y_1}, \overline{y_2}, \ldots, \overline{y_n})$ is a word in $\overline{y_1}$, $\overline{y_2}$, ..., $\overline{y_n}$. Thus $x_i = W_i(y_1, y_2, \ldots, y_n)h_i$, where $h_i \in N$. In $\mathbb{Z}F$, we have that

$$\delta_{ij} = \frac{\partial x_i}{\partial x_j} = \frac{\partial}{\partial x_j} \{ W_i(y_1, y_2, \dots, y_n) h_i \} = \frac{\partial W_i}{\partial x_j} + W_i \frac{\partial h_i}{\partial x_j}$$

By property (ii), we may write $\frac{\partial W_i}{\partial x_j}$ as

$$\frac{\partial W_i}{\partial x_j} = \sum_{k=1}^n a_{ik} \frac{\partial y_k}{\partial x_j},$$

where a_{ik} , $1 \le k \le n$, are elements in $\mathbb{Z}F$.

Let $A = (a_{ij})$ and $g_i = W_i$, $i = 1, 2, \ldots, n$, then

$$(a_{ij}) \left\| \frac{\partial y_i}{\partial x_j} \right\| \operatorname{diag} (g_1, g_2, \dots, g_n) \left\| \frac{\partial h_i}{\partial x_j} \right\| = E.$$

Conversely, suppose that

$$(a_{ij})\left\|\frac{\partial y_i}{\partial x_j}\right\| + \operatorname{diag}\left(g_1, g_2, \dots, g_n\right)\left\|\frac{\partial h_i}{\partial x_j}\right\| = E,$$

where $g_1, g_2, \ldots, g_n \in \mathbb{Z}F$ and $h_1, h_2, \ldots, h_n \in N$. Then

$$\sum_{k=1}^{n} a_{ik} \frac{\partial y_k}{\partial x_j} + g_i \frac{\partial h_i}{\partial x_j} = \delta_{ij}.$$

Multiplying both sides of the above equation by $x_j - 1$ and summing over j, we have

$$\sum_{j=1}^n \sum_{k=1}^n a_{ik} \frac{\partial y_k}{\partial x_j} (x_j - 1) + \sum_{j=1}^n g_j \frac{\partial h_i}{\partial x_j} (x_j - 1) = \sum_{j=1}^n \delta_{ij} (x_j - 1).$$

By Fox's fundamental formula [6], we have that $\sum_{j=1}^{n} \frac{\partial y_k}{\partial x_j}(x_j - 1) = y_k - 1$ and $\sum_{j=1}^{n} \frac{\partial h_i}{\partial x_j}(x_j - 1) = h_i - 1$. Thus

$$\sum_{k=1}^{n} a_{ik}(y_k - 1) + g_i(h_i - 1) = x_i - 1.$$

Hence

$$\sum_{k=1}^{n} a_{ik}(y_k - 1) = x_i - 1 \mod \mathbb{Z}F(N-1).$$

It follows, by [5, Lemma 4.1], that $\overline{y_1}, \overline{y_2}, \ldots, \overline{y_n}$ is a generating set for F/N.

REMARK.

- (i) The proof of the necessity actually gives an algorithm for finding the matrix A, elements g_1, g_2, \ldots, g_n and h_1, h_2, \ldots, h_n . The elements g_1, g_2, \ldots, g_n are actually in the free group F.
- (ii) When N = 1, Theorem 1 says that a set of elements y_1, y_2, \ldots, y_n of F is a basis for F if and only if the Jacobian matrix $\left\|\frac{\partial y_i}{\partial x_j}\right\|$ has an inverse in $\mathbb{Z}F$. Thus Birman's Inverse Function Theorem [4] is a corollary of our Theorem 1.

As an application of Theorem 1, we shall prove the following result regarding the generating set of the Burnside group B(n,p) of exponent p and rank n. Let p be a prime and F^p the subgroup of F generated by the pth power of the elements of F. Then $B(n,p) = F/F^p$ is the Burnside group of exponent p and rank n. We let I_p denote the ideal of $\mathbb{Z}F$ generated by all elements of the form $1 + w + w^2 + \cdots + w^{p-1}$, $w \in F$.

COROLLARY 2. Let y_1, y_2, \ldots, y_n be a set of elements of F. Then we have the following:

- (i) If $\overline{y_1}, \overline{y_2}, \ldots, \overline{y_n}$ is a generating set of B(n, p), then $\left\| \frac{\partial y_i}{\partial x_j} \right\|$ is invertible over $\mathbb{Z}F/I_p$.
- (ii) If $\left\| \frac{\partial y_i}{\partial x_j} \right\|$ has a left inverse over $\mathbb{Z}F/\mathbb{Z}F(F^p-1)$, then $\overline{y_1}, \overline{y_2}, \ldots, \overline{y_n}$ is a generating set of B(n, p).
- (iii) If $\left\|\frac{\partial y_i}{\partial x_j}\right\|$ has a left inverse over $\mathbb{Z}F/I_p$, then $\overline{y_1}, \overline{y_2}, \ldots, \overline{y_n}$ is a generating set of F/N, where N is the normal subgroup of F corresponding to I_p , that is, $I_p = \mathbb{Z}F(N-1)$.

