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1. Introduction

It is known that there is a connexion between the functional equation of
the theta-function f

03(O | T )= f e«ta2t=(-iT)-* f €-"**"= (-ir)-*03(o\-
n = — oo n = — oo \ t

{/(*)> 0} (1)
and the reciprocity formula for Gauss sums. The latter formula is usually
written as

q-1 /y,\i P-1

y e*w*p/q _ eini I g j y e-«in*qtp
n = 0 \pj n = 0

where p and q are positive integers, mutually prime, and not both odd.J
It can also be written as

y i^/

n = —q \Pj »= -p
where the notation £" is used to indicate that both the first and the last terms
in the sums are to be halved, and the result (2) is true for all positive integers §
p and q.

The formula (1) can be deduced from Poisson's summation formula. ||
The formula (2) can be derived from (1) by a method of Landsberg,1f or it
can be deduced from Poisson's summation formula by a method of Dirichlet.ft
Thus we can describe (2) as a finite identity connected with the case (1) of
Poisson's summation formula.

Now Poisson's summation formula can be written in the form %%

M - O O [ q n ^ i \ q j q ) 0 \ q J J

- !
pn=l \pj P

t Cf. E. T. Whittaker and G. N. Watson, Modern Analysis (Cambridge, 1927), 468-469.
X Sometimes called the formula of Genocchi and Schaar. See E. Lindelof, Calcul des

Residus (Paris, 1905), 73-75 for references.
§ It is trivially true if/? and q are both odd, for then both sums vanish.
|| E. C. Titchmarsh, Fourier Integrals (Oxford, 1948), 60-64.
11 M. Landsberg, J.fiir die reine und angewandte Math., I l l (1893), 234-253.
t t Cf. P. Bachmann, Die analytische Zahlentheorie (Leipzig, 1894), 156-161.
%t For conditions, see E. C. Titchmarsh, he. cit., or A. P. Guinand, Annals of Math., 42

(1941), 591-603.
E.M.S.—B
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18 A. P. GUINAND

where p and q are real and positive, and/(x), g{x) are Fourier cosine transforms
with respect to the kernel 2 cos 2nx\ that is

fit) cos 2nxtdt (4)
lo

and

fix) = 2 g(0 cos
Jo

In the present paper I show that finite identities of the form

dt ........ .(5)
q ) gjo \ g / P» = i \pj pjo \p

hold when p, q, N are any positive integers and either |

/(x) = 0(x) = ^(1 + x ) - log x,

ort

(6)

Both of these pairs of functions are transforms with respect to the kernel
2 COS 2nX.

I also note some extensions of these results in section 4, and I make some
remarks on the nature of the results in section 5.

2. Finite Identities involving i/f(l 4- x) — log x

In earlier papers § I showed that i/*(l+x) — logx is self-reciprocal for the
transformation (4), and that the formula

•nz) — lognz— > 4- —(y — \og2nz)
«= i [ 2nzJ 2z

1 °° f / M \ n 7 1 / OTJ

Z n = 1 |_ \ Z/ Z 2«J \ Z

can be deduced from Poisson's summation formula in the form (3).
We now prove the following result:

t <I>M denotes T'(
J The notation Z' is used to indicate that the term n = x, if it occurs, is to be halved.

Euler's constant is denoted by y.
§ A. P. Guinand, / . London Math. Soc, 22 (1947), 14-18, and Edin. Math. Notes, 38

(1952), 1-4. The methods of the latter paper can also be used to prove Theorem 1, but a
simpler method is used here to prove both Theorems 1 and 2.
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POISSON'S SUMMATION FORMULA 19

Theorem 1. If F(x) = ij/(l + x) — log x and p, q, N are any positive integers
then

Jo

We use the following lemma.

Lemma. If p, q, N are any positive integers then

.(8)
Q«= i V 1J P"=i V

and

/or «// x except those values which make the arguments of any \j/-function
involved equal to 0, — 1, — 2, ....

Since |

--—)

we have

J1+px+»JL)-l
V

= - z z /- —\ - - z z /- -
« - - i - = i ( m ™ ^ ^ , ^ l P » = i . - i | » n + ^ + m l .

