APPLICATIONS OF FOX'S DERIVATION IN DETERMINING THE GENERATORS OF A GROUP

Wan Lin

Abstract

We give a necessary and sufficient condition for a set of elements to be a generating set of a quotient group F / N, where F is the free group of rank n and N is a normal subgroup of F. Birman's Inverse Function Theorem is a corollary of our criterion. As an application of this criterion, we give necessary and sufficient conditions for a set of elements of the Burnside group $B(n, p)$ of exponent p and rank n to be a generating set.

For a group G, denote by $\mathbb{Z} G$ its integral group ring. Elements of $\mathbb{Z} G$ are of the form $\sum_{g \in G} a_{g} g$, where $a_{g} \in \mathbb{Z}$ is equal to zero for all but a finite number of g. Addition and multiplication in $\mathbb{Z} G$ are defined by $\sum_{g \in G} a_{g} g+\sum_{g \in G} b_{g} g=\sum_{g \in G}\left(a_{g}+b_{g}\right) g$ and $\left(\sum_{g \in G} a_{g} g\right)\left(\sum_{g \in G} b_{g} g\right)=\sum_{g \in G}\left(\sum_{h \in G} a_{g h-1} b_{h}\right) g$. Let ε denote the augmentation homomorphism of $\mathbb{Z} G$ into itself, that is, $\left(\sum a_{g} g\right)^{e}=\sum a_{g}$, for any element $\sum a_{g} g$ in $\mathbb{Z} G$. The kernel $\Delta=\operatorname{Ker} \varepsilon$ is called the augmentation ideal of $\mathbb{Z} G$ [8]. It is easily verified that $\Delta=\mathbb{Z} G(G-1)$. A mapping D of $\mathbb{Z} G$ into itself is called a (left) derivation if $D(u+v)=D u+D v$ and $D(u \cdot v)=D u \cdot v^{\varepsilon}+u \cdot D v$, for any u, v in $\mathbb{Z} G$. Derivation in $\mathbb{Z} G$ has the following elementary properties:
(i) $D a=0$, for any $a \in \mathbb{Z}$;
(ii) $D\left(u_{1} \cdot u_{2} \cdots u_{k}\right)=\sum_{i=1}^{k} u_{1} \cdot u_{2} \cdots u_{i-1} \cdot D u_{i}$, for any elements $u_{1}, u_{2}, \ldots, u_{k} \in G, k \geq 1$;
(iii) $D\left(u^{-1}\right)=-u^{-1} \cdot D u$, for any element $u \in G$.

Let F be the free group with basis $x_{1}, x_{2}, \ldots, x_{n}$. We let $\frac{\partial}{\partial x_{j}}, j=1,2, \ldots, n$, be the Fox free partial derivative with respect to x_{j} in $\mathbb{Z} F[6,8]$, that is, $\frac{\partial x_{i}}{\partial x_{j}}=$ $\delta_{i j}$, where $\delta_{i j}$ is the Kroneker delta. If $y_{1}, y_{2}, \ldots, y_{n}$ is a set of elements of F, let

[^0]$\left\|\frac{\partial y_{i}}{\partial x_{j}}\right\|=\left\|\frac{\partial\left(y_{1}, y_{2}, \ldots, y_{n}\right)}{\partial\left(x_{1}, x_{2}, \ldots, x_{n}\right)}\right\|$ denote the Jacobian matrix. In 1973, Birman [4] proved that $y_{1}, y_{2}, \ldots, y_{n}$ generate F if and only if $\left\|\frac{\partial y_{i}}{\partial x_{j}}\right\|$ has a right inverse.

In the current paper, we shall establish a necessary and sufficient condition for a set of elements $\overline{y_{1}}, \overline{y_{2}}, \ldots, \overline{y_{n}}$ to be a generating set for $G=F / N$, where N is a normal subgroup of F. As an application of our criterion, we give necessary and sufficient conditions for a set of elements of the Burnside group $B(n, p)$ of exponent p and rank n to be a generating set.

Theorem 1. Let F be the free group with basis $x_{1}, x_{2}, \ldots, x_{n}$ and N a normal subgroup of F. Suppose $y_{1}, y_{2}, \ldots, y_{n}$ is a set of elements of F. Then $\overline{y_{1}}, \overline{y_{2}}, \ldots$, $\overline{y_{n}}$ is a generating set for F / N if and only if there exist an $n \times n$ matrix $A=\left(a_{i j}\right)$ over $\mathbb{Z} F$, elements $g_{1}, g_{2}, \ldots, g_{n}$ in $\mathbb{Z} F$ and $h_{1}, h_{2}, \ldots, h_{n}$ in N such that

$$
\left(a_{i j}\right)\left\|\frac{\partial y_{i}}{\partial x_{j}}\right\|+\operatorname{diag}\left(g_{1}, g_{2}, \ldots, g_{n}\right)\left\|\frac{\partial h_{i}}{\partial x_{j}}\right\|=E
$$

where E is the $n \times n$ identity matrix and diag $\left(g_{1}, g_{2}, \ldots, g_{n}\right)$ is the $n \times n$ diagonal matrix with main diagonal entries $g_{1}, g_{2}, \ldots, g_{n}$.