PROOF: (i) If $\overline{y_1}$, $\overline{y_2}$,..., $\overline{y_n}$ is a generating set of B(n,p), then, by Theorem 1, there exist an $n \times n$ matrix $A = (a_{ij})$, elements g_1, g_2, \ldots, g_n in F and elements h_1, h_2, \ldots, h_n in F^p such that

$$(a_{ij})\left\|\frac{\partial y_i}{\partial x_j}\right\| + \operatorname{diag}\left(g_1, g_2, \ldots, g_n\right)\left\|\frac{\partial h_i}{\partial x_j}\right\| = E.$$

Since $h_i \in F^p$, $1 \le i \le n$, we have that $\frac{\partial h_i}{\partial x_j} \in I_p$ for all i and j. Thus

$$(a_{ij})\left\|\frac{\partial y_i}{\partial x_j}\right\| = E$$

over $\mathbb{Z}F/I_p$. Hence (a_{ij}) is a left inverse of $\left\|\frac{\partial y_i}{\partial x_j}\right\|$ over $\mathbb{Z}F/I_p$. By a theorem of Montgomery [9], (a_{ij}) is also a right inverse of $\left\|\frac{\partial y_i}{\partial x_j}\right\|$. Therefore (a_{ij}) is the inverse

of $\left\| \frac{\partial y_i}{\partial x_j} \right\|$. (ii) Suppose that

$$(a_{ij})\left\|\frac{\partial y_i}{\partial x_j}\right\| = E$$

over $\mathbb{Z}F/\mathbb{Z}F(F^p-1)$. Then we can find u_{ij} in $\mathbb{Z}F(F^p-1)$ such that

$$(a_{ij})\left\|\frac{\partial y_i}{\partial x_j}\right\| + (u_{ij}) = E$$

over $\mathbb{Z}F$. Thus, for $i = 1, 2, \ldots, n$ and $j = 1, 2, \ldots, n$,

$$\sum_{k=1}^{n} a_{ik} \frac{\partial y_k}{\partial x_j} + u_{ij} = \delta_{ij}.$$

Multiplying both sides of this equation by $x_j - 1$ and summing over j, we have

$$\sum_{j=1}^{n} \sum_{k=1}^{n} a_{ik} \frac{\partial y_k}{\partial x_j} (x_j - 1) + \sum_{j=1}^{n} u_{ij} (x_j - 1) = \sum_{j=1}^{n} \delta_{ij} (x_j - 1).$$

By Fox's fundamental formula, we have that

$$\sum_{k=1}^{n} a_{ik}(y_k - 1) + \sum_{j=1}^{n} u_{ij}(x_j - 1) = x_i - 1.$$

Thus

$$\sum_{k=1}^{n} a_{ik}(y_k - 1) = x_i - 1 \mod \mathbb{Z}F(F^p - 1).$$

Therefore, by [5, Lemma 4.1], $\overline{y_1}$, $\overline{y_2}$,..., $\overline{y_n}$ is a generating set for B(n,p). (iii) If

$$(a_{ij}) \left\| \frac{\partial y_i}{\partial x_j} \right\| = E$$

over $\mathbb{Z}F/I_p$, then we can find u_{ij} in I_p such that

$$(a_{ij})\left\|\frac{\partial y_i}{\partial x_j}\right\| + (u_{ij}) = E$$

over $\mathbb{Z}F$. Thus, for $i = 1, 2, \ldots, n$ and $j = 1, 2, \ldots, n$,

$$\sum_{k=1}^{n} a_{ik} \frac{\partial y_k}{\partial x_j} + u_{ij} = \delta_{ij}.$$

Multiplying both sides of this equation by $x_j - 1$ and summing over j, we have

$$\sum_{j=1}^{n} \sum_{k=1}^{n} a_{ik} \frac{\partial y_k}{\partial x_j} (x_j - 1) + \sum_{j=1}^{n} u_{ij} (x_j - 1) = \sum_{j=1}^{n} \delta_{ij} (x_j - 1).$$

By Fox's fundamental formula, we have

$$\sum_{k=1}^{n} a_{ik}(y_k - 1) + \sum_{j=1}^{n} u_{ij}(x_j - 1) = x_i - 1.$$

Thus

$$\sum_{k=1}^{n} a_{ik}(y_k - 1) = x_i - 1 \mod I_p.$$

Let N be the normal subgroup of F such that $I_p = \mathbb{Z}F(N-1)$, then $N \supseteq F^p$. Thus, by [5, Lemma 4.1], $\overline{y_1}$, $\overline{y_2}$, ..., $\overline{y_n}$ is a generating set for F/N.

W. Lin

References

- S. Bachmuth, 'Automorphisms of free metabelian groups', Trans. Amer. Math. Soc. 118 (1965), 93-104.
- S. Bachmuth, 'Automorphisms of a class of metabelian groups', Trans. Amer. Math. Soc. 127 (1967), 284-293.
- [3] S. Bachmuth and H.Y. Mochizuki, 'Automorphisms of a class of metabelian groups II', Trans. Amer. Math. Soc. 127 (1967), 294-301.
- [4] J.S. Birman, 'An inverse function theorem for free groups', Proc. Amer. Math. Soc. 41 (1973), 634-638.
- [5] D.E. Cohen, Groups of cohomological dimension one, Lecture Notes in Math. 245 (Springer-Verlag, Berlin, Heidelberg, New York, 1972).
- [6] R.H. Fox, 'Free differential calculus I, Derivation in the free group ring', Ann. of Math. 57 (1953), 547-560.
- [7] R.H. Fox, 'Free differential calculus II, The isomorphism problem of groups', Ann. of Math. 59 (1954), 196-210.
- [8] N.D. Gupta, Free group rings, Contemporary Mathematics 66 (Amer. Math. Soc., Providence, RI, 1987).
- [9] M.S. Montgomery, 'Left and right inverses in group algebras', Bull. Amer. Math. Soc. 75 (1969), 539-540.

Department of Mathematics University of Manitoba Winnipeg Manitoba R3T 2N2 Canada e-mail: umlin010@cc.umanitoba.ca