« / \ P

9 Mp / t \~ z (-- l
M-»OO (n = i m = i \mq mq + np + pqx

P Mq- z z
<=in=i\np mq + np + pqx

Mp I Mq i"

= Mm E I Z
M - > o o [ m = 1 m n = 1 Tl

since mp + nq runs through the same set of integers when 1 ^m£,Mp, 1 ^n^q
and when l^m^p, l^n^Mq. This proves (8); (9) follows if we replace
p, q, and x by Np, Nq and ;r/JV respectively.

t E. T. Whittaker and G. N. Watson, toe. cil., 241.
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Now consider the expression

-iD

1
pJoJo (. V PJ \

Evaluating the integrals and using the lemma, we find that (10) is equal to

N log > log px+ — + - 2. l o S
4 «»=i V 3 / p » = i

l , r( i+px+iVp) I
— - log h - lOg

p F(l + px) q

+ (x + N) log p(x + N)-x log px-JV

— (x + N) log q(x + iV) + x log qx + N (11)
Now

Nq / n p \ p ( jv,

n = l \ q J q

= Nq log - + log

and similarly
Np ( nq\ a
E log I qx -\—- I = Np log - -|- log

Substituting these results in (11) we find that all terms cancel. Hence (10)
vanishes identically, and we have proved:

Theorem 2.f If F(x) = ij/(l+x) — log x and p, q, N are any positive integers

t The formula (12) can also be derived from a formula of Schobloch

4 — 1 / np\ ±(a—p} M P P + H H " ? " ! ) P - i / nq\

by logarithmic differentiation. Cf. N. Nielsen, Handbuch der Gammafunktion (Leipzig,
1906), 198.
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POISSON'S SUMMATION FORMULA 21

then

j

for all x except those values which make the argument of any F-function involved
equal to 0, — 1, —2, ....

Theorem 1 follows on putting x = 0 in (12).

3. The Finite Identity involving

x l< >.' 1 -x}.

First, we must show that the functions (6) are Fourier cosine transforms
with respect to the kernel 2 cos 27rx. Consider

CN f l")
2 ly+\ogt- £ ' -}cos2nxtdt

Jo I i&n&t)

v
= — si

nx Jo
N-l / i \ fn+1

-2 1 1 + H+-+-
n = i \ n/JB

= — sin 2nNx -\ log JV sin 2nNx sin 2nxt —
nx nx ix Jo *

X (
^X n = 1 \

sin 2;rJVx /
i t x

y + logiV- 1, sin27rx( —
\ n = i nj nx Jo * ) £

7tX » = 1 «

Making N tend to infinity, the expression in brackets tends to zero, and we
have

f °°{+log<- X' -} cos 2nxtdt
o I. igns.nj

1 y, sin 27inx _ 1
nx n = i n 2x
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22 A. P. GUINAND

Both of the functions (6) obviously belong to L2(0, oo) and are of bounded
variation in any closed finite interval excluding x = 0. Hence f we have:

Theorem 3. If x>0 and

/(x) = x"1I E'<xl - x \ ,

- E ' ->
lgngx tl

then

g{x) = 2 f{t) cos Inxtdt
Jo

(•-CO

/(x) = 2 #0) cos 27tx<d*.
J

Now with the notation of Theorem 3 and p, q, N any positive integers we
have %

1 Nq n f nn") 1 CNp") 1 CN

- -
) pjo

1 1 1 w« 1 CNP

= - ZZ' - - - E 1 - - X - H M -
P l ^ ^ ^ N n <J n = 1 pjo
i i i IVt-l fn+l j

= - IE' - - - E » -
P l^mqgnpZNpqn f » n = l J n X

= - EE' " + -logiNp)\-Nlog Np (13)
p lSmqinp^Npq n p

Similarly

PJo

v , 1) 1 f« . .
- 1 - E -r - - ^W
P linSm«/P«J q Jo

) -
PJ P

t E. C. Titchmarsh, loc. cit., 83.
% The notation £T ' is to be interpreted here as indicating that the terms for which

mq = np are to be halved.
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POISSON'S SUMMATION FORMULA 23