Proof: If $\overline{y_{1}}, \overline{y_{2}}, \ldots, \overline{y_{n}}$ is a generating set of F / N, then $\overline{x_{i}}=X_{i}\left(\overline{y_{1}}, \overline{y_{2}}, \ldots, \overline{y_{n}}\right)$ is a word in $\overline{y_{1}}, \overline{y_{2}}, \ldots, \overline{y_{n}}$. Thus $x_{i}=W_{i}\left(y_{1}, y_{2}, \ldots, y_{n}\right) h_{i}$, where $h_{i} \in N$. In $\mathbb{Z} F$, we have that

$$
\delta_{i j}=\frac{\partial x_{i}}{\partial x_{j}}=\frac{\partial}{\partial x_{j}}\left\{W_{i}\left(y_{1}, y_{2}, \ldots, y_{n}\right) h_{i}\right\}=\frac{\partial W_{i}}{\partial x_{j}}+W_{i} \frac{\partial h_{i}}{\partial x_{j}}
$$

By property (ii), we may write $\frac{\partial W_{i}}{\partial x_{j}}$ as

$$
\frac{\partial W_{i}}{\partial x_{j}}=\sum_{k=1}^{n} a_{i k} \frac{\partial y_{k}}{\partial x_{j}}
$$

where $a_{i k}, 1 \leq k \leq n$, are elements in $\mathbb{Z} F$.
Let $A=\left(a_{i j}\right)$ and $g_{i}=W_{i}, i=1,2, \ldots, n$, then

$$
\left(a_{i j}\right)\left\|\frac{\partial y_{i}}{\partial x_{j}}\right\| \operatorname{diag}\left(g_{1}, g_{2}, \ldots, g_{n}\right)\left\|\frac{\partial h_{i}}{\partial x_{j}}\right\|=E
$$

Conversely, suppose that

$$
\left(a_{i j}\right)\left\|\frac{\partial y_{i}}{\partial x_{j}}\right\|+\operatorname{diag}\left(g_{1}, g_{2}, \ldots, g_{n}\right)\left\|\frac{\partial h_{i}}{\partial x_{j}}\right\|=E
$$

where $g_{1}, g_{2}, \ldots, g_{n} \in \mathbb{Z} F$ and $h_{1}, h_{2}, \ldots, h_{n} \in N$. Then

$$
\sum_{k=1}^{n} a_{i k} \frac{\partial y_{k}}{\partial x_{j}}+g_{i} \frac{\partial h_{i}}{\partial x_{j}}=\delta_{i j}
$$

Multiplying both sides of the above equation by $x_{j}-1$ and summing over j, we have

$$
\sum_{j=1}^{n} \sum_{k=1}^{n} a_{i k} \frac{\partial y_{k}}{\partial x_{j}}\left(x_{j}-1\right)+\sum_{j=1}^{n} g_{i} \frac{\partial h_{i}}{\partial x_{j}}\left(x_{j}-1\right)=\sum_{j=1}^{n} \delta_{i j}\left(x_{j}-1\right)
$$

By Fox's fundamental formula [6], we have that $\sum_{j=1}^{n} \frac{\partial y_{k}}{\partial x_{j}}\left(x_{j}-1\right)=y_{k}-1$ and $\sum_{j=1}^{n} \frac{\partial h_{i}}{\partial x_{j}}\left(x_{j}-1\right)=h_{i}-1$. Thus

$$
\sum_{k=1}^{n} a_{i k}\left(y_{k}-1\right)+g_{i}\left(h_{i}-1\right)=x_{i}-1
$$

Hence

$$
\sum_{k=1}^{n} a_{i k}\left(y_{k}-1\right)=x_{i}-1 \quad \bmod \mathbb{Z} F(N-1)
$$

It follows, by [5, Lemma 4.1], that $\overline{y_{1}}, \overline{y_{2}}, \ldots, \overline{y_{n}}$ is a generating set for F / N.

Remark.