- - ££' --Ny-NlogNq + N
p l g g g J V Tlp lgnpg

rn + i
i Nq~i ( A r

+ - E i+ i+ i+-+ i

= - - I I ' i + -log(Np)!-NlogNp+N f - (14)
P lZnpZmqgNpqtl p n = l «

Subtracting (14) from (13) we have

l g ,(»_£) _ i p / « W _ (i g , ( a ) . I p , (a
1 f 1 1) Nt> 1

is1 -+ ir - - ^ -
(lgmggnpgiVp? n l&np&mq&Npq H) n = l «

= - E i l -\-N E -
p [ l J ( 1 n) 1 M

i f Np •) f Nq

E i l \ E

= 0.

That is, we have:

Theorem 4. If f(x) and g(x) are as in Theorem 3 then the finite identity (5)
holds for all positive integers p, q, N.

4. Extended Forms of Finite Identities

There is known to be an extension of the reciprocity for Gauss sums which
can be written

*£ e"'"2"1" cos — = e**1-*1*2'" f^Y " E e-«**/ ' cos —,
n = 0 q \pj n = 0 p

where p, q, r are positive integers (p, q) = 1, and pq + r is even. This can also
be written

and in this form it is valid for all positive integers p, q and all integers r. If
r = 2 kpq where k is an integer, then (15) gives

*i_+9 /n\i kE±P . , .

n = kq-q \p/ n = kp-p

which is obviously equivalent to (2).
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24 A. P. GUINAND

Theorem 2 can be regarded as an extension of Theorem 1 analogous to
the extension (15) of (2). If we put x = M, where M is an integer, in Theorem 2
then (12) implies that

q J
F -

qn=Mq+i \qj q JMq \q

(17)

This result can be deduced from Theorem 1 by taking two different values
of N and subtracting, but the extended form (12) in this case is valid for all
values of the additional parameter x except a discrete set.

In the case of the finite identity of Theorem 4 it follows by subtraction
that for positive integers p, q, M, N, {M<N)

JMq \q) pn=Mp+i \pj pJMp

but there does not appear to be an extension analogous to (15) or (12). How-
ever, there does exist another type of extension. The methods of section 3
can be used to prove the following result.

Theorem 5. If R(s)>0 then the functions

HTgx s + l j
and

. s _ i _ x~
s

are Fourier cosine transforms with respect to the kernel 2 cos 2nx, and for all
positive integers p, q, N.

= -Nfs(Np)gs(Nq)+
4Npq

In the case s = I we have

so the right-hand side of (18) reduces to (ANpq)'1, but no such simple reduction
occurs for any other s in R(s)>Q,
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5. Remarks on the Nature of the Finite Identities

In order that there should be a finite identity of the type discussed above
associated with a case of Poisson's summation formula it is essential that the
pair of Fourier transforms involved should, in some sense, be functions of the
same type. This is certainly true in the cases considered. For a case of
Poisson's summation formula such as

1 1 °° , 1 1 JS T>

i | i y e-2nnp/q_ _± |- i V V

2q g n = i 2np nn=i p 2 + n2q2

we cannot expect a corresponding finite identity such as

1 1 *« . . 1 i ^£ n2q q.Zi 2np n . t ' l p2+n2q2

to hold because it would imply relationships between transcendental functions
and algebraic functions of an impossible nature.

Consequently it seems unlikely that any satisfactory general theory of finite
identities associated with Poisson's summation formula could be developed,
though we can note individual examples as in this paper.

The following trivial result is the only other example of such a finite identity
which I have found. If 7(z)>0 then Poisson's summation formula gives

00 1 00

£ sech7i«z=- ]T sech7in/z (19)
n = - o o Z n = - o o

The finite identity

^?,, unp iq ^?,, nnq SKW

2_J sec = 2_i sec (^")
n = —q q p n = — p p

corresponds to (19) in much the same way that (2) corresponds to (1). The
formula (20) is certainly true if p and q are both odd integers, for then both
sides vanish identically.
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