(i) The proof of the necessity actually gives an algorithm for finding the matrix A, elements $g_{1}, g_{2}, \ldots, g_{n}$ and $h_{1}, h_{2}, \ldots, h_{n}$. The elements $g_{1}, g_{2}, \ldots, g_{n}$ are actually in the free group F.
(ii) When $N=1$, Theorem 1 says that a set of elements $y_{1}, y_{2}, \ldots, y_{n}$ of F is a basis for F if and only if the Jacobian matrix $\left\|\frac{\partial y_{i}}{\partial x_{j}}\right\|$ has an inverse in $\mathbb{Z} F$. Thus Birman's Inverse Function Theorem [4] is a corollary of our Theorem 1.
As an application of Theorem 1, we shall prove the following result regarding the generating set of the Burnside group $B(n, p)$ of exponent p and rank n. Let p be a prime and F^{p} the subgroup of F generated by the p th power of the elements of F. Then $B(n, p)=F / F^{p}$ is the Burnside group of exponent p and rank n. We let I_{p} denote the ideal of $\mathbb{Z} F$ generated by all elements of the form $1+w+w^{2}+\cdots+w^{p-1}$, $w \in F$.

Corollary 2. Let $y_{1}, y_{2}, \ldots, y_{n}$ be a set of elements of F. Then we have the following:
(i) If $\overline{y_{1}}, \overline{y_{2}}, \ldots, \overline{y_{n}}$ is a generating set of $B(n, p)$, then $\left\|\frac{\partial y_{i}}{\partial x_{j}}\right\|$ is invertible over $\mathbb{Z} F / I_{p}$.
(ii) If $\overline{\left\|\frac{\partial y_{i}}{\partial x_{j}}\right\|}$ has a left inverse over $\mathbb{Z} F / \mathbb{Z} F\left(F^{p}-1\right)$, then $\overline{y_{1}}, \overline{y_{2}}, \ldots, \overline{y_{n}}$ is a generating set of $B(n, p)$.
(iii) If $\overline{\left\|\frac{\partial y_{i}}{\partial x_{j}}\right\|}$ has a left inverse over $\mathbb{Z} F / I_{p}$, then $\overline{y_{1}}, \overline{y_{2}}, \ldots, \overline{y_{n}}$ is a generating set of F / N, where N is the normal subgroup of F corresponding to I_{p}, that is, $I_{p}=\mathbb{Z} F(N-1)$.
Proof: (i) If $\overline{y_{1}}, \overline{y_{2}}, \ldots, \overline{y_{n}}$ is a generating set of $B(n, p)$, then, by Theorem 1 , there exist an $n \times n$ matrix $A=\left(a_{i j}\right)$, elements $g_{1}, g_{2}, \ldots, g_{n}$ in F and elements $h_{1}, h_{2}, \ldots, h_{n}$ in F^{p} such that

$$
\left(a_{i j}\right)\left\|\frac{\partial y_{i}}{\partial x_{j}}\right\|+\operatorname{diag}\left(g_{1}, g_{2}, \ldots, g_{n}\right)\left\|\frac{\partial h_{i}}{\partial x_{j}}\right\|=E
$$

Since $h_{i} \in F^{p}, 1 \leq i \leq n$, we have that $\frac{\partial h_{i}}{\partial x_{j}} \in I_{p}$ for all i and j. Thus

$$
\left(a_{i j}\right)\left\|\frac{\partial y_{i}}{\partial x_{j}}\right\|=E
$$

over $\mathbb{Z} F / I_{p}$. Hence $\left(a_{i j}\right)$ is a left inverse of $\overline{\left\|\frac{\partial y_{i}}{\partial x_{j}}\right\|}$ over $\mathbb{Z} F / I_{p}$. By a theorem of Montgomery $[9],\left(a_{i j}\right)$ is also a right inverse of $\overline{\left\|\frac{\partial y_{i}}{\partial x_{j}}\right\|}$. Therefore $\left(a_{i j}\right)$ is the inverse of $\overline{\left\|\frac{\partial y_{i}}{\partial x_{j}}\right\|}$.
(ii) Suppose that

$$
\left(a_{i j}\right)\left\|\frac{\partial y_{i}}{\partial x_{j}}\right\|=E
$$

over $\mathbb{Z} F / \mathbb{Z} F\left(F^{p}-1\right)$. Then we can find $u_{i j}$ in $\mathbb{Z} F\left(F^{p}-1\right)$ such that

$$
\left(a_{i j}\right)\left\|\frac{\partial y_{i}}{\partial x_{j}}\right\|+\left(u_{i j}\right)=E
$$

over $\mathbb{Z} F$. Thus, for $i=1,2, \ldots, n$ and $j=1,2, \ldots, n$,

$$
\sum_{k=1}^{n} a_{i k} \frac{\partial y_{k}}{\partial x_{j}}+u_{i j}=\delta_{i j}
$$

Multiplying both sides of this equation by $x_{j}-1$ and summing over j, we have

$$
\sum_{j=1}^{n} \sum_{k=1}^{n} a_{i k} \frac{\partial y_{k}}{\partial x_{j}}\left(x_{j}-1\right)+\sum_{j=1}^{n} u_{i j}\left(x_{j}-1\right)=\sum_{j=1}^{n} \delta_{i j}\left(x_{j}-1\right)
$$

By Fox's fundamental formula, we have that

$$
\sum_{k=1}^{n} a_{i k}\left(y_{k}-1\right)+\sum_{j=1}^{n} u_{i j}\left(x_{j}-1\right)=x_{i}-1
$$

Thus

$$
\sum_{k=1}^{n} a_{i k}\left(y_{k}-1\right)=x_{i}-1 \bmod \mathbb{Z} F\left(F^{p}-1\right)
$$

Therefore, by $\left[5\right.$, Lemma 4.1], $\overline{y_{1}}, \overline{y_{2}}, \ldots, \overline{y_{n}}$ is a generating set for $B(n, p)$.
(iii) If

$$
\left(a_{i j}\right)\left\|\frac{\partial y_{i}}{\partial x_{j}}\right\|=E
$$

over $\mathbb{Z} F / I_{p}$, then we can find $u_{i j}$ in I_{p} such that

$$
\left(a_{i j}\right)\left\|\frac{\partial y_{i}}{\partial x_{j}}\right\|+\left(u_{i j}\right)=E
$$

over $\mathbb{Z} F$. Thus, for $i=1,2, \ldots, n$ and $j=1,2, \ldots, n$,

$$
\sum_{k=1}^{n} a_{i k} \frac{\partial y_{k}}{\partial x_{j}}+u_{i j}=\delta_{i j}
$$

Multiplying both sides of this equation by $x_{j}-1$ and summing over j, we have

$$
\sum_{j=1}^{n} \sum_{k=1}^{n} a_{i k} \frac{\partial y_{k}}{\partial x_{j}}\left(x_{j}-1\right)+\sum_{j=1}^{n} u_{i j}\left(x_{j}-1\right)=\sum_{j=1}^{n} \delta_{i j}\left(x_{j}-1\right)
$$

By Fox's fundamental formula, we have

$$
\sum_{k=1}^{n} a_{i k}\left(y_{k}-1\right)+\sum_{j=1}^{n} u_{i j}\left(x_{j}-1\right)=x_{i}-1
$$

Thus

$$
\sum_{k=1}^{n} a_{i k}\left(y_{k}-1\right)=x_{i}-1 \bmod I_{p}
$$

Let N be the normal subgroup of F such that $I_{p}=\mathbb{Z} F(N-1)$, then $N \supseteq F^{p}$. Thus, by [5, Lemma 4.1], $\overline{y_{1}}, \overline{y_{2}}, \ldots, \overline{y_{n}}$ is a generating set for F / N.

References

[1] S. Bachmuth, 'Automorphisms of free metabelian groups', Trans. Amer. Math. Soc. 118 (1965), 93-104.
[2] S. Bachmuth, 'Automorphisms of a class of metabelian groups', Trans. Amer. Math. Soc. 127 (1967), 284-293.
[3] S. Bachmuth and H.Y. Mochizuki, 'Automorphisms of a class of metabelian groups II', Trans. Amer. Math. Soc. 127 (1967), 294-301.
[4] J.S. Birman, 'An inverse function theorem for free groups', Proc. Amer. Math. Soc. 41 (1973), 634-638.
[5] D.E. Cohen, Groups of cohomological dimension one, Lecture Notes in Math. 245 (Springer-Verlag, Berlin, Heidelberg, New York, 1972).
[6] R.H. Fox, 'Free differential calculus I, Derivation in the free group ring', Ann. of Math. 57 (1953), 547-560.
[7] R.H. Fox, 'Free differential calculus II, The isomorphism problem of groups', Ann. of Math. 59 (1954), 196-210.
[8] N.D. Gupta, Free group rings, Contemporary Mathematics 66 (Amer. Math. Soc., Providence, RI, 1987).
[9] M.S. Montgomery, 'Left and right inverses in group algebras', Bull. Amer. Math. Soc. 75 (1969), 539-540.

Department of Mathematics
University of Manitoba
Winnipeg
Manitoba R3T 2N2
Canada
e-mail: umlin010@cc.umanitoba.ca

[^0]: Received 23rd March, 1999
 I would like to thank my supervisor Professor C.K. Gupta for suggesting this topic to me.

